
SEMI-AUTOMATIC ORIENTATION OF IMAGES WITH RESPECT TO A
POINT CLOUD SYSTEM

David Novák

Institute of Geodesy and Photogrammetry, ETH Zurich, 8093 Zurich, Switzerland –
dnovak@student.ethz.ch

KEY WORDS: Adjustment, automation, calibration, detection, matching, orientation, programming

ABSTRACT:

This paper presents the results of a master thesis in which it was tried to orient a set of images of an object to a point cloud of the
same object. As test object the “Semper Sternwarte” in Zürich was used. As data sets a dense point cloud from a laser scanner and a
sparse point cloud obtained by photogrammetric means, as well as the orientation of the images were used. Precisely orientated
images with respect to a point cloud can be used to incorporate an edge-constrained triangulation techniques, blunder and outlier
detection, which leads to an overall better representation of a 3D model. This paper looks at a specific semi-automated work flow
using self-programmed tools and tries to determine whether the work flow is suitable for this task or not.

1. INTRODUCTION

Registration of images taken by CCD array cameras with
respect to point clouds obtained by active sensors like laser
scanners is necessary prior to the integration of the both data
sets (texturing, overlaying, gap filling, etc). This is mostly done
by the use of some targets visible in both data sets or by
preliminary laboratory calibration, while the camera is mounted
on the active sensor (e.g laser scanner). Nevertheless, there are
various cases in which there are no common targets between the
two data sets or the pre-calibration is not possible due to either
using not mounted cameras or different acquisition times.
Additionally, in case common targets are used, the mapping
function that maps the point cloud to the image coordinate
system is obtained over targets, thus the accuracy of the
function is very much dependent on the distribution of the
targets. More over, in case of pre-calibration, the calibration
parameters may not remain stable if the camera has been
dismounted for some movement purposes. Therefore a kind of
on the job registration would be useful. The goal of this project
is to perform the registration of images taken by CCD array
cameras and the point cloud of the same object (e.g. obtained
by an active sensor like a laser scanner) to one coordinate
system, while approximate registration parameters are available.
By orienting images with respect to an existing point cloud
system it should be possible to see what improvements can be
done when combining point cloud data obtained with different
measurement techniques.

We assume that the rough orientation parameters of the images
are available in an arbitrary coordinate system. These
parameters serve as approximations for an automatic process
that incorporates a point cloud obtained by a laser scanner or a
similar active sensor. By back projecting the points of the laser
scanner point cloud into the images, the orientation parameters
can be improved, by iteratively moving the two point clouds in
a way that the distances between those two become minimal. As
a result more precise orientation parameters are obtained, which
in turn can be used to improve the existing point cloud with
respect to edges and outliers that usually are present in point
clouds from laser scanners or similar active sensor devices.

The whole process is semi-automatic because the initial
approximations of the orientation parameters are obtained with
manual measurements while the improvement is then done with
a fully automated algorithm.

2. THE TASK

The task of this project is divided into two parts. First a manual
pre-processing is done by checking the data and then registering
the two data sets into one. Then a set of C++ tools is
programmed to accomplish the second part as seen in figure 1.

Figure 1: Suggested work flow. Pale green marks the manual
part. Dark blue the automated one.

The data is divided into two data sets. One set is a dense point
cloud that was obtained with a laser scanner. The other dataset
consists of images taken of the object as well as measurements
in the images. With the measurements an exterior orientation
has been calculated with photomodeler and as of such a sparse
point cloud has been obtained.

In a first step the point cloud has to be checked if gross outliers
are present. If this is the case those have to be removed.
Additionally the interior and exterior orientation parameters

295

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3b.Beijing 2008

have to be checked and improved if they are not good enough.
Then the laser scan point cloud has to be registered to the image
coordinate system. This can be done with a surface matching
algorithm like ICP or LS3D – however if one of the point
clouds is very sparse (usually the one obtained
photogrammetrically), then the mentioned algorithms will fail
because they cannot find a corresponding surface.

After the first two steps, which can be considered pre-
processing steps, the main processing chain is started.

The automated part consists of three steps:
− Backprojection of the laser points into the images
− Visibility analysis to reduce probability of mismatching
　 Matching of the points
−
Two C++ tools are written which incorporate these three steps –
the first tool is performing back projection and visibility
analysis while the second one is doing the matching part.

