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ABSTRACT:  
 
This paper presents the results of a master thesis in which it was tried to orient a set of images of an object to a point cloud of the 
same object. As test object the “Semper Sternwarte” in Zürich was used. As data sets a dense point cloud from a laser scanner and a 
sparse point cloud obtained by photogrammetric means, as well as the orientation of the images were used. Precisely orientated 
images with respect to a point cloud can be used to incorporate an edge-constrained triangulation techniques, blunder and outlier 
detection, which leads to an overall better representation of a 3D model. This paper looks at a specific semi-automated work flow 
using self-programmed tools and tries to determine whether the work flow is suitable for this task or not. 
 
 

1.  INTRODUCTION 

Registration of images taken by CCD array cameras with 
respect to point clouds obtained by active sensors like laser 
scanners is necessary prior to the integration of the both data 
sets (texturing, overlaying, gap filling, etc). This is mostly done 
by the use of some targets visible in both data sets or by 
preliminary laboratory calibration, while the camera is mounted 
on the active sensor (e.g laser scanner). Nevertheless, there are 
various cases in which there are no common targets between the 
two data sets or the pre-calibration is not possible due to either 
using not mounted cameras or different acquisition times. 
Additionally, in case common targets are used, the mapping 
function that maps the point cloud to the image coordinate 
system is obtained over targets, thus the accuracy of the 
function is very much dependent on the distribution of the 
targets. More over, in case of pre-calibration, the calibration 
parameters may not remain stable if the camera has been 
dismounted for some movement purposes. Therefore a kind of 
on the job registration would be useful. The goal of this project 
is to perform the registration of images taken by CCD array 
cameras and the point cloud of the same object (e.g. obtained 
by an active sensor like a laser scanner) to one coordinate 
system, while approximate registration parameters are available. 
By orienting images with respect to an existing point cloud 
system it should be possible to see what improvements can be 
done when combining point cloud data obtained with different 
measurement techniques. 
 
We assume that the rough orientation parameters of the images 
are available in an arbitrary coordinate system. These 
parameters serve as approximations for an automatic process 
that incorporates a point cloud obtained by a laser scanner or a 
similar active sensor. By back projecting the points of the laser 
scanner point cloud into the images, the orientation parameters  
can be improved, by iteratively moving the two point clouds in 
a way that the distances between those two become minimal. As 
a result more precise orientation parameters are obtained, which 
in turn can be used to improve the existing point cloud with 
respect to edges and outliers that usually are present in point 
clouds from laser scanners or similar active sensor devices. 
 

The whole process is semi-automatic because the initial 
approximations of the orientation parameters are obtained with 
manual measurements while the improvement is then done with 
a fully automated algorithm. 
 

2.  THE TASK 

The task of this project is divided into two parts. First a manual 
pre-processing is done by checking the data and then registering 
the two data sets into one. Then a set of C++ tools is 
programmed to accomplish the second part as seen in figure 1. 

 

 
 

Figure 1: Suggested work flow. Pale green marks the manual 
part. Dark blue the automated one. 

 
The data is divided into two data sets. One set is a dense point 
cloud that was obtained with a laser scanner. The other dataset 
consists of images taken of the object as well as measurements 
in the images. With the measurements an exterior orientation 
has been calculated with photomodeler and as of such a sparse 
point cloud has been obtained. 

In a first step the point cloud has to be checked if gross outliers 
are present. If this is the case those have to be removed. 
Additionally the interior and exterior orientation parameters 
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have to be checked and improved if they are not good enough. 
Then the laser scan point cloud has to be registered to the image 
coordinate system. This can be done with a surface matching 
algorithm like ICP or LS3D – however if one of the point 
clouds is very sparse (usually the one obtained 
photogrammetrically), then the mentioned algorithms will fail 
because they cannot find a corresponding surface. 
 
After the first two steps, which can be considered pre-
processing steps, the main processing chain is started. 
 
The automated part consists of three steps: 
− Backprojection of the laser points into the images 
− Visibility analysis to reduce probability of mismatching 
　 Matching of the points 
−  
Two C++ tools are written which incorporate these three steps – 
the first tool is performing back projection and visibility 
analysis while the second one is doing the matching part. 
 
