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ABSTRACT:

This work aims at extracting 2D buildings from a single high-resolution satellite image in densely built-up urban areas. The whole
algorithm follows the hypothesis-verification strategy. The key contribution of this paper is the edge verification method of the hypoth-
esis verification process, which can greatly improve the accuracy and precision of the building extraction results from complex scenes.
To extract more accurate and precise edges, we construct a probabilistic model and an optimization frame. First, a probability being the
optimal edge is given to each possible edge, then the constraints of any two possible edges are estimated based on a machine learning
method and the image evidences, finally, these constraints and other prior knowledge are integrated into an optimization problem, by
solving which these probabilities can be computed and the optimal edge can be selected. At last, we provide some experimental results
on large and complex scenes that demonstrate the robustness and accuracy of our algorithm.

Over the past decades, automatic detection and reconstruction of
buildings from aerial or satellite images has been an active re-
search topic in both computer vision and digital photogramme-
try (M.Fradkin et al., 2001, Suveg and Vosselman, 2004). This
is due to an increasing need for building detection and recon-
struction in a variety of applications. Especially in cartography,
a powerful automatic system can greatly reduce the effort needed
to assemble a 2D or 3D digital map. Other applications of this
technology include urban planning, GIS update, environmental
monitoring and virtual & augmented reality.

Many building extraction approaches have been developed, and
most of them are based on feature extraction and feature group-
ing. In the early stage, building extraction methods attempt to
work solely with monocular images (Irving.R and Mckeown.D,
1989, Lin.C and Nevatia.R, 1998, McGlone.J and Shufelt.J.A,
n.d.), while recent works have focused on multi-views (Baillard.C
and Zisserman.A, n.d., Collins et al., 1998, Fischer et al., 1998,
Roux.M and Mckeown.D.M, n.d., S.Noronha and R.Nevatia, 2001,
Haala and Anders, 1996) or new data sources (D.Koc and M.Turker,
617–622, Haala et al., 1998, Kim and Nevatia, 2004, Lee.S et al.,
n.d., San and M.Turker, n.d., S.Noronha and R.Nevatia, 2001,
Song et al., n.d.), by which prior knowledge or 3-D information
can be obtained.

High resolution satellite images are increasingly available now.
That allows extracting more accurate and precise buildings from
urban areas. Hence, in this paper, based on this new data source,
we propose a building extraction method focusing on 2D rectan-
gular building extraction in densely built-up urban areas of large
scenes, by which the accuracy and precision of the results are
greatly improved.

The quality of building extraction are closely related to the com-
plexity of the scenes been processed. For high resolution images
of densely built-up urban areas, automatic building extraction is
very difficult because of some intrinsic challenges. Firstly, there
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are hundreds of buildings with diverse appearances in the same
scenes. They may appear very differently in intensity levels,
shapes and structures. Secondly, noises, arising from many kinds
of factors such as environments, other man-made objects etc.,
makes the surroundings and the inside of buildings very com-
plex. Thus, it is very hard to correctly segment buildings from
the complex scenes. Thirdly, accompanied with the increase of
the image resolution, most buildings’ sub-structures are visible.
Distinguish buildings with their sub-structures are difficult and
intrinsically ambiguous.

To overcome the above difficulties, many approaches have been
proposed (Baltsavias et al., 2001, Mayer, 1999, M.Fradkin et al.,
2001, N.Paparoditis, 1998, Suveg and Vosselman, 2004). How-
ever, until now this is still a partially solved problem, an effective
and robust method is still under development(Baltsavias et al.,
2001, Mayer, 1999, N.Paparoditis, 1998, San and M.Turker, n.d.,
Song et al., n.d., Suveg and Vosselman, 2004). In this work, we
take use of a global focusing step and the hypothesis-verification
strategy. More importantly is that we propose a novel edge veri-
fication method, which can effectively discriminates edges from
all kinds of noises in complex scenes. In our algorithm, texture
feature analysis and region grouping methods are first applied to
estimate the locations and cover areas of all buildings, then based
on these estimations, lines are selected and grouped to gener-
ate building hypotheses, finally, our new hypotheses verification
method based on edge verification is applied to obtain the optimal
hypothesis.

