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ABSTRACT: 
 
In this paper, we address the registration of two images as an optimization problem within indicated bounds. Our contribution is to 
identify such situations where the optimum value represents the real transformation parameters between the two images. Consider 
for example Mean Square Error (MSE) as the energy function: Ideally, a minimum in MSE corresponds to transformation 
parameters that represent the real transformation between two images. In this paper we demonstrate in which situations the optimum 
value represents the real transformation parameters between the two images. To quantify the amount of disturbances allowed, these 
disturbances are simulated for two separate cases: moving objects and illumination variation. The results of the simulation 
demonstrate the robustness of stabilizing image sequences by means of MSE optimization. Indeed, it is shown that even a large 
amount of disturbances will not cause the optimization method to fail to find the real solution. Fortunately, the maximal amount of 
disturbances allowed is larger than the amount of signal disturbances that is typically met in practice. 
 
 

                                                                 
*  Corresponding author.   

1. INTRODUCTION 

Collection of vehicle dynamics data from airborne image 
sequences is required for setting up and calibrating traffic flow 
models (Ossen and Hoogendoorn, 2005). The image sequence is 
collected by a camera mounted below a helicopter hovering 
over a highway. The images are not stable because of the 
helicopter drift. Therefore the camera motion should be 
separated from vehicle motion. Toth (Toth and Grejner-
Brzezinska, 2006) used GPS/INS for camera position estimation 
but only for image sequences at low frame rate. Feature based 
solutions have to deal with considerable amount of errors 
caused by mismatching and moving objects. Kirchhof 
(Kirchhof and Stilla, 2006) and Medioni (Yuan et al., 2006) 
have used RANSAC as a robust estimator to remove outliers. 
Although this method could handle considerable amount of 
outliers robustly it fails for images with low frequency content 
due to the lack of availability of enough matched points. This 
contradicts with the main requirements of our application which 
are automation and robustness. 
 
Consequently we have proposed a method (Karimi Nejadasl et 
al., 2008) to use explicit radiometric and implicit geometric 
information even for pixels with a very low gray value change 
with respect to their neighbors. The main idea is based on 
having one dominant motion between two images which can be 
formulated as one transformation matrix that transforms the 
whole image geometrically to achieve the second image. As a 
result, the transformation parameters are the one that provide 
the best match between two images: reference and candidate 
image that should be registered to the reference image.  
 

Between consecutive images moving objects and illumination 
variations cause only small difference. But between an arbitrary 
image and the reference image these disturbances are more than 
in the consecutive case. The amount of disturbances is 
influenced by ambient conditions that can be subdivided into 
environmental, traffic and scene circumstances. A large amount 
of these disturbances could cause a failure of our optimization 
method. 
 
Before being able to apply our method on large data sets it is 
necessary to find out how robust our method is by determining 
which disturbances are manageable.   
 
We simulate two types of disturbances: illumination variations 
and moving objects. Then the transformation parameters are 
estimated for each disturbed data set. Later on the amount of 
errors on the estimated parameters and the image coordinates is 
calculated. The amount of disturbances is increased until the 
energy value of the estimated parameters with a high geometric 
error is lower than the energy value of the real result. This 
situation corresponds to the real failure of the method. The 
amount of disturbances is then lowered until a correct result is 
obtained. The amount of disturbance related to this result 
indicates the acceptance boundary.  
 
In Section 2, the image-sequence-stabilization framework is 
introduced. The procedure of finding the boundary of our 
method is described in Section 3. Results and conclusions are 
presented in Section 4 and 5 respectively. 
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2. IMAGE-SEQUENCE REGISTRATION 

Movement of the camera results in recording different images. 
In principle, reconstructing an image in the new camera 
position is possible from the previous image by knowing the 
movement of the camera and the distance of an object in the 
scene to the camera.  
 
Using wrong transformation parameters between two images, 
results in a transformed image that is not oriented in the same 
way as the reference image. The first image is the reference 
image and the second one the candidate image which should be 
registered to the reference one. The mismatch can be visualized 
by differences between the reference image and the transformed 
candidate image. The Mean Square Error (MSE), is used to 
express the misalignment between the transformed image and 
the reference one. The optimized transformation parameters are 
those that provide the maximum agreement between the 
reference and transformed candidate image. 
 