Once the matching is finished, the matched points can be used
as measurements for the bundle adjustment, which is performed
with an external tool. After the bundle adjustment is completed
successfully a new interior and exterior orientation of the
images can be obtained. If the new orientation is acceptable the
process can be stopped. If it is not then the points have to be
projected back into the newly orientated images and the same
procedures have to be performed again until the results are
satisfactory.

In the end the orientation of the images should be good enough
to allow further processing like edge-constraint triangulation
and blunder removal.

3. PRELIMINARY TASKS

3.1 Import procedure

In order to be independent from any software the input and
output files for the interior and exterior orientation are
described in XML. As mentioned in the introduction the
exterior orientation has been obtained with photomodeler. A
simple conversion tool converts the photomodeler file into an
XML file, that incorporates for each image a separate tag with
its interior and exterior orientation. This has the advantage, that
the data structure does not need to be tailored towards a specific
orientation/bundle adjustment program.

For the laser scanner point cloud a simple X,Y,Z-structure is
chosen which is stored in a plain-text file. This is done because
an XML-File would create a considerable data overhead and
wouldn't really introduce a benefit in return. For each point a
new line is defined with its X, Y, and Z coordinates separated
by a space character.

3.2 Data check

The interior and exterior orientation as well as the point cloud
have to be checked before any further processing is done. The
orientation parameters have to be precise enough so that the
matching algorithm can work correctly. It is however not easy
to check if the orientation parameters are correct or not.
Especially if the camera used is no longer usable it can be
almost impossible.

The point cloud has to be checked for outliers. This mainly to
reduce the probability of mismatching later on. This can be
done easily by using a 3D modelling tool.

3.3 Registration

In order to be able to back project the laserscanning points into
the images, it is important to have both the laser scan and the
photogrammetric point cloud in the same coordinate system.
This has to be done in a manner, that the exterior orientation of
the images is still usable in order to be able to backproject the
laser scan points correctly into the images in the first step. This
is achieved by keeping the photomodeler point cloud fixed and
rotating and scaling the laser scanner cloud into the
photomodeler system.

Point clouds are registered by minimizing the sum of squares of
the Euclidean distances between the surface scans. Different
algorithms are available like ICP or LS3D. However all of them
need dense point clouds to work properly.

In this case only the laser scan point cloud is dense. The point
cloud obtained by photomodeler is very sparse. When trying to
register the two point clouds with Geomagic's ICP algorithm the
problem arises, that the photogrammetric point cloud is so
sparse that it does not really offer any surfaces to be matched.

Because of this a 3D Helmert transformation is used as seen in
equation 1. Eight points are selected in each point cloud and
afterwards the six Helmert Transformation parameters are
obtained. With these the laser scanner point cloud is registered
into the camera system.

[X fix

Y fix

Z fix
]=[T x

T y

T z
]　[1　m − rz r y

r z 1　m − r x

− r y r x 1　m]�[X Free

Y free

Z free
] (1)

This procedure is not perfect since there might be some
systematic errors regarding the X,Y,Z-positions and the rotation
angles. Especially selecting corresponding points between a
dense and a sparse point cloud can prove to be very difficult.
However in this case the only other possibility would be to
densify the photogrammetric point cloud, which would take too
much time. So the downside of the 3D Helmert transformation
is accepted.

4. BACK PROJECTION AND VISIBILITY ANALYSIS

4.1 Back projection

Once the point clouds have been registered, the laser scan
points can be back projected into the images, since the laser
scanner points are now in the object coordinate system of the
images. The back projection is performed with the collinearity
equations:

xi= x0− c
d 11　X i− X 0　　d 21　Y i− Y 0　　d 31　Z i− Z 0　

d 13　X i− X 0　　d 23　Y i− Y 0　　d 33　Z i− Z 0　
(2)

yi= y0− c
d 12　X i− X 0　　d 22　Y i− Y 0　　d 32　Z i− Z 0　

d 13　X i− X 0　　d 23　Y i− Y 0　　d 33　Z i− Z 0　
(3)

296

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3b.Beijing 2008

Since all of the parameters are known the equation is easily
performed and the pixel positions of the 3D points in the images
are obtained.