The rest of this paper are arranged as follows: the related work
and an overview of our method would be presented in section 2;
Section 3 describes the building hypotheses generation; The hy-
potheses verification method will be shown in Section 4 ; Finally,
some experimental results and the conclusion are given.

1 OVERVIEW

(Song et al., n.d.) describes a typical building extraction approach
based on high resolution images. In this method, images are first
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over-segmented into atomic-regions, and some of them with good
performance are selected as seeds. Then, the region grouping
method is used to grouping the atomic-regions together if they
satisfy some texture and geometry constraints. Thus, an atomic-
region group, named as Candidate Building Regions(CBR), is
generated for each seed. Next, for each CBR, a rectangular build-
ing hypothesis is generated based on the improvement of the min-
imum enclosed rectangles of each CBR. Finally, some image ev-
idences are collected to delete the false hypotheses.

From the above descriptions, it can be seen that the prior focus-
ing step of paper (Song et al., n.d.) is very simple. By the texture
analysis and region grouping methods, it can obtain the optimal
estimations of the locations and cover areas of all buildings. Al-
though the hypothesis generation and verification methods of pa-
per (Song et al., n.d.) is very simple, its detection rate is still
very good (88.8%). Therefore, in our algorithm, the prior focus-
ing step of (Song et al., n.d.) is still retained, by which we can
provide great help for the further hypothesis generation and veri-
fication method.

In our algorithm, building hypotheses are generated by the per-
ceptual grouping of lines like many existing methods (Lin.C and
Nevatia.R, 1998). The difference is that not all lines are used to
generate building hypotheses, only lines selected by CBRs are
used. In this way, the combination expansion problem can be
avoided. This is very important for the processing of large scenes
with hundred of buildings.

The hypothesis verification method is the critical contribution of
this paper, in which the traditional whole hypothesis verification
is transformed into detailed edge verification, which can be di-
vided into 3 steps: first, based on each generated hypotheses set,
four possible edge sets are constructed: left-edge set, right-edge
set, top-edge set and bottom-edge set; Then, image evidences are
collected to estimate the constraints of any two possible edges;
Finally the probability being the optimal edge is computed for
each possible edge by the above collected constraints, thus the
one with the highest probability can be treated as the optimal
edge. Finally, four optimal edges can be generated and integrated
to the optimal hypothesis.

Compared with most existing hypothesis verification methods,
there are mainly 3 contributions of our method: 1), The whole
hypotheses verification is decomposed into the detailed edge ver-
ification. This is because with the complexity increase of the
surroundings and the inside of building roofs, the overall perfor-
mance of hypotheses may be very similar. Hence, it is infeasible
to distinguish hypotheses based on the overall performance. 2),
In the edge verification method, the judgement of the relation-
ship of any two possible edges is transformed into a two-class
classification problem. In this way, the machine learning meth-
ods can be introduced into our frame to help us to make more
robust decision. 3), In the edge verification method, to robust
compute the optimal edge for all buildings, a probabilistic model
and a Quadratic Programming frame are constructed. All edges
are given a probability being the optimal edge, and constraints for
any two possible edges and other prior knowledge are integrated
into a Quadratic Programming model. Thus, all kinds of infor-
mation provided by images can be effectively used in a robust
decision making frame.

2 BUILDING HYPOTHESES GENERATION

Figure 1 shows the rectangular building roof model used for build-
ing hypothesis generation, which is described by {α, t, l, b, r}.
α is the direction of building roof, which has the range of [0◦,

Figure 1: The model of rectangular building roof. α: building
roof direction; t: coordinate value of top-edge; l: coordinate
value of left-edge; b: coordinate value of bottom-edge; r: co-
ordinate value of right-edge.

