
STUDY ON NATIVE XML DATABASE BASED GML STORAGE MODEL

Shuliang Zhanga, *, Jiayan Gana, Jiehui Xua,Guonian Lva

aKey lab of Virtual geographic environment, Ministry of education, Nanjing Normal University ,210046,Nanjing，
China - zhangshuliang@njnu.edu.cn,ganjiayan@126.com

KEY WORDS：GML, XML, Native XML Database, GML Storage, JTS, XQuery

ABSTRACT：

As a mature spatial interoperability specification of OGC, GML rapidly plays an important role in a large number of GIS research
and application domains, such as spatial data modelling, transmission and exchanging, integration and sharing, because of its
advantages of opening and self-description format system, rich spatial data expression technology, flexible application schema and
so on. However, the complexity of GML specification leads to bulkiness of GML data files, which limits extent of GML data sharing.
Furthermore, its non-structural data model goes against its storage by commercial relational database, which ultimately result in low
performance of GML application and destroy abundant semantic of GML data. Thus, appropriate GML storage approach would
improve extend and depth of GML application.By analogy approach, this paper study on storage and manage model of XML data,
analyze current status of GML storage method. Combining XML database with characteristic of GML spatial data, create GML
storage mapping mechanism based on feature and storage granularity, form GML to Native XML Database Storage Model
(G2NXDBM) consisted of GML file segment, GML schema file and GML storage log file. On the basics of JAXP (Java API for
XML Processing) program API and open source code JTS (Java Topology Suite), the author developed G2NXDBMs prototype
system which include schema mapping constructor and file storage tools depending on Ipedo native database by IPedo Inc.USA. To
test the efficiency of GML query, the author selects 5 groups of test data with the same size. The experiment result demonstrates that
although the storage space of G2NXDBMs is larger than GML file, it has more advantages of query efficiency, support of XML
technology and data management than GML file and relational database storage, it also testify the validity and practicability of
G2NXDBM.

* Corresponding author.

1. INTRODUCTION

As a mature spatial interoperability specification of OGC, GML
rapidly plays an important role in a large number of GIS
research and application domains, such as spatial data
modelling, transmission and exchanging, integration and
sharing, because of its advantages of opening and self-
description format system, rich spatial data expression
technology, flexible application schema and so on. However,
the complexity of GML specification leads to bulkiness of
GML data files, which limits extent of GML data sharing.
Furthermore, its non-structural data model goes against its
storage by commercial relational database, which ultimately
result in low performance of GML application and destroy
abundant semantic of GML data. Thus, appropriate GML
storage approach would improve extend and depth of GML
application. Although GML application increasingly manifold,
current research on GML database and related technologies are
on the germination status. Neither clear concepts nor
architecture nor mature special product exists.

Earlier XML/GML data is stored as document (text file), is
queried by information access methods such as key word query
which is simple and fit for frequently document updating
context. Since such storage approach lacks of systematic
storage and query mechanism which leads to low query ability
and can neither satisfy complex condition query nor optimize
query.

Traditional relational database system is more mature on
aspects of query, concurrency, security and other technologies,

and extends function of processing XML/GML data. Due to the
big difference between semi-structural XML data model and
traditional relational model would bring problems on data
storage and query. The problems are as follows: when store ①
XML/GML data, traditional RDBMS doesn’t support hierarchy
and semi-structural data format, nested XML/GML data should
be converted by mapping mechanism before stored in simple
relational tables. Such approach not only reduces storage
efficiency but also leads to information losing during data
conversion; ②when query XML/GML data, XML/GML query
requirement should be firstly converted to database query
expression, such as SQL; Then query engine of database
optimize query expression and generate query execution plan;
finally convert query result to XML/GML data. Such approach
resolves problems of query complexity in a certain extent, but
too many conversions bring new problems of low efficiency
and confusion of query semantic.

