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ABSTRACT: 
 
Recovering the three-dimensional (3D) object shape lies as an unresolved and active research topic on the cross-section of computer 
vision, photogrammetry and bioinformatics. Although various techniques have been developed to tackle the shape recovery 
problems, the computational complexity and the constraints introduced by the other algorithms have limited the applicability of these 
methods in real world problems. In this paper, we propose a method that is based on the projective geometry between the object 
space and silhouette images taken from multiple viewing angles. The approach eliminates the requirements of dense feature 
matching and camera calibration that are generally adopted by other reconstruction method. The object is reconstructed by setting a 
set of hypothetical planes slicing the object volume and estimating the projective geometric relations between the images. The 
experimental results show that satisfactory 3D model can be generated by applying minimal constraints.   
 
 

1. INTRODUCTION 

The growing demands on using 3D models for planning and 
analysis make 3D object shape recovery a prevailing area of 
research in the fields of digital photogrammetry and computer 
vision. Numerous research efforts have been extended to 
recover the 3D object shape from images. The most commonly 
adopted methods require calibrating the camera prior to the 
shape recovery by measuring certain features on a calibrating 
box which is preset in the object space. The 3D object shape is 
then reconstructed by traditional triangulation techniques and 
bundle block adjustment (Blostein and Huang, 1987). 
Alternatively, the calibration can be accomplished by exploiting 
the projective geometry which relates the different views of a 
scene to each other (Hartley et al., 1992), (Koch et al., 2000), 
and (Hernandez et al., 2007). In general, these methods estimate 
either the fundamental matrix or the homography between the 
images and the 3D object shape is recovered up to an unknown 
scale factor. 
 
While having calibrated cameras is desirable for generating 
satisfactory result, the calibration process is usually not 
intuitive. Hence, it becomes necessary to develop techniques to 
recover the object shape without calibration. Another problem 
observed is that most 3D object shape reconstruction algorithms 
depend on the extraction of feature points which poses a 
limitation in cases when the number of feature points is 
insufficient or the image is of poor quality. The deformation of 
the object shape due to the projection from 3D to 2D also 
increases the difficulty of finding the correspondences between 
images. In addition, the object occlusion, which is commonly 
observed during the imaging process, can obstruct the recovery 
of the object shape.  
 
In the recent years, various papers which are dedicated to the 
problem of 3D object shape recovery have utilized the 

properties of the homography transformation and the silhouette 
images to solve the aforementioned problems. The homography  
transformation provides a strong geometric constraint and is 
comparatively simple. The implied 3D scene information can be 
retrieved from 2D images by the homography transformation 
and is utilized for use in many applications, including but not 
limited to tracking people (Khan and Shah, 2006), shadow 
removal, and detecting low-lying objects (Kelly et al., 2005). 
These methods are diversified from the planar homography to 
the infinite homography, and from a single image to multiple 
images. Although some techniques have conceptually been 
proven to be successful in certain cases (Zhang and Hanson, 
1996) (Wada et al., 2000) (Zhang et al., 2003) (Yun et al., 
2006), in real-world problems their use is limited due to specific 
requirements or assumptions such as positioning the cameras on 
a circle enclosing the object. The computational complexity 
also hinders them from being practical.  
 
In this paper, we exploit a new method for the metric 
reconstruction of 3D object shape using the concept of slicing 
planes. Our method is inspired by the affine recovery technique 
proposed in (Khan et al., 2007). However, in our method the 
constraints used therein are eliminated, and metric shape 
recovery is obtained. We represent a 3D object by a set of 
parallel planes intersecting with the object in the object space. 
These hypothetical planes are related by the homography 
transformation. Assume four conjugate points lying on a base 
plane in the object space can be identified in all images, they 
are sufficient for constructing the homography relation between 
the images. To generate the view of another hypothetical plane 
that is parallel to this base plane, we utilize the concept of a 
vanishing point (Hartley and Zisserman, 2004). The vanishing 
point of a reference direction is computed from the image of a 
pair of parallel lines, after that any new set of four points which 
forms a plane parallel to the base plane can be derived along the 
reference direction by setting an increment value. For every set 
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of points, the homographies between a reference image and all 
other images are computed. After warping all images onto the 
reference image by the homography transformation, their  
intersection provides the object shape. 
 