Figure 2: HPR visualized. 1. Shows how all points in the

buffer around the blue point are selected. In 2 the
mean distance is calculaed for the buffer. In 3. all
the points that are farther away than the mean
distance are thrown out

4.2 Out-of-plane check

Since the collinearity equations are performed for all the points
there will be cases where the back projected points will not lie
on the image plane. Such cases are easily detected by checking
the obtained x- and y coordinates from the collinearity equation.
If they are negative or are larger than the image dimensions,
then they are not on the image and thus can be flagged as not
visible. By doing so memory space and calculation time is
saved for later steps.

4.3 Pixel correction

Once the visible points are back projected their position needs
to be corrected. This is because of systematic errors of the
camera. These errors are modelled by the additional parameter
set from Brown. They include the interior orientation, scale-
and shear factor, symmetrical radial lens distortion and
decentering lens distortion.

The collinearity equation is then extended with the Brown
Parameter model which results in:

f 　x　= x− x0　　x (4)

f 　y　= y− y0　　y (5)

Since f 　x　and f 　y　are non-linear functions they have to be
linearised and then adjusted to obtain the correct value. As first
approximations the back projections from the collinearity
equation are used for the adjustment.

The corrections of the solution vector are added to the pixel
positions until convergence is reached.

4.4 Hidden Point Removal

Before the matching of the points is performed occluded points
should be removed. This has two advantages:

− The calculation time and the amount of memory for the

matching procedure is reduced greatly
　 The probability of mismatches later on is reduced
−
The main problem is that at this stage we're still facing points
and as of such common techniques for Hidden Surface Removal
like z-buffer, binary space partitioning or similar are not
applicable since there are no surfaces to process.

Because of this a “Hidden Point Removal”* algorithm is used.
This algorithm takes a back projected point and draws a buffer
around it in image space. It then checks if any other points lie
within that buffer. If this is the case the 3D distance is

* From now on called HPR

Figure 4: Close-up of a back
projection with
HPR

Figure 3: Close-up of a back
projection without
HPR

4.5 HPR in pseudo code

In a first step the algorithm has to be constructed in a way that it
loops through all the points. Additionally for each point the
point, cloud has to be looped through again so that for each
point it can be checked, which points are inside the actual
buffer and which aren't. This means that the point cloud is run
through at least n2 times which of course is very inefficient.

1 while (pointnr != amount of points)
2 {
3 if (not flagged as not visible)
4 {
5 while (pointnr2 != amount of points)
6 {
7 if (not flagged as not visible)
8 {
9 if (projected point inside buffer)
10 {
11 Calculate obj distance + mean +
write to buffer
12 }
13 }
14 pointnr2++;
15 }
16 while (pointnr3 != amount of points)
17 {
17 if (projected point inside buffer)
18 {
19 if (point distance > mean distance)
20 {
21 flag point as not visible
22 }
23 }
24 pointnr3++;
25 }
26 }
27 pointnr++;
28 }

In line 1 the first loop is initiated. It selects the first point and
checks if it hasn't been flagged as not visible. This is done to

297

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3b.Beijing 2008

reduce calculation time. If the point is visible then it is used for
the distance check. At line 5 another loop is started. That one is
used to determine which points are inside the buffer - the check
is done at line 9. Prior to this another check is done whether the
point has been already flagged as not visible or not – again to
reduce calculation time.

Once a point lies inside the buffer its distance is calculated as
well as the mean distance of the buffer as seen at line 11. This
is done for all the points in the point cloud.

When the second loop finishes a third loop is started at line 16.
This loop goes – again – through all the points. This actually
wouldn't be necessary – instead a more elegant solution could
be found.

In any case the points inside the buffer have their object space
distance compared to the mean object distance of the buffer at
line 20. If the point distance is bigger than the mean distance
then the point is flagged as an outlier.

The first buffer is fully processed when line 27 is reached. Once
there the point iterator is increased by 1 and thus the next point
is selected for processing.

5. MATCHING

Matching is performed to obtain more measurements which
then can be used to get new orientation parameters. In this case
the points that have been back projected and processed are used
as points to be matched. Manually one image is set as template
and another one as search. The back projected points in the
template image are the points that have to be matched in the
search image.

