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ABSTRACT: 
 
A method for automatic updating of building data bases from Digital Surface Models (DSM) and a normalised difference vegetation 
index is evaluated. The DSM can be generated from Airborne Laserscanner (ALS) data or by image matching techniques. Buildings 
are detected automatically from the input data. The building detection results are compared to an existing building data base, and 
changes between the existing data base and the new data set are determined. Buildings and building parts are classified as being 
confirmed, changed, new, or demolished. Change detection considers the fact that the original data and the building detection results 
can have a different topology and that small differences between the data from the two epochs might be caused by generalisation 
errors, by a misalignment of the data, or by insufficient sensor resolution. The performance of the algorithm is analysed using DSMs 
generated both from ALS data and by image matching. The evaluation shows the different properties of these data for building 
change detection and also some of the limitations of the method. If the accuracy requirements for the building outlines are not very 
high, the automatic updating process can be automated, provided that high-quality DSMs are used. In a semi-automatic environment 
the amount of human interaction for updating building data bases can be reduced by 40%-60%.  
 

1. INTRODUCTION 

In many industrial countries there exist 2D topographic data 
bases with a building layer. Keeping such a data base up-to-date 
has been estimated to require up to 40% of the costs necessary 
to generate it from scratch (Champion, 2007). To reduce these 
costs it is desirable to automate this process. Using high-
resolution aerial imagery and / or airborne laser scanner (ALS) 
data, it should be feasible to detect changes of urban 
development automatically (Matikainen et al., 2004, Champion, 
2007). If the accuracy requirements are not very high, human 
intervention can be restricted to a check of the changed building 
outlines and a manual digitisation of incorrect or inaccurate 
results. Even if the accuracy requirements are high (e.g. for 
updating the cadastre), the manual effort required for map 
updating can be reduced significantly by embedding automated 
change detection into a semi-automatic system. In such a 
system, the automated module focuses the human operator’s 
attention by highlighting areas of change. Whereas the new 
building outlines are still digitised manually, the amount of 
human interaction is reduced because buildings found to be 
unchanged by the automated process need not be inspected at 
all and because potential new buildings are already highlighted.  
 
There are two general strategies for change detection: It can be 
based either on a comparison of sensor data for two different 
epochs or on a comparison of an existing data base to more 
recently collected sensor data (Vosselman et al., 2004). If 3D 
data are available for the acquisition time of the original data 
base, changes in buildings will result in height differences 
between the original data and a more recently acquired DSM, 
which can be used for change detection. Vögtle and Steinle 
(2004) presented such an algorithm. Based on an evaluation of 
the overlap ratios between buildings in the old and the new data 
sets, buildings are initially classified as new, demolished, or 
other. The height changes between the original DSM and the 

more recently acquired data are evaluated to further classify 
other buildings as not-altered, added-on, or reduced. If no 3D 
data are available for the acquisition time of the original data, it 
is a common strategy for change detection to first detect 
buildings in the new data and then compare the building 
footprints thus derived to the original data base. Vosselman et 
al. (2004) present a method for comparing an existing map with 
the results of a building detection technique using ALS data. 
They give a list of errors that might result in differences 
between the existing map and the newly extracted buildings and 
show how to compensate for the errors caused by generalisation 
and false alignment. Matikainen et al. (2004) detect buildings in 
ALS data and aerial images and compare the results to an 
existing building data base. Buildings in the existing data base 
are classified as detected, partly detected, and not detected, 
whereas buildings in the new data set are classified as new, 
enlarged, or old. A joint visualisation of these classification 
results is presented on a per-pixel basis, but no further object-
based analysis is carried out. Champion (2007) uses a DSM 
generated by image matching to verify the buildings of an 
existing data base. The original building outlines are compared 
to step edges extracted from the DSM. A similarity measure 
evaluating the percentage of the length of the building outlines 
having a match in the set of step edges is used to classify a 
building as validated, modified, or destroyed. New buildings are 
detected using the DSM and a tree layer derived from multi-
spectral images and the DSM.  
 