90◦); (t, l, b, r) are the coordinate values of the four edges, mea-
sured in the building coordinate system (axes in red color). The
four edges of this model are defined as: top-edge: the long edge
adjacent to shadow; bottom-edge: the long edge opposite top-
edge; left-edge: the short edge adjacent to shadow; right-edge:
the short edge opposite left-edge. Based on these definitions, all
building hypotheses with different directions can be normalized
into a unified frame, even when the scenes have different sunlight
directions.

Before hypotheses generation, two preparing works need to be
finished. First, the prior focusing step of (Song et al., n.d.)
should be used to obtain the best estimation of the buildings’ lo-
cation and covering areas. After image over-segmentation and
atomic-region grouping, a number of atomic-region groups are
generated. These atomic-region groups, also called Candidate
Building Regions (CBRs), provide an excellent estimation of the
locations and cover areas for all buildings. Secondly, for each
CBR, the lines used for the hypothesis generation need to be se-
lected. These lines will be selected if they are inside a CBR or
within a certain distance to the CBR’s contour. Thus, building
hypotheses can be generated by the perceptual grouping of these
selected lines.

Because hypotheses generation and verification for all CBRs are
in the same manner, in the following we will only consider the
processing of one CBR as an example. Let us represent this CBR
as V , and the line set as L. For V and L, the building hypotheses
are generated by the follow 4 steps (Fig. 2):

Step 1. Line set L is divided into 9 subsets according to the direc-
tion of lines: Lk = {l|l ∈ L, αl ∈ [(k − 1) · 10◦, k · 10◦)}, k =
1 · · · 9, where αl is the direction of line l. Perpendicular lines are
put into the same subset. For example, lines with direction of 5◦

and 95◦ are in the same subset L1.

Step 2. For each subset Lk, compute a direction αk, which rep-
resents the direction of the whole subset. αk is determined by the
direction of the longest line or the line with the highest intensity
in Lk.

Step 3. For each Lk, any four lines which approximately form
a rectangle would generate a building hypothesis. Based on the
four intersection points of these four lines and the subset direction
αk, a rectangle building hypothesis is generated and recorded by
the above five parameters.

Step 4. A simple selection mechanism is performed to elimi-
nate obviously unreasonable hypotheses. For example, too small
or too large in size or covering too many shadow regions. This
finalizes the generated hypothesis set.
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Figure 2: The flowchart of hypotheses generation and verifica-
tion process of CBR V and line set L. The red frame shows the
hypotheses verification process of hypotheses set H1, which will
be detailed explained in Fig 3.

Putting it altogether, 9 hypothesis sets corresponding to each Lk

(each one has about 30 hypotheses in our experiments) will be
generated for V . Actually, only two or three of them would be
nonempty, since most Lks are already empty.

3 HYPOTHESES VERIFICATION

Fig. 2 describes the whole flow of the hypotheses generation and
verification process. After hypotheses generation, 9 hypothesis
set are generated for CBR V . Then, the optimal hypothesis for
each hypotheses set will be computed by the hypothesis verifi-
cation method. Finally, one of these 9 optimal hypotheses will
be selected as the final correct hypothesis if it has the correct
direction. It can be seen that the whole verification process is
accomplished through two steps, the first step looks for the best
hypothesis of each hypothesis set, which as the key part of this
paper will be explained in detail below, and the second step looks
for the best direction, which can be easily solved and ignored
here.

To compute the optimal hypothesis from one hypotheses set, our
new hypothesis verification method decomposes hypothesis veri-
fication into the verification of the four edges, as shown in Fig. 3.
First, based on each hypotheses set, hypothesis pairs are gener-
ated and divided into four subsets. Then the edge-verification
method is applied on these subsets to compute the optimal edge
for top-edge, bottom-edge, right-edge and left-edge. Finally, these
four optimal edges are integrated together to generate the optimal
hypothesis for each hypotheses set.