Consequently, the transformation parameters are the ones where 
the difference between the transformed image and the reference 
image is minimal. In other words, the transformation parameters 
are obtained by minimization of the MSE between the 
transformed image and the reference image. 
 
2.1 Transformation Parameters 

In this paper a projective model without shearing and different 
scale parameters is used as a transformation model on the 
calibrated images (Heikkila, 1997; Zhang, 1999). This model 
can be described by: 
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S, θ, t1, t2, v1, and v2 are respectively scale, rotation, 
translational and special projective parameters. x1 and y1 are 
image coordinates of the first image and x2 and y2 are the image 
coordinates for the second image. All the image coordinates are 
given w.r.t. the center of the image at hand. As a consequence 
our parameter space is six dimensional. Each point in parameter 
space is a parameters’ combination which corresponds to a 
transformed image and therefore to an energy value.  
 
The Mean Square Error (MSE) is used as an energy function: 
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Here and are respectively the reference normalized 
image intensity, the transformed target normalized image 
intensity while n is the number of pixels in the common area 

after transformation. Note that with Ti+1,i, the 
transformation matrix and Xi, the image coordinate system for 
the i-th image. 
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Searching the whole parameter space for finding the optimum 
value is computationally very expensive. The complexity is 

1:
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∏ with npi the number of all possible values for each 

parameter, pi, and no the number of parameters. In our case the 
search space is 6-dimensional. One could imagine the real 
number, , as the search range for each parameter. However, 
not every combination of parameters is allowed. Each 
parameter has a certain range beyond which the transformed 
image is meaningless. Moreover, for each parameter there is a 
resolution value such that within the resolution value the 
transformed images are equal. Although incorporating range 
and resolution of parameters reduces the search space, still the 
number of potential parameters is quite high. 

\

 
2.2 Differential Evolution 

Therefore, we have applied a global optimization technique. 
Here Differential Evolution (DE) (Price et al., 2005) is used to 
find the global optimum. 
 
DE starts with an initial population of q randomly (McKay et al. 
1979) chosen parameter value combinations m. These m’s are 
improved during successive generations of constant size q, in 
the sense that a descendant replaces an m, becoming its 
successor, if it has a lower energy value. The distinctive feature 
of DE is the way in which these descendants are created. 
Various ways to generate new m’s exist, but here only the 
following procedure is considered. At the start of generation k 
the parameter vectors mk,1,...,mk,q are given and for each of 
them a descendant is created. To create a descendant dk,i a 
partner pk,i  is constructed as follows: 
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with the three different m-vectors chosen at random from the 
population and a scalar multiplication factor between 0 and 1. 
The descendant dk,i of mk,I results from applying crossover to 
mk,i and pk,i with crossover probability pc. A higher value of pc 
leads (on average) to more dimensions of pk,i being copied into 
mk,i. Descendant dk,i only replaces mk,i, becoming its successor, 
if its energy is lower. The setting parameters of DE are 
population size q, multiplication factor F, crossover probability 
pc and the number of generations NG. The values chosen for 
the setting parameters are used according to (Snellen and 
Simons, 2007). 

F

 
Two types of image registration occur in our data sets: 
registration between consecutive images and registration 
between an arbitrary image to the reference image. There is a 
high correlation between image frames because of the 
helicopter hovering to keep the viewing area fixed. However, 
shaking of the helicopter causes a drift. This movement can be 
enhanced by increasing temporal differences. The small 
movement between consecutive frames and the high correlation 
between image frames direct us to the design a framework for 
the registration of two arbitrary images to avoid excessive 
computations. A final result of this framework, after applying it 
to all available frames is a stabilized image sequence. The 
framework is summarized as follows: 
 

1. compute Ti+1,i, the transformation between Ii+1 and  Ii  
2. compute iT T T

+
= the estimated transformation 

between Ii+1 and I1 
1,1 ,1 1,i i i+
�
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3. use 1,1iT
+
�   as the initial value for computing Ti+1,1  

 
In this solution the image is processed frame by frame, starting 
from a reference frame, which (for simplicity) we will assume 
to be frame 1 in the sequence. Assume frames 2...i are already 
registered to frame 1, which means that the transformation Ti,1 
between frames i and frame 1 is known. Within the framework 
the image i+1 is registered to the first image. 
 