Once the matching is finished, the matched points can be used 
as measurements for the bundle adjustment, which is performed 
with an external tool. After the bundle adjustment is completed 
successfully a new interior and exterior orientation of the 
images can be obtained. If the new orientation is acceptable the 
process can be stopped. If it is not then the points have to be 
projected back into the newly orientated images and the same 
procedures have to be performed again until the results are 
satisfactory. 
 
In the end the orientation of the images should be good enough 
to allow further processing like edge-constraint triangulation 
and blunder removal. 

3.  PRELIMINARY TASKS 

3.1  Import procedure 

In order to be independent from any software the input and 
output files for the interior and exterior orientation are 
described in XML. As mentioned in the introduction the 
exterior orientation has been obtained with photomodeler. A 
simple conversion tool converts the photomodeler file into an 
XML file, that incorporates for each image a separate tag with 
its interior and exterior orientation. This has the advantage, that 
the data structure does not need to be tailored towards a specific 
orientation/bundle adjustment program. 
 
For the laser scanner point cloud a simple X,Y,Z-structure is 
chosen which is stored in a plain-text file. This is done because 
an XML-File would create a considerable data overhead and 
wouldn't really introduce a benefit in return. For each point a 
new line is defined with its X, Y, and Z coordinates separated 
by a space character. 
 
3.2  Data check 

The interior and exterior orientation as well as the point cloud 
have to be checked before any further processing is done. The 
orientation parameters have to be precise enough so that the 
matching algorithm can work correctly. It is however not easy 
to check if the orientation parameters are correct or not. 
Especially if the camera used is no longer usable it can be 
almost impossible. 

The point cloud has to be checked for outliers. This mainly to 
reduce the probability of mismatching later on. This can be 
done easily by using a 3D modelling tool. 

3.3  Registration 

In order to be able to back project the laserscanning points into 
the images, it is important to have both the laser scan and the 
photogrammetric point cloud in the same coordinate system. 
This has to be done in a manner, that the exterior orientation of 
the images is still usable in order to be able to backproject the 
laser scan points correctly into the images in the first step. This 
is achieved by keeping the photomodeler point cloud fixed and 
rotating and scaling the laser scanner cloud into the 
photomodeler system. 
 
Point clouds are registered by minimizing the sum of squares of 
the Euclidean distances between the surface scans. Different 
algorithms are available like ICP or LS3D. However all of them 
need dense point clouds to work properly. 
 
In this case only the laser scan point cloud is dense. The point 
cloud obtained by photomodeler is very sparse. When trying to 
register the two point clouds with Geomagic's ICP algorithm the 
problem arises, that the photogrammetric point cloud is so 
sparse that it does not really offer any surfaces to be matched. 
 
Because of this a 3D Helmert transformation is used as seen in 
equation 1. Eight points are selected in each point cloud and 
afterwards the six Helmert Transformation parameters are 
obtained. With these the laser scanner point cloud is registered 
into the camera system. 
 
 

[X fix

Y fix

Z fix
]=[T x

T y

T z
]　[1　m − rz r y

r z 1　m − r x

− r y r x 1　m]�[X Free

Y free

Z free
]  (1)

 
 
This procedure is not perfect since there might be some 
systematic errors regarding the X,Y,Z-positions and the rotation 
angles. Especially selecting corresponding points between a 
dense and a sparse point cloud can prove to be very difficult. 
However in this case the only other possibility would be to 
densify the photogrammetric point cloud, which would take too 
much time. So the downside of the 3D Helmert transformation 
is accepted. 