The merit of the proposed approach can be described in terms 
of efficiency, flexibility and practicability. First of all, this 
method requires no camera calibration or the estimation of the 
fundamental matrix; hence, it reduces the computational 
complexity by eliminating the requirement for abundant 
conjugate points. The object is reconstructed using the contours 
enclosing the intersected regions, which are sufficient for 
revealing the complete object surface without the necessity of 
estimating visual hulls. Second, the formulation provides three 
different settings for finding the hypothetical planes, using 
either a pair of parallel lines, or any four randomly located 
features with known heights in the object space. Furthermore, 
the level of detail in the reconstructed object is easily modified 
by changing the number of images used or the density of the 
planes to find a best balance between the computation time and 
the smoothness of the recovered 3D object shape. Since no 
dense point correspondences are needed and the missing 
information can be recovered from other images of different 
views, the use of object silhouettes automatically eliminates the 
problems related to occlusion. Another noteworthy advantage is 
that we adopt full homography, so that true metric 
reconstruction is accomplished by the proposed method. 
 
The paper is organized as follows. In order to better manifest 
the core techniques adopted by our method, we briefly review 
two important concepts of projective geometry in Section 2.1. 
The proposed approach for finding consecutive parallel planes 
is described in Section 2.2. In Section 2.3 the techniques for 
recovering the 3D object shape using the slices are delineated. 
Two sets of experiments are conducted to verify the 
applicability in close-range and aerial photogrammetry. The 
setup and results are discussed in Section 3. Finally we 
conclude the paper in Section 4. 
 
 

2. OBJECT SHAPE RECOVERY 

 

 
 

 Figure  1: Homography transformation from ground plane to 
images and across images 
 
The relation between the 3D object space and the 2D image 
space can be expressed in terms of the projective geometry, 
which defines a set of invariant properties when object space is 
projected onto an image space. These invariants in turn provide 
capabilities to relate two or more views of a scene by projecting 

one onto the other via mapping equations. In order to provide 
basic principles of the mapping equations used in this paper, we 
first provide an introductory discussion to the projective 
geometry as it pertains to 3D shape recovery which will be 
detailed later in the section.  
 
2.1 The Projective Geometry 

The projective geometry describes the physical characteristics 
of the cameras and the relationships between the images. The 
projection of a point Xw in the object space to a point xi in the 
image space using a projective camera is expressed in terms of 
a direct linear mapping in homogeneous coordinates as:  
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where λ is the scale factor due to projective equivalency of (kx; 
ky; k) = (x; y; 1), P is a 3 x 4 camera projection matrix and pi 
the ith

 column of P. Note that, throughout the paper, we use 
homogeneous coordinates for points both in the image and 
object spaces. In the homogenous representation, the last row of 
the vectors being equal to 1 reflects that the point lies on the 
image plane. Let’s consider the case when the point in the 
object space lies on the ground plane such that Z = 0, then the 
linear mapping given in (1) will reduce to the planar 
homography 
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where H is the homography matrix which maps points lying on 
a plane in the object space across different images. This 
formulation introduces another scaling factor, s, to the mapping 
equation which stems from setting Z to 0. One thing to be kept 
in mind is that the “ground plane” is not necessarily the real 
ground in object space but can be any visible plane in the scene. 
Since general 3D modeling rarely requires absolute geodetic 
coordinates, a local axis system usually fits well in most cases. 
 
In the case when we have multiple images of a scene, an 
intuitive consequence of the homography transform from the 
ground plane to the image is the existence of a direct mapping 
between the two images: 
 
 

.   (3) H=)H(H=H= 1'
jjijwjwiwwii xxXx −

 
 

The Hji matrix is the homography describing the projective 
transformation between the images i and j. The estimation of 
this transformation up to a scale factor requires a minimum of 
four points lying on the plane. This is exemplified in Figure 1, 
where the correspondences between ground plane πand images 
I1 and I2 are related by two different homographies. When 
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warping one image onto the other, only the pixels in the area 
that map the ground plane coincide, while other pixels will 
create discrepancies depending on their Euclidean distances to 
the plane π. We should state that it is these discrepancies that 
will let us estimate the 3D shape of the object. 
 
The perspective effects during the imaging process causes in 3D 
objects appearing as stretched out into infinity. Considering a 
pair of parallel lines L1 and L2 in the object space, the 
intersection point is defined to lie at the infinity which is 
represented by [X, Y, Z, 0]T. When these parallel lines and their 
intersection at the infinity are imaged, they are mapped into two 
non-parallel lines and a visible intersection point between them 
which is referred to as the vanishing point v. The vanishing 
point can be computed from the cross product of the 
corresponding line pair l1, l2 in the image space (see Figure 3), 
 
 

.= 21 llv ×            (4) 
 
 
A vanishing point depends only on the direction of the lines, 
which means despite their positions all parallel lines with the 
same directions intersect at one single point. Though 
parallelism is not preserved after projection, the information 
about orientation implied by the vanishing point still plays the 
role of a key to achieve camera calibration and 3D object shape 
reconstruction. 
 