In (Rottensteiner, 2007), a method for building change 
detection from a DSM and a normalised difference vegetation 
index (NDVI) derived from a multi-spectral image was 
presented. It is based on a comparison of the results of an 
algorithm for automatic building detection (Rottensteiner et al., 
2007) to the existing map, taking into account that deviations 
between the two data sets might be due to different degrees of 
generalisation and to small registration errors. This method will 

265



 

be presented in a revised form in Section 2. The main goal of 
this paper is a thorough evaluation of this method. In 
(Rottensteiner, 2007), first results achieved for two different 
data sets were presented, and a pixel-based evaluation of the 
updated building data base showed that DSM errors had a 
significant impact on the classification accuracy. In Section 3, a 
more thorough evaluation will be carried out using the same 
data sets. Confusion matrices of the different change classes 
will be presented, and completeness and correctness will be 
assessed for each of these classes. The separability of these 
classes will be discussed, and the effectiveness of the method in 
reducing human intervention in a semi-automatic environment 
as described above will be assessed. The results achieved for 
DSMs from ALS and image matching will also be compared. 
Conclusions will be drawn in Section 4. 
 
 

2. BUILDING CHANGE DETECTION 

Building change detection requires a DSM generated by image 
matching or from ALS data. Optionally, a geocoded NDVI 
image and a model of the height differences between the first 
and last pulses of ALS data can be used, too. These input data, 
along with a Digital Terrain Model (DTM) generated from the 
DSM by hierarchic morphologic filtering, are used for building 
detection based on the theory of Dempster-Shafer for data 
fusion (Rottensteiner et al., 2007). The existing building data 
base can also be considered in this process. The results of 
building detection are compared to an existing building data 
base, and changes between the existing data base and the new 
data set are determined by a comparison of two label images: 
the “existing label image” Le and the “new label image” Ln. 
Change detection starts with a topological clarification in order 
to achieve topological consistency between the two label 
images. This is followed by the actual classification of changes. 
It is the goal of change detection to (1) classify the buildings in 
the existing data base as confirmed, changed, or demolished, (2) 
detect new buildings, (3) show demolished and new building 
parts for the changed buildings, and (4) determine the outlines 
of the changed and the new buildings. The individual stages of 
change detection will be described in the subsequent sections.  
 
2.1 Building Detection 

Building detection starts with a Dempster-Shafer fusion process 
carried out for each pixel of the DSM to achieve a classification 
of the input data into one of four classes: buildings, trees, grass 
land, and bare soil. A heuristic model for the distribution of the 
evidence from each input data set to the four classes is applied. 
Initial building regions are determined as connected 
components of building pixels. A second Dempster-Shafer 
fusion process eliminates regions still corresponding to trees. 
The new label image Ln is one of the results of the building 
detection algorithm (Rottensteiner et al., 2007).  
 
For building change detection the existing label image Le can be 
used as a further input data set in the first Dempster-Shafer 
fusion process. Usually the amount of change will be limited, so 
that the original data base gives an indication where buildings 
are to be expected. This can be modelled by the probability PC 
that the status of a pixel has changed. If a pixel is inside the 
building in Le, the probability of the pixel still being inside a 
building at the later epoch is (1 – PC), whereas the probability 
that it is no longer inside a building is PC. If a pixel is not inside 
a building in Le, the probability of the pixel being inside a 
building at the later epoch is PC, whereas the probability that it 

is still not a building is (1 – PC). This can be used as a model 
for the assignment of probability masses to the four object 
classes. Thus, the original data base introduces a bias for no 
changes to have occurred into the classification process. PC is 
chosen by the user, typically between 20 % and 40 %.  
 
2.2 Topological Clarification 

In order to achieve topological consistency between the existing 
label image Le and the new label image Ln, correspondences 
between labels from the two data sets must be found. For each 
co-occurrence of two labels le ∈ Le and ln ∈ Ln, the overlap 
ratios pne = nn∩e / nn and pen = nn∩e / ne are computed, where 
nn∩e is the number of pixels assigned to ln in Ln and to le in Le, 
nn is the total number of pixels assigned to ln, and ne is the total 
number of pixels assigned to le. Correspondences with both pne 
and pen smaller than a threshold tm (e.g. 10 %) are eliminated. If 
the topology of the two data sets was identical except for new or 
demolished buildings, each label would have exactly zero or 
one corresponding label in the other data set. As this is usually 
not the case, each label can have zero, one, or more 
correspondences. If a label in Le has M corresponding labels in 
Ln, the original building is split into M parts. This can reflect the 
actual demolition of a building part or not, because the building 
detection algorithm tends to split buildings at height 
discontinuities. If a label in Ln has N corresponding labels in Le, 
N existing buildings are merged. This occurs with terraced 
houses having identical roof heights. If a set of M labels li

e ∈ Le 
corresponds to a set of N labels lj

n ∈ Ln, buildings are both split 
and merged, and there are ambiguities with respect to the 
correct correspondences of some of the new labels.  
 