This strategy also prevents registration errors to accumulate. 
Matching consecutive images (step 1) is easier (i.e. less error-
prone) than matching arbitrary images, since the misalignment 
is limited. In step 3, this problem is avoided by providing an 
accurate approximate value to the matching process. 
 
 

3. SIMULATION OF THE DISTURBANCES 

In this section, the disturbances of our method which are the 
illumination variation and the moving objects are simulated. 
The amount of permitted disturbances will give a quantitative 
indication of the robustness. 
 
3.1 Type of the Disturbances 

Within our stabilization framework as sketched in Section 2 any 
arbitrary image registration is treated as a consecutive image 
registration. But in fact, the registration problem becomes 
different due to the disturbances: moving objects and 
illumination variations. The disturbances are increasing with 
increasing temporal differences (type small and gradual to type 
large and sudden). The number of pixels changing due to 
moving objects is in general lower than the total number of 
pixels that represent the moving objects duet to overlap of a 
moving object in different images. The illumination values in 
the overlapping area are almost the same. The illumination 
variation is small in consecutive images. Therefore the effect of 
theses disturbances is very small in the process. This effect 
results in a small MSE value. By increasing the temporal 
distance the amount of these disturbances is increasing. 
Decrease of the overlapping area increases the number of pixels 
in moving objects. Although after a while when there is no 
overlap, the amount of moving pixels stabilize. On the other 
hand, the number of moving objects may increase by changing 
traffic situation, e.g. from a moving type to a congested type. 
Also many object outside will influence the number of moving 
pixels. The effect of local illumination variation is increased for 
example by the appearance of clouds in one part of the image. 
Global illumination variations are not problematic as they can 
be removed by using a normalized form, a difference of the 
image gray values from their mean.  
 
The change of illumination depends on the source of the light, 
object characteristics, viewing angle, and influence of other 
objects. Examples of these changes are shadows of fixed and 
moving objects; a reflection of vehicle lights from the road 
surface; changing the viewing angle caused by shaking of the 
helicopter results in illumination variation of road lines and 
vehicles especially because of specular effects.  
 
In fact, moving objects can be interpreted as the local 
illumination variations which destruct the image structure of an 
occupied area. The energy function, which explicitly depends 
only on illumination values, cannot distinguish between these 
two types of disturbances. As a result, in our simulation, 

moving objects and small region illumination variations are 
treated the same.  
 
3.2 Used Simulation 

All simulated moving objects are rectangular, consisting of 100 
× 22 pixels. The image size is 1392 × 1040 pixels. The position 
of these objects is randomly distributed over the whole image 
area in the reference image. To have maximum variation, the 
gray value is specified as the maximum value in an intensity 
range, here 255, because of having mainly darker background 
in our data sets. All these white simulated objects are moved 
with object width, 100 pixels, in x-direction and object height, 
22 pixels, in y-direction to have a higher amount of 
disturbances with very high correlation in object motion. The 
disturbances, in this case, are destructing image content as if 
there was a destructive structure occurred such as a moving 
object or a specular reflection in water or windows. This is the 
worst case of moving object simulation because of high 
correlation motion. If the objects move differently or the objects 
are different in two images, the disturbance of this type is less 
problematic than having moving objects which move the same.  
 
To generate the illumination changes, the reference image is 
subdivided to in four non equal regions. In each region all gray 
values are disturbed by a fixed amount. The worst case of 
illumination variation is when the structure of an image is 
destructed by the disturbances. For example reducing the gray 
value in the dark image can cause more severe problem than 
increasing the gray value as in the later case the image structure 
is not essentially affected. Although in preserving case the 
amount of the disturbance is more than the constructive case.  
 