The following of the section is arranged as this: the hypothe-
sis pair generation and classification will be described in subsec-
tion 3.1; the critical edge verification method will be presented
in subsection 3.2; in subsection 3.3 we will describe the method
to obtain the final correct hypothesis; the details of the image
evidences used in edge verification will be explained in subsec-
tion 3.4.

3.1 Hypothesis pair Generation and Classification

As shown in Fig 2 and Fig 3, here we take the hypothesis set
H1 as an example to show how to generate the four hypothesis

Figure 3: The flow of hypotheses verification for hypothesis set
H1. t1o, b1o, l1o and r1o denote the coordinate values for the
optimal top-edge, bottom-edge, left-edge and right-edge. HP de-
notes hypothesis pair.

pair subsets. First, any two hypotheses in H1 form a hypothe-
sis pair, then hypothesis pairs with 2 or 3 collinear edges are se-
lected (Fig. 4 shows some examples about collinear edges). Next,
the hypothesis pairs with 2 collinear edges are transformed into
two groups of hypothesis pairs with 3 collinear edges (Fig. 4(B)).
In this way, a new set which only contains the hypothesis pair
with 3 collinear edges is generated. Finally, this new set of hy-
pothesis pairs is divided into four subsets according to the posi-
tion of the non-collinear edge, which are represented as HP1r ,
HP1l, HP1t and HP1b, with r, l, t, b (denoting right, left, top
and bottom, respectively) specifying the edge that is not collinear.
Fig 4.(A) shows an example belonging to HP1r .

3.2 Edge Verification

Based on the four hypothesis pair subsets generated above, the
optimal edges for top-edge, bottom-edge, left-edge and right-
edge will be computed by our edge verification method. Here,
we still take the hypothesis set H1 as an example. Since the
computation of the four optimal edges are in the same manner,
we will only illustrate the computation of the optimal right-edge
from HP1r .

Let r1o denote the coordinate values of the optimal right-edge(Fig. 3).
Here, we construct a probability model to compute it. First, a
possible right-edge coordinate value set R1 = {r1, r2, . . . , rq}
is collected from the hypothesis subset H1r , where q is the num-
ber of the distinct coordinate values of right-edges in HP1r and
ri (i = 1 . . . , q) are the coordinate values. Then, for each ri ∈
R1, we use p(ri) to denote the probability of ri being the co-
ordinate value of the optimal right-edge. Thus, to compute the
optimal edge, we only need to compute each p(ri) and take the
edge with the largest probability.

As a simple scenario, suppose that there are only three elements
r1, r2 and r3 in R1. For r1 and r2, they have the probability being
the optimal right-edge as p(r1) + p(r2), under this condition the
conditional probability that r1 is optimal becomes p(r1)

p(r1)+p(r2)
.

Suppose c12 = p(r1)
p(r1)+p(r2)

, then we can get a linear constraint
(1 − c12)p(r1) = c12p(r2) about p(r1) and p(r2). Similarly,
there are linear constraints c13 for p(r1) and p(r3), c23 for p(r2)
and p(r3). If these three linear constraints c12, c13 and c23 can
all be obtained, then based on p(r1) + p(r2) + p(r3) = 1, p(r1)
p(r2) and p(r3) can be easily computed.
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Figure 4: h1 and h2 denote two hypotheses forming a hypothesis
pair. (A): Hypothesis pair with 3 collinear edges; (3-4) is the
right-edge of h1; (5-6) is the right-edge of h2; r1 and r2 denote
the coordinate values of the right-edges of h1 and h2. Region a
and b are the share-region and different-region of h1 and h2.(B):
Hypothesis pair with 2 collinear edges. The new generated two
groups of hypothesis pairs with 3 collinear edges are:(1-2-7-8,5-
6-7-8) and (5-6-3-4,5-6-7-8). (C): Another kind of hypothesis
pair with 2 collinear edges. (D): Hypothesis pair with 1 collinear
edge.