2.2.1 Clarification of the ambiguous cases: This is achieved 
by modifying the new label image. Any label ln that 
corresponds to more than one label in Le and / or has a 
significant overlap with the background is split into two or 
more labels. First, new buildings are identified. A binary image 
of new building pixels (i.e., building pixels in the new label 
image corresponding to the background in the existing label 
image) is generated. Morphological opening is used to remove 
noise at the building outlines. If there remain new building 
pixels in the filtered image, new labels corresponding to new 
building parts are detected by a connected component analysis. 
A label image Lc combining the existing labels Le and these new 
labels is created. Each label in Ln corresponding to more than 
one label in Lc is split so that each of the new labels 
corresponds to exactly one label of Lc. To compensate for 
smoothing effects of the morphological filter at the fringes of 
new building parts, the Voronoi diagram of Lc is used to assign 
pixels to one of the new labels.  
 
2.2.2 Clarification of the merged cases: Labels can be merged 
because the buildings are close to each other or because a new 
building has been constructed between them. In a similar way 
as described above, new building labels are detected. The 
merged label in Ln is split into several new labels, each 
corresponding to a new building or to exactly one label in Le. 
 
2.2.3 Clarification of the split cases: This clarification process 
starts with growing the new labels by morphologic closing. If 
two labels are found to be neighbours in the closed label image, 
the splitting is supposed not to be caused by a real change, and 
the two labels are merged in Ln. Otherwise, the separation is 
assumed to be the result of the demolition of a building part, 
and the original labels are maintained.  
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2.3 Classification of Changes 

As a result of topological clarification, an improved version 
Ln

imp of the new building label image Ln is obtained. Each of the 
labels in Ln

imp corresponds to zero or to one label in Le. Each of 
the labels of Le corresponds to zero, one, or N labels of Ln

imp. 
Again, overlap ratios are computed for each co-occurrence of 
two labels le ∈ Le and ln ∈ Ln

imp, and marginal correspondences 
are eliminated. A building is classified as new if its label 
ln ∈ Ln

imp does not have any correspondence in Le. An existing 
building is classified as demolished if its label le ∈ Le does not 
have any correspondence in Ln

imp. For all remaining labels 
le ∈ Le, a binary image of demolished pixels (pixels assigned to 
le in Le, but not to any of its correspondences in Ln

imp) and a 
binary image of new pixels (pixels assigned to any of the 
correspondences of le in Ln

imp, but not to le in Le) are created. If 
neither demolished nor new pixels remain after a morphological 
opening of these binary images, the building is classified as 
confirmed; otherwise, it is classified as changed. For changed 
buildings, connected components in the binary images of 
demolished and new pixels are considered to correspond to 
demolished building parts and new building parts. For a 
changed building le having multiple correspondences in Ln

imp, 
the area corresponding to the label in Ln

imp having the largest 
overlap with le is classified as changed. All the other labels 
corresponding to that building could also be classified as 
changed from the point of view of the existing data base. 
However, in the updated data base, these labels will correspond 
to new entities, so that they could also be classified as new. 
Thus, the new class split off is introduced for these “new” 
buildings corresponding to a part of an existing one (Fig. 1).  
 

 
 
Figure 1.  Classification of changes for multiple overlap cases. 

Left top: original label image. Left bottom: results of 
topological clarification. Right: change map. 

 
After the classification, two images representing the change 
detection results are generated: (1) a change map using different 
colours for new, demolished, confirmed, and split off buildings 
as well as for confirmed, new, and demolished parts of changed 
buildings, and (2) a label image representing the new state. For 
generating the label image representing the new state, there are 
two options. The first option is to use the improved version of 
the new label image. If the original map is more accurate, the 
original outlines can be used for confirmed buildings, whereas 
the new outlines of changed and split off buildings can be a 
combination of the original outlines for the unchanged building 
parts and the outlines of the new building parts. 
 