After simulation of disturbances, a camera motion is simulated. 
The reference image is transformed by applying the simulated 
camera motion parameters. Ideally, the estimated 
transformation parameter values should be the same as the 
parameter values applied to simulate the camera motion. The 
reason of simulating a transformation is to have real parameter 
values for validation. Although the transformation parameters 
are obtained by manual corresponding point selection and then 
parameter estimation, exact positioning of correspondence 
points manually is erroneous due to image resolution. 
 
The total amount of disturbances should be calculated after 
removing the camera movement. Therefore the intentionally 
moved object and illumination variations are introduced before 
inserting motion. The advantage of this order is that additional 
radiometric errors are avoided. Consequently, two images are 
the same before inserting disturbances in both of them and 
transforming the reference one. 
 
3.3 Boundary Calculation 

The percentage of the amount of disturbances is the total 
amount of absolute disturbances relative to the maximum total 
amount of possible disturbances, i.e. the number of pixels 
multiplied by the maximum grayscale of the pixel depth. For 
example for a 8 bit image, the pixel depth equals 256. Accuracy 
of the calculated parameters is quantified as normalized 
parameters’ error and geometric error. 
The parameters are normalized by dividing for each parameter 
its absolute error by its resolution. This value indicates how 
many times each parameter value error deviates from its 
resolution. The resolution of each parameter is calculated by 
discarding the other parameters and obtaining maximum one 
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pixel displacement. In principle, this way is not measuring the 
main resolution. But to make a procedure tractable, resolution is 
measured without considering the effects of other parameters. 
 
The geometric error, a positional error in correspondents, is 
calculated by making a grid over the whole image area for both 
images. This grid is transformed by the real transformation 
parameter values and by the estimated transformation parameter 
values for the reference and the candidate image respectively. 
The maximum, minimum and the number of displacements 
larger than one pixel are also recorded. Our final decision is 
based on having no displacement larger than one pixel. 
 
For each percentage of the amount of the disturbance, 
parameters are estimated and geometric and parameter errors 
are calculated. To find the boundaries, the amount of errors is 
increased until the estimated parameters result in a wrong 
transformation. 
 
3.4 Failure Mechanism 

One obvious reason why the DE method may result in a wrong 
transformation is when the obtained transformation has a lower 
energy value, given the simulated errors, then the energy value 
that corresponds to the real transformation. I.e. in this case the 
minimum of the energy function is no longer corresponding to 
the real solution. 
 
Another case occurs when the estimated parameter values are 
wrong although their energy is higher than the energy of the 
real parameter values. This case corresponds to the failure of 
the optimizer in finding the global minima with our settings 
even if the minimum is shifted. If the DE setting parameters are 
not sensitive enough, if may be necessary to increase the 
number of generations, NG, in combination with using a smaller 
multiplication factor, F, and a small cross over probability, pc, 
to find the global minimum. In our parameter space, the special 
projective parameters v1 and v2 (i.e. the fifth and sixth 
parameters) are less sensitive than the other transformation 
parameter of Equation 1 in changing energy value especially by 
increasing amount of disturbances. This sensitivity is reduced 
by increasing the amount of disturbances. Changing the 
optimizer settings in these cases is likely to succeed, of course 
at the cost of increasing the computational effort. The added 
value seems not high which results either in very little 
increasing acceptance boundary or very little increasing the 
rejection boundary. We consider this case also as a failure.  
The amount of the disturbances is increased until the global 
minimum no longer corresponds to the real parameter values. 
Then the amount of errors is reduced and the optimizer is run a 
few times till the result of all runs are correct. Otherwise the 
errors are reduced and run again.  
 
The above-mentioned procedure is done for both simulation 
types to find the minimum amount of disturbances cause failure. 
The method therefore can handle disturbances lower than this 
amount. 
 
 

4. RESULTS 

Our image sequences are recorded from a non-stable platform, 
in this case a helicopter hovering above a highway. These 
image sequences are used to collect statistics concerning the 
behavior of drivers of all vehicles on a highway stretch in busy 
(nearly congested) traffic during an elongated period of time. 