As increasingly mature of XML technology, XML databases
have been broadly studied and applied, databases used for
storing and managing XML data have come forth, namely
native XML database [www.rpbourret.com, 2005]. Advantages
of native XML databases are as follows[Liugang,2005]:
①effectively support XML character of self-description, semi-
structure and sequence; ②provide “out and home access” for
XML document, system store XML data directly, but not
convert XML data to relational model or object orientated
model, and store XML document in relational database or
object orientated database. The native XML database can store
XML document in native XML database and has capability to
access the “same” document; ③directly support XML query

45

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008

language such as XQquery, XPath but not conversion to SQL or
OQL (Object Query language); provide rich development ④
interfaces. Most native XML database support XML:DB API of
XML:DB.org development.
GML database as a tool for managing XML data with special
format, its research could be advanced on the basis of current
XML database technology combined with characters of GML.
Combined with characters of native XML database and GML
spatial data, this paper designed a more effective native XML
database based GML spatial data storage model-G2NXDBM,
develop and implement GML data storage prototype system,
directly access GML data in native XML database. This paper
also evaluates this storage model on aspects of storage space
and query efficiency.

2. NATIVE XML STORAGE BASED GML STORAGE

MODEL- G2NXDBM

2.1 Architecture of G2NXDBM

2.1.1 GML spatial data storage mechanism

The main approach of native XML database based GML
data storage is: firstly analyses structure relationships between
features according to GML application schema, then map
structure relationship to collection of native XML database, and
establish collection in database to reflect document structure.

Native XML Database

Schema Parsing

Schema Maping

Document
Parsing

Document
Partition

GML
Document

GML Application
Schema

Collection
Architecture Document

Fragment

G
M
L

S
ch
e
m
a

M
a
p
pe
r

GML
Document
Storager

Document
validation

Figure 1. Storage Mechanism of GML Spatial Data

Assume that every GML document corresponds to at least one
specific GML schema, this schema file has existed in system or
provided by the owner of the GML document. When import a
specific schema, system would generate a one to one mapping
rule between schema and storage structure, and establish
corresponding collection. Thus, when read a GML document,
system would classify document by schema. And partition this
document by unit of feature, then store the partitioned
document in corresponding data collection according to
mapping rule.

2.1.2 GML Spatial data storage structure
In this storage model, when GML data is stored in native XML
database, the storage is implemented by three types of files,
（1）GML fragment file; （2）GML schema file; （3）GML
storage log file. GML fragment file is the fragments after
partition imported GML document according to certain
granularity. GML schema file is used to define content,
structure and constrain rule of GML document. It could be used
to conjecture storage mapping rule between GML document
and native XML database and testify validity of GML
document. GML storage log file mainly save partitioned GML
document name, GML fragment storage position, fragment
order and metadata about stored GML document such as
storage time, storage person and so on.

Two root collections are defined in database, one is data
collection, and another is management collection. Data
collection is used for store GML schema and log file. In data
collection, document belong to different schema correspond to
different document collection. In the same document collection,
the GML fragment file with the same type would be stored in
the same feature collection. Also, the management collection is
also stored according to classified schema. Its storage structure
is shown as figure 2.

Native

Database

Data
Collection

Management
Collection

……Schema 1
Document
Collection

Schema 2
Document
Collection

Schema n
Document
Collection

…Feature Type 1

Feature
Collection

Feature Type 2 Feature Type n

Document
1 … …

Log File Schema File

……Schema 1

Management
Collection

Schema 2 Schema n

…………

Management
Collection

Management
Collection

Feature
Collection

Feature
Collection

Document
n

Document
1

Document
n

Log File Schema File

Figure 2. Storage Structure of GML Spatial Data GML

Native XML database based GML storage model has characters
as follows:

(1)Partitioning storage granularity of GML document
according to feature type not only has certain semantic
repetition but also enhance storage efficiency.

(2)Record nested relationship between features by
hierarchy of collections in native XML database.

(3) One of the most important characters of Native XML
database is providing “out and home access” function, thus,
storing GML document in native XML database can retake the
“same” document.

(4) Store document with the same feature type in the same
collection can accelerate query speed. Because querying on one
collection would be faster than multi-collections.

(5) saving partition information and storage information in
log file can facilitate later operations such as information access
and document restore.

2.2 Storage granularity of G2NXDBM

Current native XML database could be classified to three types
according to its storage granularity: element based, sub-tree
based and document based. Lore[J. McHugh ,1997] and
TIMBER[H. V. Jagadish,2002] adopt element based storage
strategy, each element is the minimal storage unit; Natix[T.
Fiebig,2002] adopt sub-tree based storage strategy, partition
XML document into a series of sub-trees according to physic
storage pages size, take each sub-tree as storage record; Xindice
adopt document based storage strategy, take a XML document
as storage record.