 

4.  BACK PROJECTION AND VISIBILITY ANALYSIS 

4.1  Back projection 

Once the point clouds have been registered, the laser scan 
points can be back projected into the images, since the laser 
scanner points are now in the object coordinate system of the 
images. The back projection is performed with the collinearity 
equations: 

xi= x0− c
d 11　X i− X 0　　d 21　Y i− Y 0　　d 31　Z i− Z 0　

d 13　X i− X 0　　d 23　Y i− Y 0　　d 33　Z i− Z 0　
(2)

 

yi= y0− c
d 12　X i− X 0　　d 22　Y i− Y 0　　d 32　Z i− Z 0　

d 13　X i− X 0　　d 23　Y i− Y 0　　d 33　Z i− Z 0　
(3)

296



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3b.Beijing 2008 
 

Since all of the parameters are known the equation is easily 
performed and the pixel positions of the 3D points in the images 
are obtained. 

 
Figure 2: HPR visualized. 1. Shows how all points in the 

buffer around the blue point are selected. In 2 the 
mean distance is calculaed for the buffer. In 3. all 
the points that are farther away than the mean 
distance are thrown out 

4.2  Out-of-plane check 

Since the collinearity equations are performed for all the points 
there will be cases where the back projected points will not lie 
on the image plane. Such cases are easily detected by checking 
the obtained x- and y coordinates from the collinearity equation. 
If they are negative or are larger than the image dimensions, 
then they are not on the image and thus can be flagged as not 
visible. By doing so memory space and calculation time is 
saved for later steps. 

4.3  Pixel correction 

Once the visible points are back projected their position needs 
to be corrected. This is because of systematic errors of the 
camera. These errors are modelled by the additional parameter 
set from Brown. They include the interior orientation, scale- 
and shear factor, symmetrical radial lens distortion and 
decentering lens distortion. 
 
The collinearity equation is then extended with the Brown 
Parameter model which results in: 
 

f 　x　= x− x0　　x  (4)
 

f 　y　= y− y0　　y  (5)
 

Since f 　x　and f 　y　are non-linear functions they have to be 
linearised and then adjusted to obtain the correct value. As first 
approximations the back projections from the collinearity 
equation are used for the adjustment. 
 
The corrections of the solution vector are added to the pixel 
positions until convergence is reached. 
 
4.4  Hidden Point Removal 

Before the matching of the points is performed occluded points 
should be removed. This has two advantages: 
 
− The calculation time and the amount of memory for the 

matching procedure is reduced greatly 
　 The probability of mismatches later on is reduced 
−  
The main problem is that at this stage we're still facing points 
and as of such common techniques for Hidden Surface Removal 
like z-buffer, binary space partitioning or similar are not 
applicable since there are no surfaces to process. 
 
Because of this a “Hidden Point Removal”* algorithm is used. 
This algorithm takes a back projected point and draws a buffer 
around it in image space. It then checks if any other points lie 
within that buffer. If this is the case the 3D distance is  
 
 
 
 
 

                                                                 
* From now on called HPR 

 
 

 

Figure 4: Close-up of a back 
projection with 
HPR 

Figure 3: Close-up of a back 
projection without 
HPR 

 
4.5  HPR in pseudo code 

In a first step the algorithm has to be constructed in a way that it 
loops through all the points. Additionally for each point the 
point, cloud has to be looped through again so that for each 
point it can be checked, which points are inside the actual 
buffer and which aren't. This means that the point cloud is run 
through at least n2 times which of course is very inefficient. 
 
1 while (pointnr != amount of points) 
2 { 
3  if (not flagged as not visible) 
4  { 
5   while (pointnr2 != amount of points) 
6   { 
7    if (not flagged as not visible) 
8    { 
9     if (projected point inside buffer) 
10     { 
11      Calculate obj distance + mean + 
write to buffer 
12     } 
13    } 
14   pointnr2++; 
15   } 
16   while (pointnr3 != amount of points) 
17   { 
17    if (projected point inside buffer) 
18    { 
19     if (point distance > mean distance) 
20     { 
21      flag point as not visible 
22     } 
23    } 
24   pointnr3++; 
25   } 
26  } 
27 pointnr++; 
28 } 

 

In line 1 the first loop is initiated. It selects the first point and 
checks if it hasn't been flagged as not visible. This is done to 
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reduce calculation time. If the point is visible then it is used for 
the distance check. At line 5 another loop is started. That one is 
used to determine which points are inside the buffer - the check 
is done at line 9. Prior to this another check is done whether the 
point has been already flagged as not visible or not – again to 
reduce calculation time. 