The above example is the primitive idea about how to compute
the probabilities for all possible edges. The key is that we com-
pute these probabilities by the relationships of any possible edge
pairs. Note that it may be very difficult to directly compute these
probabilities from image evidences, but the estimation of condi-
tional probabilities from only two possible edges could be much
easier. These probabilities can then be chosen to be consistent
with the linear constraints generated by the estimated condition-
als. In the following paragraphs, we will first estimate the linear
constraints cij from image evidences, and then construct an opti-
mization framework to compute every p(ri).

3.2.1 The Estimation of Linear Constraints cij

1. Estimating cij cij = p(ri)
p(ri)+p(rj)

is a linear constraints
(1 − cij)p(ri) = cijp(rj) about p(ri) and p(rj), to estimate
cij , we need to estimate the relationship of p(ri) and p(rj) based
on image evidences. Here, a model is proposed to estimate this
relationship:

cij =
# of times ri is better than rj

# of HPs with right-edges’ coordinate value as ri and rj
.

(1)
, where # denotes number, and HP denotes hypothesis pair. This
model is a statistic about the relationship of ri and rj under the
condition that ri and rj appear in the same hypothesis pair, and
it can be used as an estimation of cij .

To compute cij by equation 1, the hypothesis pairs of HP1r

whose right-edge coordinate values are ri and rj are collected.
Then the better hypothesis of these collected hypothesis pairs will
be selected.
2.Identify the better hypothesis from a hypothesis pair It is
very difficult to give a robust identification based on image evi-
dences due to the complexity and diversity of scenes. To effec-
tively deal with this difficulty, the machine learning approach is
introduced into our system. We first transform the problem of
identifying better hypothesis into a classification problem, and
then apply the boosting method to solve this classification prob-
lem.

The identification of the better hypothesis is transformed into a
two-class classification problem: identify the share-region and

different-region of a hypothesis pair is consistent or not (see Fig. 4.(A)).
The consistency here means the degree of two regions belong to
the same buildings, which not only refers to the similarity of im-
age features but also involves the context constraints of two re-
gions from one same building. Figure 4.(A) shows an example.
h1 and h2 are two hypothesis forming a hypothesis pair, whose
right-edges are not collinear. r1 and r2 are the coordinate val-
ues of their right-edges. Region a and b are the share-region and
different-region of h1 and h2. If the image evidences of region a
and b are consistent, these two regions should be merged, which
means that h1 is better than h2 and r1 is better than r2. Other-
wise, r2 is regarded better than r1. This is the basic idea about
how to identify the better hypothesis from a hypothesis pair.

The boosting method is introduced into our system to give a ro-
bust identification on the consistency of the share-region and different-
region of a hypothesis pair. Boosting is a class of methods of lin-
early combining weak learners to obtain better classification or
regression performances, which can effectively deal with com-
plex classification problems. In this work, we choose the Log-
itBoost (Friedman.J et al., n.d.) algorithm with 4-level decision
trees as the weak learner. Classifiers trained by this algorithm
will have complex and accurate decision boundaries. A vector
consisting image evidences of hypothesis pairs are used as fea-
tures in the algorithm. The details of the feature vector will be
presented in subsection 3.4. The classifier trained on right-edge
will then select the better hypothesis of each hypothesis pair in
HP1r .

Since there are only a few images available, the leave-one-out
cross-validation protocol is used in the classifier training process.
For each run, we single out one image as the test image and use
all the other images as training images.

3.2.2 The Computation of p(ri) After the linear constraints
cij for any p(ri) and p(rj) are obtained, a method is needed to
compute p(ri). Here, an optimization problem is constructed, in
which all p(ri) are optimized to be maximally consistent with
these linear constraints and other knowledge. Firstly, we mini-
mize the squared residual ((1− cij)p(ri)− cijp(rj))

2 for every
i and j. In this way, pri will be consistent with the linear con-
straints coming from the image evidences. Additionally, p(ri)
should satisfy some other constraints, for example, they need to
be nearly proportional with the frequency of coordinate value of
ri appeared in hypothesis set HP1, which is recorded as d(ri).