 

3. EXPERIMENTS 

3.1 The Test Data Sets 

The first data set used for evaluation was captured over 
Fairfield (NSW). It consisted of ALS points with a spacing of 
1.2 m. The first and the last laser pulses as well as the intensity 
of the returned signal were recorded. A colour stereo pair and a 
digital orthophoto with a ground resolution of 0.15 m were also 
available. From the red band of the orthophoto and the intensity 
of the ALS signal, a “pseudo-NDVI” image was generated. 
DSMs of a grid width Δ = 1 m were derived for both the first 

and the last pulse data. The outlines of the buildings were 
determined by photogrammetric plotting with a planimetric 
accuracy of 0.2 m. In order to simulate actual changes, the 
existing data base was generated from these outlines by adding 
and removing buildings or building parts. The size of the test 
area was 500 x 400 m2. The second data set, covering an area of 
about 1100 x 1100 m2 in Toulouse (France), was provided by 
EuroSDR (EuroSDR, 2007). It consisted of a DSM generated 
by image matching, an RGB and an infrared orthophoto, and an 
existing building data base. Both the DSM and the orthophotos 
had a resolution of Δ = 0.501 m. The DSM was very noisy, 
especially in the shadow regions. The numerical resolution of 
the DSM heights was identical to Δ, so that the only height 
values occurring were full multiples of Δ. Reference data were 
generated by digitizing the building outlines in the digital 
orthophoto with a planimetric accuracy of about 1.0 m.  
 
3.2 Results and Discussion 

In Fairfield, the algorithm for building detection described in 
Section 2.1 was applied to the DSMs generated from ALS data, 
the surface roughness parameters and the pseudo-NDVI. In 
Toulouse, the DSM and an NDVI generated from the 
orthophotos were used. Surface roughness was not considered. 
In both cases, the parameters of the algorithm were tuned in the 
way described in (Rottensteiner et al., 2007). Furthermore, the 
existing data base was considered in both cases, setting the 
probability of a change to PC = 35 %. In the change detection 
process, the size of the structural element used for morphologic 
filtering (cf. Sections 2.2 and 2.3) was set to 3 m. Thus, changes 
having a smaller linear extent smaller than 3 m could not be 
detected. This compensates for small misalignments between 
the existing data base and the new data and for errors of 
building detection at the building outlines (Rottensteiner et al., 
2007). The change detection algorithm was also used to 
compare the original data base to the reference. The resulting 
change maps, including the reference, are presented in Figures 2 
and 3 for Fairfield and Toulouse, respectively. In Fairfield, the 
change map was generated using a grid width of 0.5 m; in 
Toulouse it was identical to the DSM grid width (0.501 m). 
 
In Fairfield, changes affecting the main buildings are detected 
correctly, even though it can be seen that in some cases, new 
building parts are classified as new buildings and vice versa. 
The separation of these classes is difficult. In case of doubt, the 
change detection algorithm assumes a new building. The few 
incorrect new building parts are the result of an over-estimation 
of the building extents. All demolished buildings and building 
parts were detected. All except two demolished building parts 
are correct. However, with demolished buildings, the trend 
observed in (Rottensteiner et al., 2007) is confirmed: For small 
structures, the results of building detection become uncertain. 
Thus, the small buildings classified as demolished in the back 
yards, mostly garden sheds and garages, were not really 
demolished, but they were actually too small to be detected.  
 
The results achieved in Toulouse are not as good as those 
achieved in Fairfield due to the poor quality of the DSM. 
Again, it can be observed that small buildings are not detected 
in the new data set. Some changes are detected correctly, e.g. 
the new and demolished buildings in the south-west of the 
scene. However, there are two large areas of false positive 
detections: the area in the northeast corner of the scene merges 
a correctly detected new building with a parking lot, and the 
area in the east is actually a sports field. In both cases the DSM 

  demolished changed split off
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Figure 3.  Change maps for Toulouse. Top: Results of automatic 

change detection. Bottom: Reference. Ochre/yellow: 
confirmed buildings / building parts. Blue/light grey: 
demolished buildings / building parts. Red/green: new
buildings / building parts. Pink: split-off buildings. 

had height variations larger than 3 m in essentially horizontal 
areas. The obvious over-estimation of the large building 
complex in the western part of the scene is caused by the 
uncertainty of the DSM in the shadow areas. Other problems 
were related to trees partly overhanging buildings and to the 
general lack of ground points in the forested areas.  
 