Once a point lies inside the buffer its distance is calculated as 
well as the mean distance of the buffer as seen at line 11. This 
is done for all the points in the point cloud.  

When the second loop finishes a third loop is started at line 16. 
This loop goes – again – through all the points. This actually 
wouldn't be necessary – instead a more elegant solution could 
be found. 

In any case the points inside the buffer have their object space 
distance compared to the mean object distance of the buffer at 
line 20. If the point distance is bigger than the mean distance 
then the point is flagged as an outlier. 

The first buffer is fully processed when line 27 is reached. Once 
there the point iterator is increased by 1 and thus the next point 
is selected for processing. 

 

5.  MATCHING 

Matching is performed to obtain more measurements which 
then can be used to get new orientation parameters. In this case 
the points that have been back projected and processed are used 
as points to be matched. Manually one image is set as template 
and another one as search. The back projected points in the 
template image are the points that have to be matched in the 
search image. 

Different matching techniques are available nowadays. In this 
case an area based matching algorithm – Least Squares 
Matching* – has been chosen. The LSM algorithm is used in its 
simplest form. No additional constraints like geometric 
constraints or multiphoto constraints have been used. 

5.1  Least Squares Matching 

As described in detail in (Gruen, 1996) matching between the 
two regions is established when f 　x , y　= g　x , y　. 

Because the images have not been taken from the same position, 
and noise can be present in one or both images the true error 
vector e　x , y　is introduced. This results in the following 
equation: 

 
f 　x , y　− e　x , y　= g　x , y　 (6)

 
The location of the function values of g　x , y　 must be 
determined to acquire the matched position. This is achieved by 
minimizing a goal function which measures the distances 
between the grey values in the template and search window. 

Equation 6 can be considered a nonlinear observation equation 
which models the vector of observations f 　x , y　with a 
function g　x , y　whose location has to be estimated in the 
search photograph. The location is described by shift 
parameters 　x ,　y which are counted with respect to an 

                                                                 
* From now on called LSM 

initial position of g　x , y　, the approximation of the conjugate 
picture region g0　x , y　. 

In order to account for a variety of systematic image 
deformations and to obtain a better match, image shaping 
parameters are introduced additionally to the shift parameters. 

If the local terrain surface patch is a plane in sufficient 
approximation, then the affine transformation model is 
considered to be sufficient and used as a full parameter set. 
Radiometric parameters are left out. 

 

[x
y]=[a b

c e]�[xsw

ysw]　[e
f ]  (7)

 
In order to be able to apply the least squares approach the 
function g　x , y　has to be linearised. Upon performing the 
adjustment a solution vector is obtained: 

 
　AT P A　− 1 AT Pl= [　a 　b 　c 　d 　e 　f ]T = 　x (8)

 
The solution vector 　x is used to alter the affine transformation 
parameters. With the new parameters a new pixel position of 
the search window can be determined. However after the affine 
transformation the pixel position will most likely not be an 
integer value. As of such the new grey value has to be 
interpolated. In this case this is done by means of a bilinear 
interpolation. This is done mainly because it is easier to 
implement than cubic convolution interpolation, while offering 
superior image quality over nearest neighbour interpolation. 
Once the new grey values have been obtained for the new pixel 
positions the whole adjustment process can be repeated again. 

With the newly acquired grey value the adjustment can be run 
again until each of the elements in the solution vector fall below 
a certain limit. 

∣　a∣　limit a ∣　b∣　limit b ∣　c∣　limit c ∣　d∣　limit d

∣　e∣　limit e ∣　 f∣　limit f  

It is possible that the solution vector converges only very 
slowly, oscillates, converges to a false solution or that it doesn't 
even converge to a solution. These cases indicate severe 
matching problems and require further attention. 

The precision of the estimated parameters can be obtained with 
the covariance matrix: 

 
K xx= 　　0

2 Q xx= 　　0
2
　AT P A　−1

 (9)
 
The precision of the matching location in the image is described 
with the standard deviation of e and f . 