Different matching techniques are available nowadays. In this
case an area based matching algorithm – Least Squares
Matching* – has been chosen. The LSM algorithm is used in its
simplest form. No additional constraints like geometric
constraints or multiphoto constraints have been used.

5.1 Least Squares Matching

As described in detail in (Gruen, 1996) matching between the
two regions is established when f 　x , y　= g　x , y　.

Because the images have not been taken from the same position,
and noise can be present in one or both images the true error
vector e　x , y　is introduced. This results in the following
equation:

f 　x , y　− e　x , y　= g　x , y　 (6)

The location of the function values of g　x , y　 must be
determined to acquire the matched position. This is achieved by
minimizing a goal function which measures the distances
between the grey values in the template and search window.

Equation 6 can be considered a nonlinear observation equation
which models the vector of observations f 　x , y　with a
function g　x , y　whose location has to be estimated in the
search photograph. The location is described by shift
parameters 　x ,　y which are counted with respect to an

* From now on called LSM

initial position of g　x , y　, the approximation of the conjugate
picture region g0　x , y　.

In order to account for a variety of systematic image
deformations and to obtain a better match, image shaping
parameters are introduced additionally to the shift parameters.

If the local terrain surface patch is a plane in sufficient
approximation, then the affine transformation model is
considered to be sufficient and used as a full parameter set.
Radiometric parameters are left out.

[x
y]=[a b

c e]�[xsw

ysw]　[e
f] (7)

In order to be able to apply the least squares approach the
function g　x , y　has to be linearised. Upon performing the
adjustment a solution vector is obtained:

　AT P A　− 1 AT Pl= [　a 　b 　c 　d 　e 　f]T = 　x (8)

The solution vector 　x is used to alter the affine transformation
parameters. With the new parameters a new pixel position of
the search window can be determined. However after the affine
transformation the pixel position will most likely not be an
integer value. As of such the new grey value has to be
interpolated. In this case this is done by means of a bilinear
interpolation. This is done mainly because it is easier to
implement than cubic convolution interpolation, while offering
superior image quality over nearest neighbour interpolation.
Once the new grey values have been obtained for the new pixel
positions the whole adjustment process can be repeated again.

With the newly acquired grey value the adjustment can be run
again until each of the elements in the solution vector fall below
a certain limit.

∣　a∣　limit a ∣　b∣　limit b ∣　c∣　limit c ∣　d∣　limit d

∣　e∣　limit e ∣　 f∣　limit f

It is possible that the solution vector converges only very
slowly, oscillates, converges to a false solution or that it doesn't
even converge to a solution. These cases indicate severe
matching problems and require further attention.

The precision of the estimated parameters can be obtained with
the covariance matrix:

K xx= 　　0

2 Q xx= 　　0
2
　AT P A　−1

 (9)

The precision of the matching location in the image is described
with the standard deviation of e and f .

　　 x= 　　e= 　　0　qe　
1
2 (10)

　　 y= 　　f = 　　0　q f 　
1
2 (11)

By obtaining the Covariance matrix it is possible to get the
standard deviations of the shift parameters as described in
equations 9, 10 and 11. The minimum, maximum and mean

298

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3b.Beijing 2008

values of the shift parameters after matching two images can be
seen in the following table:

Table 1: Standard deviations of the shift parameters in pixel

While the values itself seem very good they should be taken
with a grain of salt. For once the reliability is not included
which means that mismatches are not visible in this case.
Another problem is that certain patterns require the deletion of
one or more affine transformation parameters – if this is not
done then the match can be unreliable.

In this project only two images could be matched, because the
others had poorer approximations of the point positions and as
of such the matching failed there.

Problems can also arise in areas that do not have enough
contrast / texture to produce reliable matches. The matching
algorithm might converge on surfaces with no texture but the
result will not be reliable. In order that the algorithm does not
match these areas, the template window has to be checked if the
signal produces enough contrast for matching.

In this case this is done by calculating the standard deviation of
the grey values for the template window and defining a
threshold value. If the standard deviation of the grey values is
bigger than the threshold, then it will be used for matching –
else it will be marked as “non-matchable” due to poor contrast.

By marking the matched points in the images it is possible to
visually check whether the matching actually works or not. In
this case it seems that the algorithm has been implemented
correctly since in most cases the matches seem reasonable.