Two types of data stored in GML database system: one is GML
schema file; another is GML document instance. GML schema
determines storage structure of data, and document instance
contain the true data content in system. GML schema defines
content and structure of GML document, which could be
adopted as the standard of GML documents classify and basis
of storage granularity selecting. GML adopt feature to describe
geographic entries and geographic phenomenon, data in GML
document is organized by units of feature. Thus determine
storage granularity of GML document model according to
feature type is appropriate.

46

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008

<schema targetNamespace="http://www.ukusa.org"
xmlns:app="http://www.ukusa.org"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:gml="http://www.opengis.net/gml"
xmlns:ex="http://www.ukusa.org">
 <element name="City"
type="gml:AbstractFeatureCollectionType"
substitutionGroup="gml:_FeatureCollection"/>
 <element name="Road" type="ex:RoadType"
substitutionGroup="gml:_Feature"/>
 <element name="Bridge" type="ex:BridgeType"
substitutionGroup="gml:_Feature"/>
 <element name="Building" type="ex:BuildingType"
substitutionGroup="gml:_Feature"/>
 <complexType name="RoadType">
 <complexContent>
 <extension base="gml:AbstractFeatureType">
 <sequence>
 <element name="roadName"
type="string"/>
 <element name="roadCode"
type="string"/>
 <element ref="gml:curveProperty"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="BuildingType">
 <complexContent>
 <extension base="gml:AbstractFeatureType">
 <sequence>
 <element name="BuildingCode"
type="string"/>
 <element name="BuildingHeight"
type="string"/>
 <element ref="gml:Polygon"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="BridgeType">
 <complexContent>
 <extension base="gml:AbstractFeatureType">
 <sequence>
 <element name="span"/>
 <element name="height" type="integer"/>
 <element ref="gml:centerLineOf"/>
 <element ref="app:spans"
minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <element name="spans"
type="app:CurvePropertyType"/>
 <complexType name="CurvePropertyType">
 <sequence>
 <element ref="app:Gorge"/>
 </sequence>
 </complexType>
 <element name="Gorge" type="app:GorgeType"
substitutionGroup="gml:_Feature"/>
 <complexType name="GorgeType">
 <complexContent>
 <extension base="gml:AbstractFeatureType">
 <sequence>

 <element name="width" type="integer"
minOccurs="0"/>
 <element name="depth" type="integer"
minOccurs="0"/>
 <element ref="gml:centerLineOf"
minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
</schema>

Table 1. City.xsd (GML application schema instance)

When import GML schema, one of the key points is to confirm
storage granularity of document instance according to schema.
Granularity is the degree of data induction and aggregation,
storage granularity determines size of fragments partitioned
from each GML document instance in database. Fragment could
be the whole GML document or single element. Table 1 shows
GML application schema City.xsd that describes city, in this
instance, city is the root element of GML document, city
contains Road, Building, Bridge, Gorge sub-elements. For
example, Road is a independent road, it’s a integrated
description of road, the sub-element of Road, such as
roadName 、 roadCode 、 gml:curvePropert is specific
description on a certain aspect of road. If take City as root
element of partitioned fragment, the whole GML document
would be encapsulated as an object which would be operated as
a whole. And this object contains many integrated objects. To
query or reuse GML document, such granularity is too large,
which would increase cost on calling and operation. If take
roadName、roadCode、gml:curveProperty as root element of
partitioned fragment, they are only describe one aspect of
object, it lacks of integrated meaning and reusing character.
Moreover, query result returned by user could not be generally
single element. Thus, appropriate granularity should be
partitioned by feature type. The feature with the same type
should be stored in the same disk file, for example, take Road,
Bridge, Building, Gorge as root element of partitioned GML
document instance fragment, the element content and its sub-
element, as an integrated object , is stored in corresponding
database.

When read a GML document instance, system read would
firstly check the validity of GML document instance, after
affirm that GML document is good format GML document,
system would establish corresponding relationship between
GML document and storage structure according to mapping
rules, and decompose, save document instance. The instance
document City.xml generated according to City.xsd would not
be given in details due to the limitation of page. As mentioned
above, features (Bridge, Gorge, Building, and Road) have been
confirmed as root elements; so when it comes to Bridge, Gorge,
Building or Road element, system would store element content
and sub-element it contained into corresponding data collection
as a whole fragment without parsing sub-element. Thus this
approach does not change inner structure of element. It’s still a
legal GML document fragment. In other words, it’s still XML
format document that stored in database, in the database, a
XML file is used for managing these document fragments. This
instance includes two Bridge objects, one Gorge object, one
Road object, one Building object. The feature object with the
same type would be merged into one file, so this document
would be partitioned into one Bridge fragment, one Gorge

47

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008

fragment, one Road fragment and one Building fragment. These
fragments would be enduringly saved in database as
information resource of system to be used by other applications.