 

　　 x= 　　e= 　　0　qe　
1
2  (10)

 

　　 y= 　　f = 　　0　q f 　
1
2  (11)

 
By obtaining the Covariance matrix it is possible to get the 
standard deviations of the shift parameters as described in 
equations 9, 10 and 11. The minimum, maximum and mean 
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values of the shift parameters after matching two images can be 
seen in the following table: 

 

 
Table 1: Standard deviations of the shift parameters in pixel 
 

While the values itself seem very good they should be taken 
with a grain of salt. For once the reliability is not included 
which means that mismatches are not visible in this case. 
Another problem is that certain patterns require the deletion of 
one or more affine transformation parameters – if this is not 
done then the match can be unreliable. 
 
In this project only two images could be matched, because the 
others had poorer approximations of the point positions and as 
of such the matching failed there. 
 
Problems can also arise in areas that do not have enough 
contrast / texture to produce reliable matches. The matching 
algorithm might converge on surfaces with no texture but the 
result will not be reliable. In order that the algorithm does not 
match these areas, the template window has to be checked if the 
signal produces enough contrast for matching. 
 
In this case this is done by calculating the standard deviation of 
the grey values for the template window and defining a 
threshold value. If the standard deviation of the grey values is 
bigger than the threshold, then it will be used for matching – 
else it will be marked as “non-matchable” due to poor contrast. 
 
By marking the matched points in the images it is possible to 
visually check whether the matching actually works or not. In 
this case it seems that the algorithm has been implemented 
correctly since in most cases the matches seem reasonable. 

 
 

 
 

5.2 LSM in pseudo code 

1 while (pointiterator != amount of points) 
2 { 
3  if (point number in template == point number 
in search) 
4  { 
5   read template gray values into array 
6    
7   if (stdDev of template GV-array > limit) 
8   { 
9    read search gray values into array 
10    read gradients and fill A matrix 
11    Perform adjustment and get new 
parameter values 
12   } 
13   while (convergence criterion not reached) 
14   { 
15    perform affine transformation 
16    perform bilinear interpolation 
17    store new gray values into search array 
18    fill A matrix and perform adjustment 
again 
19   } 
20  if (convergence reached) 
21  { 
22   write final values into XML file 
23  } 
24  if (maximum amount of iterations reached) 
25  { 
26   No convergence reached – nothing is 
written 
27  } 
28  } 
29 } 

 

In a first step the template and search images have to be 
selected. This is done manually by asking the operator to input 
the desired image numbers on the command line. Once this is 
done the whole point cloud has to be iterated through as seen in 
line 1. 
The first point in the laser scan point cloud is selected and its 
number is compared to the numbers stored in the template and 
search image. Each back projected point has a point number 
associated from the point cloud file and as of such if the point 
number in the template and search image are identical, they will 
be used for matching. This check is performed at line 3. 

Figure 5: Correctly matched points on a random target

When the point numbers match, the grey values in the template 
image are read out and stored in a vector. The values are read 
out column-wise in x-direction. 
Afterwards the standard deviation of the vector is checked – if 
it is below a certain value then this point will not be used for 
matching because the contrast is too low to allow for reasonable 
matching. The check is done at line 5. 
If the standard deviation is accepted the grey values in the 
search image are read out in the same manner like for the 
template image. The check is performed at line 7 and the grey 
values are read out at line 9. 
Additionally the gradients and the partial derivatives of the 
affine transformation are obtained and the values filled into the 
design matrix. With these it is possible to perform the first 
adjustment and obtain the solution vector as seen in lines 10 and 
11. 

Figure 6: Matches that are not 100% reliable 

Afterwards the convergence loop is started at line 13. While this 
loop is not that much different than the loop starting at line 7, 
the two were separated. The loop only differs from the one at 
line 7, in that an affine transformation is performed and 
afterwards a bilinear transformation (lines 15 and 16). These 
two calculations are not done in the first loop which helps 
reducing the calculation time a bit. 
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Once the bilinear interpolation has been performed the same 
procedure is performed: New grey values for the search image 
are obtained and the adjustment is run again (lines 17 and 18). 
When convergence is reached the final pixel position of the 
point is written into a XML file. If the maximum amount of 
iterations has been performed then nothing is written. Both 
checks are performed at line 20 and 24 respectively. 
After that, the point iterator is increased by 1 and it is checked 
if the new point is visible in both images. If so the whole 
procedure is done again until all the points in the point cloud 
have been processed. 