Based on the two optimization objectives above, the optimization
of p(ri) is transformed into quadratic programming:

min
p(ri)

∑q
i,j=1((1− cij)p(ri)− cijp(rj))

2

+λ
∑q

i=1(p(ri)− d(ri))
2

s.t. p(ri) ≥ 0, i = 1, ..., q and
∑q

i=1 p(ri) = 1. (2)

in which the constraints like d(ri) are used as a normalization
constraint in the optimization problem, and λ is a weight coeffi-
cient. This is a convex quadratic program for which global op-
timum is guaranteed. Since q is not very large, the optimization
problem can be solved easily with a standard solver (LOQO1).
After all p(ri) are computed, the coordinate value with the high-
est probability will be selected as the optimal right-edge’s coor-
dinate value (r1o).

3.3 Obtain the Final Correct Hypothesis

Based on subsection 3.2.2, all probabilities p(ri) are computed
for each ri ∈ R1, we just need to select the one with the high-

1http://www.princeton.edu/ rvdb/loqo/LOQO.html.
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Figure 5: Shadow evidence. Region A and B are the expected
shadow regions; region Ay and By are the comparatively reliable
shadow regions; α is the building direction; γ is the direction of
shadow lines casted by vertical lines.

Figure 6: (A): The sample lines for a and b. (B) The support
regions for a and b.

est probability as the optimal right-edge’s coordinate value r1o.
Following the same manner of subsection 3.1 and 3.2, the coor-
dinate value of the optimal top-edge, bottom-edge and left-edge
(t1o, b1o, l1o) can be also computed from the hypothesis pair sub-
set HP1t, HP1b and HP1r . Thus, the optimal hypothesis 1 of
hypothesis set H1 can be generated (Fig. 3). Similarly, the op-
timal hypothesis for other hypothesis sets can be also computed,
such as the optimal hypothesis 9 for hypothesis set H9. Finally,
for CBR V , 9 optimal hypotheses are computed. Obviously, the
one optimal hypothesis with the best direction will be chose as
the final correct hypothesis(Fig. 2).

3.4 Image Evidences

Three types of image evidences are extracted to identify the better
hypothesis from different aspects, which are shadows, interior
similarity and supporting regions. Based on them, a 10-D image
evidences vector is computed for each hypothesis pair.

1. Shadows: Shadows are regarded as a robust image feature
for building extraction (Lin.C and Nevatia.R, 1998). However, it
is very difficult to extract reliable and accurate shadow evidences
from complex scenes, since in most cases shadows are casted nei-
ther on a flat surface nor on a surface with even intensity distri-
bution. Hence, in this paper, we only extract some comparatively
reliable shadow regions as the shadow evidence. Fig 5 shows the
2D shadow model of a building roof, region A and B are the ex-
pected shadow regions. Regions Ay and By are the comparative
reliable shadow regions used here, which can be computed by the
building direction and sunlight direction. According to Ay and
By , two shadow percentages Sa(Ay) and Sa(By)are computed
: Sa(Ay) = Ns(Ay)/N(Ay), Sa(By) = Ns(By)/N(By),
where Ns(Ay) and Ns(By) are the number of shadow pixels of
region Ay and By , and N(Ay) and N(By) are the number of
pixels of region Ay and By .