 

 
Figure 2.  Change maps for Fairfield. Top: Results of automatic 

change detection. Bottom: Reference. Ochre/yellow: 
confirmed buildings / building parts. Blue/light grey: 
demolished buildings / building parts. Red/green: new 
buildings / building parts.  

 
3.3 Evaluation of the Results 

In order to evaluate the results, the change maps derived by the 
automatic process were compared to the reference change map. 
Confusion matrices and the derived quality metrics 
completeness and correctness (Rottensteiner et al., 2007) were 
determined on a per-pixel basis. For the Fairfield data set, these 
metrics were also derived on a per-building basis to assess the 
effectiveness of the automated process in reducing the amount 
of human intervention.  
 
3.3.1 Fairfield: Table 1 shows the per-pixel confusion matrix 
for the change detection results obtained for the Fairfield data 
set. The completeness and correctness of the results on a per-
pixel basis are shown in Table 2. At a first glance, the quality 
metrics in Table 2 do not look very good. The only class with 
both completeness and correctness larger than 90% is changed. 
The class having both the worst completeness and the worst 
correctness is new building part, closely followed by new 
building. Table 1 reveals that this is caused by the fact the 
separation between these classes is very uncertain. The 
confusion matrix also shows that another major source of error 

is a misclassification of confirmed pixels as changed, and vice 
versa. These problems are connected. If a new building 
structure is found and if it is classified as a new building part, 
the existing building will be classified as changed; if the new 
structure is classified as a new building, the existing building is 
not affected and might be classified as confirmed. This becomes 
obvious for building a in Fig. 2. Whether a new building 
structure is a new building or an addition to an existing building 
cannot really be decided by the automated process, because this 
might actually be determined by circumstances such as property 
boundaries that are not reflected in the sensor data at all.  
 
It can be argued that on a per-pixel level, the separation 
between the classes confirmed and changed is not very 

false 
positives 

a 

a 
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meaningful. After all, both class labels refer to a building pixel 
in the existing data base found also to be a building pixel at the 
later epoch. Similarly, demolished building and demolished 
building part have the same interpretation for a single pixel, as 
have new building and new building part. On a per-pixel level, 
it makes sense to merge these pairs of classes, forming the new 
classes confirmed building pixel, new building pixel, and 
demolished building pixel. The confusion matrix and the quality 
metrics for these classes are shown in Table 3. The quality 
metrics are better than those in Table 2. For confirmed building 
pixels, both completeness and correctness are larger than 95%. 
Completeness is reasonably good for all classes. Only for new 
building pixels it is slightly below 90%, which is caused by 
problems at the outlines of buildings that are very close to each 
other. The major error sources are a relative large number of 
new building pixels corresponding to the background in the 
reference and the large number of false positive demolished 
building pixels corresponding to the small buildings in the 
backyards that were not detected by the algorithm. 
 
 Cf (A) Cd (A) NP (A) N (A) DP (A) D (A) B (A) 
Cf (R) 50440 6190 0 0 1033 5822 4 
Cd (R) 7257 77243 0 0 88 0 0 
NP (R) 0 0 4340 2362 0 0 128 
N (R) 0 1261 1719 9510 0 0 621 
DP (R) 0 785 0 0 6040 0 0 
D (R) 0 0 0 0 0 15664 0 
B (R) 0 0 1702 2128 0 0 593163
 
Table 1.  Confusion matrix for Fairfield [pixels]. A: Automatic, 

R: Reference. Cf: confirmed, Cd: changed, NP: new 
building part, N: new building, DP: demolished 
building part, D: demolished building, B: 
Background. 