5.2 LSM in pseudo code

1 while (pointiterator != amount of points)
2 {
3 if (point number in template == point number
in search)
4 {
5 read template gray values into array
6
7 if (stdDev of template GV-array > limit)
8 {
9 read search gray values into array
10 read gradients and fill A matrix
11 Perform adjustment and get new
parameter values
12 }
13 while (convergence criterion not reached)
14 {
15 perform affine transformation
16 perform bilinear interpolation
17 store new gray values into search array
18 fill A matrix and perform adjustment
again
19 }
20 if (convergence reached)
21 {
22 write final values into XML file
23 }
24 if (maximum amount of iterations reached)
25 {
26 No convergence reached – nothing is
written
27 }
28 }
29 }

In a first step the template and search images have to be
selected. This is done manually by asking the operator to input
the desired image numbers on the command line. Once this is
done the whole point cloud has to be iterated through as seen in
line 1.
The first point in the laser scan point cloud is selected and its
number is compared to the numbers stored in the template and
search image. Each back projected point has a point number
associated from the point cloud file and as of such if the point
number in the template and search image are identical, they will
be used for matching. This check is performed at line 3.

Figure 5: Correctly matched points on a random target

When the point numbers match, the grey values in the template
image are read out and stored in a vector. The values are read
out column-wise in x-direction.
Afterwards the standard deviation of the vector is checked – if
it is below a certain value then this point will not be used for
matching because the contrast is too low to allow for reasonable
matching. The check is done at line 5.
If the standard deviation is accepted the grey values in the
search image are read out in the same manner like for the
template image. The check is performed at line 7 and the grey
values are read out at line 9.
Additionally the gradients and the partial derivatives of the
affine transformation are obtained and the values filled into the
design matrix. With these it is possible to perform the first
adjustment and obtain the solution vector as seen in lines 10 and
11.

Figure 6: Matches that are not 100% reliable

Afterwards the convergence loop is started at line 13. While this
loop is not that much different than the loop starting at line 7,
the two were separated. The loop only differs from the one at
line 7, in that an affine transformation is performed and
afterwards a bilinear transformation (lines 15 and 16). These
two calculations are not done in the first loop which helps
reducing the calculation time a bit.

299

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3b.Beijing 2008

Once the bilinear interpolation has been performed the same
procedure is performed: New grey values for the search image
are obtained and the adjustment is run again (lines 17 and 18).
When convergence is reached the final pixel position of the
point is written into a XML file. If the maximum amount of
iterations has been performed then nothing is written. Both
checks are performed at line 20 and 24 respectively.
After that, the point iterator is increased by 1 and it is checked
if the new point is visible in both images. If so the whole
procedure is done again until all the points in the point cloud
have been processed.

6. ADJUSTMENT
Once the points have been matched, a visual check can be done
to determine whether the algorithm works correctly, or if there
are some serious errors with the implementation. If the
matching is satisfying then the bundle adjustment can be
performed.
The bundle adjustment is a procedure to adjust an arbitrary
number of images, while considering measured image points
and if available geodetic observations. With homologous points
the images are linked into a model where the object can be
reconstructed in full 3D. It is possible to set a relation to a
higher-ranking coordinate system by introducing a minimal
amount of control points.
The most important condition is that all the homologous image
rays have to intersect in their respective object point.
Bundle Adjustment itself has been performed in Australis.
However any Bundle Adjustment program could be used, or the
bundle adjustment could be newly programmed. The Outputfile
just has to be written into a file structure that the Bundle
Adjustment programm can read, which can be done with a
simple export filter.
One problem that becomes apparent is that the huge amount of
points poses a problem. Australis has the rather interesting
behaviour to increase the import time drastically the more
points are imported. It also has the tendency to crash when
using large amounts of points.

However since only two images could be matched the amount
of points can be reduced to reasonable levels. It has to be noted
though that with more images, the point cloud would've been
larger and as of such the problem that Australis simply fails can
surface.

Because of the poor image distribution as seen in figure 7, it is
not expected that the Bundle Adjustment actually can achieve
any improvements regarding the orientation.

After the bundle has been completed successfully, the new
exterior orientation parameters for the images can be obtained.