6.  ADJUSTMENT 
Once the points have been matched, a visual check can be done 
to determine whether the algorithm works correctly, or if there 
are some serious errors with the implementation. If the 
matching is satisfying then the bundle adjustment can be 
performed. 
The bundle adjustment is a procedure to adjust an arbitrary 
number of images, while considering measured image points 
and if available geodetic observations. With homologous points 
the images are linked into a model where the object can be 
reconstructed in full 3D. It is possible to set a relation to a 
higher-ranking coordinate system by introducing a minimal 
amount of control points. 
The most important condition is that all the homologous image 
rays have to intersect in their respective object point. 
Bundle Adjustment itself has been performed in Australis. 
However any Bundle Adjustment program could be used, or the 
bundle adjustment could be newly programmed. The Outputfile 
just has to be written into a file structure that the Bundle 
Adjustment programm can read, which can be done with a 
simple export filter. 
One problem that becomes apparent is that the huge amount of 
points poses a problem. Australis has the rather interesting 
behaviour to increase the import time drastically the more 
points are imported. It also has the tendency to crash when 
using large amounts of points. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
However since only two images could be matched the amount 
of points can be reduced to reasonable levels. It has to be noted 
though that with more images, the point cloud would've been 
larger and as of such the problem that Australis simply fails can 
surface.  
 
Because of the poor image distribution as seen in figure 7, it is 
not expected that the Bundle Adjustment actually can achieve 
any improvements regarding the orientation. 
 
After the bundle has been completed successfully, the new 
exterior orientation parameters for the images can be obtained. 

However due to the poor image distribution those values are not 
really meaningful. 
If however the matching was successful between multiple 
images the new orientation can be used further – either as the 
final result if it is good enough, or as next approximation to 
repeat the automated work flow until the result is satisfying. 
 
 

7.  CONCLUSION 
Registering images and a point cloud into a common coordinate 
system is feasible in a semi-automated approach. The suggested 
workflow as seen in figure 1 seems to be a viable solution to 
orient images precisely to a point cloud. However it is strongly 
suggested to use cross correlation matching in a first iteration in 
order to obtain better approximations, then in a second iteration 
use LSM. If this is not done, then the orientation process can 
fail, because the approximations for LSM are not good enough 
to allow for correct matching, as seen in this project. 
 
While implementing cross correlation would not take a lot of 
time, it sadly could not be done in this project since the time 
frame of 16 weeks was too short to allow for an implementation 
of both LSM and cross correlation. 
 
Of course improvements could be done for each of the modules. 
The HPR algorithm for example could be sped up tremendously 
by using a slightly different approach. 
 
The matching could be improved by implementing the more 
sophisticated methods of LSM like multiphoto geometrically 
constrained matching to reduce the probability of mismatches. 
Unreliable matches could be filtered out by applying certain test 
methods that check if the pattern in the patch is actually distinct 
or if it allows for multiple solutions in the neighbourhood. 
 
Additionally computational aspects could be considered to 
improve the speed of the algorithms. Optimizing for multicore / 
multi processor systems would be one aspect – another to let the 
code run on the Graphics Processing Unit which would be a lot 
faster than to run it on the Central Processing Unit. 

 
Figure 7: Top view of the poor 

image distribution that 
are used in the Bundle 

 
All in all it can be said that the suggested workflow can produce 
precisely orientated images with respect to the point cloud if a 
little more time is invested into it. The work flow is an iterative 
process – it however is difficult to say how many iterations 
would be needed in general. It is entirely possible that only two 
iterations would be enough to orient images to a point cloud 
system – with the first iteration using cross correlation matching 
and the second LSM. 
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