 
 Cf Cd NP N DP D B 

Completeness [%] 79.4 91.3 63.5 72.5 88.5 100.0 99.4
Correctness [%] 87.4 90.4 55.9 67.9 84.3 72.9 99.9
 
Table 2.  Completeness and correctness for Fairfield, derived 

from the confusion matrix in Table 1. 
 

 C (A) N (A) D (A) B (A) Comp [%] 
C (R) 141130 0 6943 4 95.3 
N (R) 1261 17931 0 749 89.9 
D (R) 785 0 21704 0 96.5 
B (R) 0 3830 0 593163 99.4 

Corr [%] 98.6 82.4 75.8 99.9  
 
Table 3.  Confusion matrix [pixels] and completeness (Comp) 

and correctness (Corr) for Fairfield, using a reduced 
set of classes. A: Automatic, R: Reference. C: 
confirmed pixel, N: new building pixel, D: demolished 
building pixel, B: Background. 

 
The ultimate outcome of automatic change detection is an 
updated version of the data base. From that point of view, only 
the classes building and no building are to be discerned. The 
resulting values of completeness and correctness for building 
pixels are 95.4% and 97.2%, respectively. These excellent 
quality metrics are relevant if the change detection results are 
used directly to generate the new content of the data base.  
 
In a semi-automatic work flow as described in Section 1, per-
building quality metrics are more closely linked to the 

effectiveness of the automated procedure. Table 4 presents the 
completeness and the correctness of the change detection results 
on a per-building basis. There are two major error sources: a 
relatively large number of confirmed buildings classified as 
changed (13), and a large number of buildings classified as 
demolished despite not having changed at all (48). This results 
in a very low completeness for confirmed buildings, and in a 
very low correctness for changed and demolished buildings. If 
the results of automatic change detection are used in a semi-
automatic context to highlight areas of change, the number of 
correctly detected confirmed buildings is related to the amount 
of work that is saved by the process because confirmed 
buildings need no further inspection. However, the 
classification of confirmed buildings should be reliable in order 
not to save work at the expense of missed changes. There is 
only one false positive confirmed building. It is building a in 
Fig. 2, where a new building part was erroneously classified as 
a new building. The user would inspect the actual change (the 
new building) anyway, so that no error would be committed by 
not checking that building. Thus, the assumption that buildings 
classified as confirmed need no further inspection is justified. 
The numbers in Table 4 are affected by the poor separability of 
new buildings and new building parts: two of the three false 
negative and one of five false positive new buildings can be 
attributed to this problem. If change detection were carried out 
manually, the user would have to inspect all buildings in the 
existing data base (184) and detect the new ones (17). Of the 
existing buildings, 78 or 42.4% need no further attention. This 
is a considerable reduction of the work load of a human 
operator. In addition, new buildings are highlighted, with only 
one “real” false negative.  
 

 Cf Cd D N 
Completeness [%] 56.1 88.9 100.0 84.2 
Correctness [%] 98.7 51.6 20.0 76.2 

 
Table 4.  Completeness and correctness for Fairfield on a per-

building basis. Cf: confirmed building, Cd: changed 
building, N: new building, D: demolished building. 

 
The effectiveness of the automatic change detection module is 
restricted by the large number of missed small buildings. In 
(Rottensteiner, 2007), it was shown that buildings smaller than 
50 m2 could hardly be detected using ALS data of 1 m 
resolution. In many building data bases, such small buildings 
are not considered. If this is the case, the effectiveness of 
automatic change detection is much higher, because the changes 
affecting larger buildings are reliably detected. Table 5 presents 
completeness and correctness for buildings having an area 
larger than 50 m2. There is a considerable improvement in the 
quality numbers. The number of existing buildings requiring 
inspection is 109, of which 65 or 59.6% are correctly classified 
as confirmed. Again, the quality metrics are affected by the 
problems related to the separability of classes. For instance, the 
remaining new buildings missed by the algorithm are classified 
as new building parts of a changed building, so that actually all 
new buildings were highlighted by the algorithm.  
 
3.3.2 Toulouse: Table 6 shows completeness and correctness 
on a per-pixel basis for the classes distinguished by the change 
detection algorithm for Toulouse. These numbers are affected 
by the same problems of separability as those for Fairfield (cf. 
Table 2), but they are considerably worse because the building 
detection algorithm requires a high-quality DSM. For instance, 
as most of the pixels in the two large areas of false positive 
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building pixels highlighted in Fig. 3 are classified as new 
building part, the correctness of that class is only 2.7%.  
 