2.3 Storage Strategy of G2NXDBM

In the native XML database based GML storage model, when
store GML data, four steps should be implemented:

(1)Import GML schema. Parse this schema, map feature
object and document structure, and establish corresponding
collection in native XML database.

(2)Import GML document. First, validate if corresponding
GML schema document exists, if not, import schema file. Then
verify GML document structure according to this schema,
check if each element in GML document instance correspond to
relevant schema structure and give checking result.

(3)Partition GML document and store it into corresponding
document collection. GML document is partitioned by unit of
feature after parsing, store partitioned GML fragment according
to feature type, and the feature with the same type is stored in
the same disk file.

(4) Store log file recorded document partition information
and GML application schema file into corresponding
management collection of database.

2.3.1 GML Schema Mapping
GML schema mainly describes structure of GML document and
relationships between elements. In this paper, GML document
storage granularity the author recommended is feature. Then,
when GML document is partitioned into several GML
fragments by unit of feature and stored in native XML database,
how to express relationships between elements? In fact, native
XML database use collection to manage document, its function
corresponds to table in database and file in file system. One
document collection aggregates one type of document which
facilitates user operation. Many collections could be created
and managed at the same time. Collections could be deployed
by levels. One collection could contain several sub-collections,
or contain several XML documents. Thus, user can create
collection according to document structure defined by GML
schema, feature with different types belong to different
collection, and hierarchy of collection could be used to express
subordinative and nesting relationship between features.
Mapping GML application schema, first identify feature object
and its document structure in this schema, then find mapping
relationship with database and establish corresponding data
collection. By mapping, document collection directory path of
instance City.xml includes City \ Bridge \ Gorge, City \ Road,
City \ Building.

2.3.2 Storage of GML Document
When store GML data, first need to check if corresponding
GML application schema exists, if not exist then import schema
file and verify document according to schema. Then partition
document corresponding to schema requirement and cluster
features with the same type into the same physical page, finally
store them in corresponding collection in native XML database.
GML document is partitioned by unit of feature after parsing,
store partitioned GML fragment according to feature type, and
the feature with the same type is stored in the same disk file.
Then how to quickly recognise features with the same type and
store them in the same disk file? This paper adopts approach of
clustering and classifying.

The basic idea of clustering and classifying is to partition
semantic block according to schema structural graph, each

semantic block describe an integrated logical unit. Then cluster
all instances of the same semantic block. The advantage of this
approach is mainly embodied on three aspects: ①increase
storage efficiency. When store GML document, if only purely
partition GML document according to feature, it may leads to
largeness of number of partitioned files and largely decrease
storage efficiency. Therefore, cluster feature with same type in
the same file would decrease number of files and enhance
storage efficiency; ② Easy to query. By aggregating features
with same type in the same disk file, feature could be accessed
directly and decrease I/O times the disk need, when user need to
query content of certain feature; ③ Easy to retrieve document
later. Since features with same type cluster in the same file,
unnecessary conversion and parsing would be avoided when
reorganize document.

In this paper, storage granularity of GML document is on basis
of feature type, certain feature describes an integrated logical
unit which could be expressed as a semantic block. In GML
schema, elements in GML document could be clearly expressed
by nested model, thus it’s reasonable to construct semantic
block for GML document according to GML schema. Aiming at
City.xsd in this paper, we can conclude that Bridge and its sub-
element, Road and its sub-element, Building and its sub-
element form its respective semantic block: Bridge
(span,height,gml:centerLineOf,spans),Road(roadName,roadCod
e,gml:curveProperty),Building(BuildingCode,BuildingHeight,g
ml:Polygon),Gorge(width,depth, gml:centerLineOf).