2. Interior Similarity: Intensity distribution is often used to
evaluate the interior similarity of two regions. However, this eval-
uation has a severe limitation. It can not effectively describe the
structural similarity of two regions. But for buildings, the struc-
ture information is very important, sometimes two different parts
of one building may have different intensity distributions, while

Figure 7: Evidences. h1 and h2 are two hypothesis forming a
hypothesis pair. a and b are the share-region and different-region
of h1 and h2. Region c is symmetric to b about edge (1-2); (al,
as, bl, bs) are the reliable shadow regions; (a1, b1, a2, b2) are the
supporting regions.

their structures may be similar. Hence, besides intensity distri-
bution, we propose a new measurement method to evaluate the
similarity of structures. Figure 6(A) shows the details: a and b
are the share-region and different-region of a hypothesis pair; a1,
a2 and a3 are three sample lines of region a, and b1, b2 and b3

are three sample lines of region b. The structure similarity is es-
timated as follows:

Dint(a, b) =
1

n

n∑
i=1

Dis(ai, bi)

Dis(ai, bi) =
1

m

m∑
j=1

|ai(j)− bi(j)| (3)

where Dint(a, b) is the structural similarity for region a and b,
ai and bi are sample lines, n is the number of sample lines;
Dis(ai, bi) is the intensity distance of two sampled lines ai and
bi; ai(j) and bi(j) are the intensity values of the j-th pixel on
line ai and bi; m is the number of pixels on lines ai and bi.

The intensity distribution similarity of region a and b are mea-
sured by:

Dhs(a, b) =
1

2
{KL(h(a) || h(b)) + KL(h(b) || h(a))} (4)

where h(a) and h(b) are the normalized intensity distribution his-
togram of region a and b ; KL(p || q) =

∑
x∈χ p(x) log p(x)

q(x)
is

the KL-divergence of two probability distributions p and q.

3. Supporting Regions: Different parts of the same building
may have different appearances, so only computing the interior
similarity can not completely describe the consistency of two re-
gions. Meanwhile, the surroundings of buildings, e.g. road, park
or lawn, may be similar in many cases. Hence, these surround-
ings, which we called supporting regions, can be used as auxil-
iary information to assess the consistency of two building regions.
Figure 6.(B) shows an example about supporting regions, (a1, b1)
and (a2, b2) are the supporting regions of region a and b. Accord-
ing to these four supporting regions, two intensity similarities can
be computed by equation 4: Dhs(a1, b1) and Dhs(a2, b2).

Besides the above four supporting regions, Fig 7.(B) shows an-
other important supporting region c, which is a symmetric region
of b and used to help us to measure the consistency of a and b.
For example, if b is more similar to c than a, then b is not likely to
be a building region, so a and b should be considered as inconsis-
tent. Dint(b, c) and Dhs(b, c) can be computed by the equation
3 and 4.

4. Image Evidence Vector Based on above three types of im-
age evidences, we can compute an image evidence vector for each
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Figure 8: Image A. Red rectangles are the results of our algo-
rithm. Green rectangles are lost buildings. Purple rectangles are
detected only by our algorithm. Blue lines are the error edges.
Yellow rectangles are buildings not used for the statistic of error
edges.

hypothesis pair. Fig. 7 shows an example, for hypothesis pair h1

and h2, the image evidence vector is: {Sa(al),Sa(bl),Sa(as),
Sa(bs),Dint(a, b), Dhs(a, b),Dint(b, c), Dhs(b, c),Dhs(a1, b1),
Dhs(a2, b2)}. Thus, for each hypothesis pair, a 10-D image evi-
dence vector is computed.

4 EXPERIMENTAL RESULTS AND ANALYSIS

This algorithm has been tested on a number of examples with
good results. Two typical results are shown in Fig 8 and Fig 9 and
some problems are outlined. The extraction evaluation are shown
in Table 2. Three measures are used to evaluate the quality of the
extraction result s:

• DP =100 ∗ TP/(TP + TN)

• BF =100 ∗ FP/(TP + FP )

• CEP=100 ∗ (TP ∗ 4− EE)/(TP ∗ 4)

DP: Detection Percentage; BF: Branch Factor; CEP: Correct Ex-
tract Edge Percentage. TP (True Positive): a building detected
by both a person or program; TN (True Negative): a building
detected by a person not by a program; FP (False Positive): a
building detected by program not by a person; EE: the number
of incorrect edges of the buildings detected by both a person or
program(TP ). The DP and FE are introduced by paper (Lin.C
and Nevatia.R, 1998), which are used to evaluate the building de-
tection results. The CEP is proposed to evaluate the accuracy of
edge extraction results.