2.2 Generating the Slicing Planes 

 
 

Figure 2: A set of hypothetical planes intersect the object 
volume and create slices in the object space. 

 
The tools used in our method can be considered as the 
extensions of the projective geometry concepts delineated in the 
previous section. In a nutshell, the basic idea behind the 
proposed approach is to divide the object space into a set of 
planes parallel to each other as shown in Figure 2. These planes 
and the homography transform of each of them onto the images 
generate silhouette coherency maps which provide the 3D shape 
information. 
 
Let’s assume four points Xi, i = 1, 2, 3, 4 lie on a pair of parallel 
lines in π. Imagine that these points are moved up a distance Z 
vertically in the direction of the plane normal generating four 
new positions Xi

’, i = 1, 2, 3, 4. By definition, the new point set 
constitute a new plane π’ which is parallel to π. When the 
projective camera maps the original four points and the new 
four points onto the image, the resulting points respectively can 

be denoted as xi and xi
’,  in the image space. In 

order to automatically estimate the new point set xi
’
 directly 

from the originating planeπwe need to apply an additional 
constraint. Assume x1

’
 and x3

’
  can be observed on the image and 

the height Z is known, then x2
’
  and x4

’
  can be computed by 

exploiting the intrinsic properties of the vanishing points. The 
procedure can be described as follows. First, the vanishing point 
of the parallel lines in πis computed using 

1,2,3,4=i
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The vanishing point vz in the direction of the normal of plane π 
is obtained similarly using a pair of lines that is orthogonal to 
the plane π in the object space. The next step is to establish the 
relationship between xi and xi

’. Rewriting equation (1) as: 
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Figure 3: Vanishing points of parallel lines. The points xi 

constitute the reference plane. By finding x1
’, x3

’, v and vz, any 
plane that is parallel to the reference plane can be determined. 

 
The column vector p3 corresponds to the vanishing point in the 
direction of the Z axis or the normal of the ground plane. By 
substituting p3 with vz  and combining with equation (2) results 
in: 
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The unknowns of this linear equation are λi and si which are 
described in equations (1) and (2). Estimating both λi and si can 
be achieved by solving 
 
 

,   (8) A)AA(= 1
i

T
ii

T
i

i

i

s
b−

⎥
⎦

⎤
⎢
⎣

⎡λ

 
where  and . ]|[=A '

i ii xx − Zzvbi =
 
Once si is computed, estimation of any image point along the 
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line  is achieved by setting different Z to different set of 
values. In the case when only x01 and x03 are identifiable on the 

zi vx

image, as shown in Figure 3, x2
’
  and x4

’  can also be estimated 
from the property of vanishing point, such that, all parallel lines 
in the object space which are in the same direction intersect at 
the vanishing point. If v is computed from equation (5), then x2

’
  

and x4
’
 are obtained by 
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Assume multiple images of a scene are provided and the first 
image is chosen as the reference image, such that the other 
images are warped onto this reference image by Iij = HijIj , 
where the subscript ij indicates that the warping is from ith to jth 
image. In the sequel of a segmentation method, the object 
silhouettes extracted in these images highlights of the slicing 
planes when they intersect with the object volume. Let’s 
consider the object silhouette is defined by setting the image 
pixels inside the object to 1. The highlights of the slicing planes 
when they intersect the object volume are determined by 
warping all the silhouettes onto the reference image: 
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where n is the number of images. Next, we will discuss how 
these warped silhouettes can be used to recover the object shape. 
 
2.3 Recovering the 3D Object Shape 

In equation (10), thresholding the accumulation of the warped 
silhouettes provides a mask image. This mask is the image of 
the intersection between the slicing planes and the object 
volume. Hence, using these masks, we can generate the outlines 
of the object shape which corresponds to the surface of the 
object volume. 
 
The back-projection of masks generated from equation (10) can 
be achieved in various ways. Given some feature points with 
known absolute object coordinates, the relation between the 
object space and the image space for back-projecting the 
intersection images onto the object space and create the exact 
3D model. If a specific feature such as a box or a building with 
known dimensions or relative length ratio is recognized in the 
images, we can assume a local Euclidean coordinate frame in 
the object space and the metric shape recovery is achieved up to 
a scale. By selecting an arbitrary local coordinate frame, we can 
also recover the object shape in the case of distortions on the 
silhouettes. Theoretically, one can pick up any measurable 
feature on the reference plane even though the axes are not 
orthogonal, but ideally a square is preferred for achieving 
metric reconstruction. On the extreme case the coordinate 
information of the object space is not available, the 3D object 
shape of a specific viewing angle can still be represented, as 
will be shown in the next section. 
 