Table 7 presents completeness and correctness for a restricted 
number of classes generated by merging the classes having a 
similar interpretation on a per-pixel level. The numbers are 
better than those in Table 6, but still not as good as those 
achieved in Fairfield. The correctness of new building pixels 
remains low. If only the classes building and no building are 
discerned, completeness and correctness are 86.9% and 71.0%, 
respectively. Due to errors at the building outlines, correctness 
is only improved to 76.9% if the two areas of false positives in 
Fig. 3 are eliminated. Although a visual inspection of Fig. 3 
seems to indicate that some changes have been detected 
correctly, the quality of the DSM is not good enough for the 
algorithm to work effectively. This is emphasised by the fact 
that only one building is found to be confirmed; thus, only one 
building need not be inspected in a semi-automated work flow. 
 

 Cf Cd D N 
Completeness [%] 81.3 88.9 100.0 88.9 
Correctness [%] 98.5 55.2 75.0 76.2 

 
Table 5.  Completeness and correctness on a per-building basis 

for buildings larger than 50 m2 in Fairfield. Cf: 
confirmed building, Cd: changed building, N: new 
building, D: demolished building. 

 
 Cf Cd S NP N DP D B 

Comp [%] 10.2 74.8 100.0 47.4 67.5 72.9 68.8 97.0
Corr [%] 84.1 75.1 12.9 2.7 52.4 53.6 60.4 99.7
 
Table 6.  Completeness (Comp) and correctness (Corr) on a 

per-pixel basis for Toulouse. Cf: confirmed, Cd: 
changed, S: split off, NP: new building part, N: new 
building, DP: demolished building part, D: 
demolished building, B: Background. 

 
 C N D B 

Completeness [%] 81.2 71.1 80.7 97.0 
Correctness [%] 95.1 17.2 63.1 99.7 

 
Table 7.  Completeness and correctness on a per-pixel basis for 

Toulouse, using a restricted number of classes. C: 
confirmed pixel, N: new building pixel, D: demolished 
building pixel, B: Background. 

 
 

4. CONCLUSIONS 

A method for change detection for updating building data bases 
from DSMs and an NDVI image was evaluated. The results of 
change detection are presented so that the user can easily assess 
which buildings are confirmed, new, demolished, or changed, 
and in case of changed buildings also the nature and extent of 
these changes. The evaluation has shown that some of these 
classes cannot be discerned reliably even under good 
circumstances. This partly due to the nature of the problem, 
because the appearance of a new building and an addition to an 
existing building might be identical in remotely sensed data. 
The quality of the results is also restricted by the accuracy and 
the resolution of the sensor data in relation to the building size: 
small buildings are often missed by the building detection 
algorithm if the DSM resolution is about 1 m. For good DSMs, 
good results could be achieved on a per-pixel level, with both 

completeness and correctness of the results being above 95%. 
Thus, if the remaining problems with small buildings and with 
building outlines are negligible for the data base to be updated, 
the change detection algorithm can be used to automatically 
derive the new state of the data base. If the accuracy 
requirements are very high, the change detection process can be 
embedded in a semi-automatic working environment to 
highlight areas of change to a human operator. It was shown 
that such an approach can reduce the amount of human 
intervention by 40% even in the presence of many small 
buildings. If only buildings larger than 50 m2 are considered, 
the reduction was almost 60%. It is one restriction of the 
algorithm that it requires an excellent DSM. Good results can 
be expected for ALS-based DSMs having a resolution of 1 m or 
better. In our experiments, the results achieved using a DSM 
generated by image matching were not very good, because the 
DSM quality was not sufficient for the algorithm. This may be 
due to problems of the specific matching algorithm used to 
generate the Toulouse DSM, and our findings thus cannot be 
generalized for all DSMs generated from imagery. Applying 
advanced image matching techniques and/or multiple-overlap 
imagery might alleviate the problems found with the Toulouse 
DSMs. Future work will concentrate on improving the 
geometrical quality of the building outlines by image edges.  
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