Image TP TN FP EE DP BF CEP
A 111 14 4 77 88.8 3.40 81.6

Table 1: Result of paper (Song et al.,n.d.)

Image TP TN FP EE DP BF CEP
A 111 14 0 29 88.8 0.00 93.0
B 100 7 2 22 93.4 1.96 94.4

average 106 11 1 26 91.1 0.98 93.7

Table 2: Result Evaluation.

Fig 8 shows the building extraction result of the test image of pa-
per (Song et al., n.d.). Compared with (Song et al., n.d.), besides
the good detection percentage(88.8%), our method has obtained
a great improvement on the results accuracy. The quantity of the

Figure 9: Image B.

error edges has decreased from 77 to 29, most error edges of pa-
per (Song et al., n.d.) has been correctly extracted, especially
for the independent buildings, nearly no edges are incorrectly ex-
tracted. To demonstrate the robustness and feasibility of our al-
gorithm, another test image is shown in Fig 9. Compared with
Image A, Image B is more difficult to be deal with, most build-
ings have been segmented into too small fragments and some of
them are combined together. Besides, the shape of most buildings
are not strictly rectangular and the direction of most buildings are
not strictly horizontal. Method (Song et al., n.d.)can not work
well on this image, while our method can still perform very well.
The detection percentage of our paper is 93.4%, and the num-
ber of error edges is 22, which is still much smaller than 77 of
paper (Song et al., n.d.).

From table 2, it is clear that our algorithm can effectively deal
with the building extraction from complex urban scenes. More
importantly, our method can accurately extract building edges re-
gardless of the complex surroundings and substructures of build-
ings. For the whole about 232 buildings, it detects about 211
buildings, loses about 21 buildings, the average Detection Per-
centage is about 91.1%. For the 844 edges, about 793 edges are
correctly extracted, 51 edges are incorrectly extracted, the aver-
age Correct Edge Extract Percentage is about 93.7%.

From the 21 lost buildings, we can observed that most lost build-
ings have very small size or being too black or too white. Our
algorithm can not work well on these kinds of buildings. For
the 51 error edges, about 1/3 of them are incorrectly extracted by
our program, others are mainly raised by the occlusion problem
or the buildings combination problem. Hence, in the future, we
intent to enlarge the training set to further improve the robust-
ness and accuracy of our algorithm, and introduce more complex
models to deal with the buildings combination problem. Besides,
the assistant data source such as DEM or GIS which can avoid
the occlusion problem or the small size problem is also taken into
our consideration.

5 CONCLUSION

In this paper, a new hypothesis verification algorithm is proposed,
which can accurately extract the rectangular buildings from the
large and complex urban scenes, and the experimental results
about the 250 buildings has demonstrated that our algorithm has
a high detection rate and good result quality. Especially, by in-
troducing the boosting method and the optimization frame to the
edge verification algorithm, the edge extraction precision has got
a great improvement. We believe that our methods will supply
great help for the further 3-D building extraction from multiple
images or images integrated with other data sources. Besides,
this algorithm can also be generalized to other data sources.
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The whole flow of this algorithm looks like very complex, also
it has multiple levels, but actually the edge verification method
as the key part of this algorithm is easy to be understood: image
evidences are used to estimate the constraints of any two possible
edges, and then these constraints are used to compute the optimal
edge. Although the current training set is not large enough, the
experimental result is also acceptable. We believe that along with
the increase of the training set and the introduction of the complex
building model, our algorithm will perform much better.
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