 

3. RESULTS AND DISCUSSION 

In order to verify the proposed method, we have performed two 
sets of experiments. In the first experiment, as shown in Figure 
4(a), we placed a toy, which contains irregular shape, on the 
ground plane. The ground plane contains squares which provide 
us with four measures required to compute the homography 
transform from one image to the other and from the reference 
image to the object space. Two pens oriented in the normal 
direction of the plane are placed to estimate the vanishing point 
in the direction of Z axis as well as the scale factor s. We took 
11 images of the object and the vertical features from different 
viewpoints around the toy. We should note that, no length 
measurements are performed and the lengths of the vertical 
features are set to be a unit length. Since no knowledge of 
absolute ground truth is considered, we assume all tiles are 
squares and the coordinates of four corners are defined to reside 
at unit distances from the origin. The 3D shape is reconstructed 
by setting the distance increments ZΔ  in the vertical direction 
to 0.5 and computing corresponding Z values used to generate 
slicing planes. In order to generate fine 3D models, one can set 

ZΔ  to lower values. 
 

 
 
Figure 4: Experiment on recovering the 3D shape of a toy. (a), 

(b) and (c) show the original images taken from different 
aspects. The contour of the darkest region in (d) is used for 

generating 3D points. Two different views of the reconstructed 
3D shape are shown in (e) and (f). 

 
The scales and lengths of three axes are not absolute, and as a 
consequence, the scale of reconstructed object may vary. In 
order to accelerate the process, only edge pixels of the 
intersecting silhouettes (Figure 4(d)) are involved in 
computation. Over 24,000 densely distributed 3D surface points 
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are generated in this test. Among the pictures the toy has 
several self-occluded parts. The result shows that the effect of 
occlusion is compensated with information provided by other 
views and the reconstructed model is intact. Details such as 
shapes of the toes and hands are able to be observed from the 
rebuilt model shown in Figure 4(e) and 4(f). 
 
 

 
 
Figure 5: Experiment on recovering the 3D shape of a building. 
(a), (b) and (c) are the east, north and west views of the building. 

The brightest region in (d) indicates the slice image on the 
reference plane. Two different views of the reconstructed 3D 

building shape are shown in (e) and (f). 
 
The second experiment takes 4 screenshots from the website of 
http://maps.live.com (Figure 5(a), 5(b) and 5(c)). The “ground 
plane” is set on the top of a building and 4 conjugate points are 
measured on each image. The same procedure as in the first 
experiment is performed except that no object coordinate frame 
is presumed and the object shape is reconstructed “without 
back-projection”. The object space is set to be identical as the 
reference image. All the contours of slice images are warped by 
homography onto this space with preset Z values that are used 
in computing the hypothetical planes. The result suggests that, 
in the case when no ground truth is available and true metric 
reconstruction is not necessary, we can still recover the 3D 
shape up to a scale factor (Figure 5(e) and 5(f)). This 
experiment also demonstrates that for an object of a relatively 
regular shape, images from 4 views are sufficient for achieving 
satisfactory reconstruction. 
 
 

4.  CONCLUSION 

The proposed approach in this paper reconstructs the 3D object 
shape by exploiting silhouette images taken from uncalibrated 
cameras. The reconstruction is a metric recovery up to a scale 
factor which can be determined if object space measurements 
are provided. The silhouette images are allowed to contain 
occlusions and distortions as long as some other views of the 
object reveal the occluded regions. The projective geometric 
relations between the images provide an easy to implement 
algorithm. Compared to other algorithms, which require 
generation of the convex hull or estimation of the fundamental 
matrix, the proposed approach bears lower computational 
complexity. The requirement of having abundant feature 
correspondences in other prevailing techniques is also removed 
to increase the computational efficiency. The optimized balance 
between running time and accuracy is determined by the 
number of images and number of slicing planes. Additional post 
processing which has not been applied in this paper can be used 
to further improve resulting 3D surfaces. The experimental 
results show the applicability of our method for building 3D 
models from close-range or aerial images. A variety of 
applications such as urban and rural surface modeling and 
glacier and polar icecap monitoring can be realized by our 
method. 
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