Typically, we record highway stretches with a length of 
300−500m during one hour or more. We use a b/w camera with 
1392 × 1040 pixels which gives a ground resolution of approx. 
25−40cm, at a frame rate of 15 fps. The transformation 
parameters (S, θ, t1, t2, v1, v2) used for the simulation in this 
paper are:  
 
[0.9942   -0.7184   6.3931   8.1876   1.1395e-5   -2.4079e-5] 
 
The number of generation, NG, population size, q, 
multiplication factor, F, and cross over probability, pc, are 
respectively 50, 16, 0.6, and 0.55. All the calculations are done 
in a second fine image scale of an image pyramid and the 
results are scaled up. The range of the parameters for the 
maximum 10 pixel movement is: 
 
 [1- 0.0912   -0.8232   -10   -10   -2e-5   -3.7e-5] 
[1+0.0912    0.8232     10    10    2e-5     3.7e-5] 
 
respectively for lower and higher band. The resolution of the 
parameters for one pixel movement is: 
 
[1+0.0091    0.0823     1      1      2e-6     3.7e-6] 
 
Figure 1 and Figure 2 demonstrate the maximum amount of 
allowed moving objects and illumination variations respectively 
for two different data sets. The result represents the fact that the 
second data set (highway crossing) can handle both a large 
amount of moving objects and a larger amount of illumination 
variations. The boundaries of the acceptance of the method are 
represented in Figure 3 and Figure 4 as the amount before the 
star on the x-axis for the moving objects and illumination 
variations respectively for two the different data sets. The 
amount after the star indicates the rejection boundaries either 
because of the failure of the optimizer within our settings, the 
amount between the star and the rectangle, or because of the 
real failure, the amount after the rectangle. The star is an 
example of the optimizer failure. The y-axis demonstrates the 
absolute parameter error divided by the resolution. This error is 
visualized for each parameter. 
 

   
 

   
 

Figure 1: Moving objects before failure in data set 1 (up) and 
data set 2 (down). The left figures are the reference images and 
the right ones are the candidate images. The difference between 
the images is the transformation of the whole image and object 

motion. 
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Figure 2: Illumination variation before failure in data set 1 (up) 
and data set 2 (down). The left figures are the reference images 

and the right ones are the candidate images. The difference 
between the images is the transformation of the whole image 

and illumination differences. 
 
 

5. CONCLUSION 

We have evaluated and quantified the robustness of our 
stabilization method with respect to the amount of disturbances. 
The disturbances were simulated as either moving objects or 
illumination variation. The acceptance of our method is decided 
based on acceptable parameter and geometric errors.  
 
The simulation is done based on extreme case of illumination 
variation and moving objects. The presented percentage of 
amount of the disturbances can be increased in the case of 
having illumination variations with non destructive nature or 
moving object with low motion correlation.  
 
More disturbances would be handled by having more structure 
in the image. The results demonstrate the low percentage of 
disturbances in the acceptance boundaries in an image with 
almost no structure outside the road area and having a road in 
the middle of the image. However the stabilization of this case 
can be done without having a very high amount of disturbances. 
This data set is an extreme case. In the other data set with 
highway crossing, even a very high amount of the disturbances 
in both moving objects and illumination variations provide 
acceptable results. This case shows the robustness of our 
method in handling very large disturbances which in reality 
would not occur.  
 
 
 
 
 
 
 
 

 

 

 
 

Figure 3: Moving object boundaries  
  

Data set 1 is represented in blue and data set 2 in red. The 
acceptable percentage of the amount of the illumination 
variation is represented by the star. The region between the star 
and rectangle is the optimizer failure within our settings. The 
circle shows one of the failure cases from this type. The area 
after rectangle shows the real rejection. The method is robust 
before the specific amount of moving objects which is indicated 
by star. All the normalized parameter errors are also zero. 

 

 
Figure 4: Illumination variation boundaries 

 
Data set 1 is represented in blue and data set 2 in red. The 
acceptable percentage of the amount of the illumination 
variation is represented by the star. The region between the star 
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and rectangle is the optimizer failure within our settings. The 
circle shows one of the failure cases from this type. The area 
after rectangle shows the rejection boundaries. The method is 
robust before the specific amount of illumination variation 
which is indicated by star. All the normalized parameter errors 
are also zero. 
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