However due to the poor image distribution those values are not
really meaningful.
If however the matching was successful between multiple
images the new orientation can be used further – either as the
final result if it is good enough, or as next approximation to
repeat the automated work flow until the result is satisfying.

7. CONCLUSION
Registering images and a point cloud into a common coordinate
system is feasible in a semi-automated approach. The suggested
workflow as seen in figure 1 seems to be a viable solution to
orient images precisely to a point cloud. However it is strongly
suggested to use cross correlation matching in a first iteration in
order to obtain better approximations, then in a second iteration
use LSM. If this is not done, then the orientation process can
fail, because the approximations for LSM are not good enough
to allow for correct matching, as seen in this project.

While implementing cross correlation would not take a lot of
time, it sadly could not be done in this project since the time
frame of 16 weeks was too short to allow for an implementation
of both LSM and cross correlation.

Of course improvements could be done for each of the modules.
The HPR algorithm for example could be sped up tremendously
by using a slightly different approach.

The matching could be improved by implementing the more
sophisticated methods of LSM like multiphoto geometrically
constrained matching to reduce the probability of mismatches.
Unreliable matches could be filtered out by applying certain test
methods that check if the pattern in the patch is actually distinct
or if it allows for multiple solutions in the neighbourhood.

Additionally computational aspects could be considered to
improve the speed of the algorithms. Optimizing for multicore /
multi processor systems would be one aspect – another to let the
code run on the Graphics Processing Unit which would be a lot
faster than to run it on the Central Processing Unit.

Figure 7: Top view of the poor

image distribution that
are used in the Bundle

All in all it can be said that the suggested workflow can produce
precisely orientated images with respect to the point cloud if a
little more time is invested into it. The work flow is an iterative
process – it however is difficult to say how many iterations
would be needed in general. It is entirely possible that only two
iterations would be enough to orient images to a point cloud
system – with the first iteration using cross correlation matching
and the second LSM.

ACKNOWLEDGEMENTS

I'd like to thank everyone.

REFERENCES

American Society for Photogrammetry and Remote Sensing,
2004, Manual of Photogrammetry – fifth edition, ASPRS,
Bethesda.

Baltsavias, E., P., 1991, Multiphoto Geometrically Constrained
Matching, IGP ETH Zürich Mitteilungen Nr. 49.

300

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3b.Beijing 2008

Carosio, A., 2003, Fehlertheorie und Ausgleichung – Band 1 +
2, ETH Zürich.

Cattin, P., C., 2006, Lecture notes “Introduction into Signal and
Image Processing”.

Gruen, A., 1996. Least squares matching: a fundamental
measurement algorithm. In: K. Atkinson (ed.), Close Range
Photogrammetry & Machine Vision, Whittles, pp. 217-255.

Grün, A., 2006/07, Lecture notes “Digital Photogrammetry I +
II”.

Grün, A., Remondino, F., 2007, Lecture notes “Close-Range
Photogrammetry”.

Grün, A., Remondino, F., Urban, C., 2007, Lecture notes
“Photogrammetry and Machine Vision”.

Kraus, K., 1996, Photogrammetrie Band 2 – verfeinerte
Methoden und Anwendungen, Dümmler, Bonn.

Nipp, K., Stoffer, D., 2002, Lineare Algebra, VDF, ETH Zürich.

Luhmann, T., 2000, Nahbereichsphotogrammetrie, Wichmann,
Heidelberg.

Remondino, F., 2006, Image-Based Modeling for Object and
Human Reconstruction, IGP ETH Zürich Mitteilungen Nr. 91.

Simon, K., 1996, Programmieren für Mathematiker und
Naturwissenschaftler, VDF, ETH Zürich.

Sperb. R, 2004, Analysis I, VDF, ETH Zürich.

301

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3b. Beijing 2008

302

	1. INTRODUCTION
	2. THE TASK
	3. PRELIMINARY TASKS
	3.1 Import procedure
	3.2 Data check
	3.3 Registration

	4. BACK PROJECTION AND VISIBILITY ANALYSIS
	4.1 Back projection
	4.2 Out-of-plane check
	4.3 Pixel correction
	4.4 Hidden Point Removal
	4.5 HPR in pseudo code

	5. MATCHING
	5.1 Least Squares Matching
	5.2 LSM in pseudo code

	6. ADJUSTMENT
	7. CONCLUSION