One record of such storage strategy is an instance of semantic
block. In figure 3, record R1, R2 are two instances of
Bridge(span, height, gml:centerLineOf, spans), record R3 is
instance of Road(roadName, roadCode, gml:curveProperty),
record R4 is instance of semantic block Road(roadName,
roadCode, gml:curveProperty), record R5 is instance of
Gorge(width, depth, gml:centerLineOf). In this way, when store
GML practically R1 and R2 are stored in the same physical
page, R3, R4, R5 might be stored in respective physical page.
Thereby, four fragments-Bridge,Gorge,Building and Road
would be generated, extraction of fragment is on basis of
application schema and data file. Since extraction method is
relatively simple, it would not be listed in details.

City

Bridge Bridge Building Road

roadName roadCodegml: curve
Property

Zhongshan Road 1101

buildHeight

300

………span spans height

Gorge

width
gml:cent

erLineOf
depth

100 200

300 200

……

……

R1

R2

R3 R4

R5
Figure 3. Record of City.xml

2.3.3 Storage of log file
When store GML document, documents correspond to different
schema is stored in different document collection, GML
document with same schema is stored in the same document
collection. In other words, it’s possible that several data files
with the same schema could be partitioned into several GML
fragments and stored in the same document collection, and then
GML fragments from multi-original data file could be stored in
the same document collection, consequently leads to failure of

48

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008

find the corresponding GML fragment when retrieve original
data file. In addition, structure of document such as relationship
and order between elements might be disarranged. Thus, these
factors certainly will bring difficulties to management and
retrieve of document data.

Table 2. log schema file

Then, how to manage these GML documents stored in database?
The approach this paper adopted is to define a storage log file
for each partitioned GML document after stored in database.
Data file with the same schema corresponds to one storage log
file, this log file save relevant storage information for each
GML document stored in database, includes: GML fragment
name, GML fragment storage position, fragment order and
metadata about GML document storage such as saving time,
saving person and so on.

Since information of each log file is basically fixed. Thus, it’s
necessary to define a standard log schema file. In this way, log
file could be customized according to schema file. We use
XML format to describe log file, in the same way, we also use
XML format to describe standard schema file.

Definition of storage information for fragment document as
follows, element SegmentFileName indicates fragment file
name, element ColletionPath indicates path the fragment file
stores. Element ChildSegmentFileName indicates file name of
features that would be nested by feature corresponds to this
fragment.

Definition of storage information for the whole GML document
as follows, element SegmentFile indicates relevant information
of partitioned fragment file, element Store_Time indicates store
time of this document, element Store_Member indicates the
store person of this document. In addition, extend relevant
information according to requirement.

FileCollectionType indicates storage information of different
data file with the same schema.

 According to definition of above nodes, log schema file could
be defined as following table. Thereby define log file by this
schema file.

Thus, when store instance document City.xml, user can define a
log file to store information of document partition according to
this log schema file, consequently facilitate later operation and
retrieve. Log file of City.xml generated on the basis of log
schema file is omitted in this paper. On this basis, log file of
city.xml and city.xsd schema file could be stored in
corresponding management collection. In this way, GML
instance document, GML schema file and storage log file could
be stored in native XML database and implement native based
storage of GML data.

3. DESIGN AND IMPLEMENT OF G2NXDBM

PROTOTYPE SYSTEM

3.1 Design of G2NXDBMs Framework

This constructed G2NXDBMs prototype system, Figure 4
shows frame sketch map of this system architecture.

G2NXDBMs prototype system mainly implements storage
management on GML data, GML schema and metadata by two
modules: GML storage and GML query.

GM Schema GML QueryGML Data

 Access Interface

Storage Log
File

File Storage

Schema
Mapping

G
M

L
Storage

GMLData
Management

Metadata
Management

GML Schema
Management

Storage Management

G2NXDBM Protype
System

Spatial
Query

Attribute
Query

G
M

L
Q

uery

Figure 4. Architecture of G2NXDBMs

Design idea and function of GML storage module could be
described as follows: analyze GML application schema ①
document, generate one to one mapping rule between schema
and storage structure; establish relevant collection in ②

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="root_LogFiles"
type="FileCollectionType"/>
 <xs:element name="WholeFile"
type="WholeFileType"/>
 <xs:element name="SegmentFile"
type="SegmentFileType"/>
 <xs:complexType name="FileCollectionType">
 <xs:sequence>
 <xs:element ref="WholeFile" minOccurs="0"
maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="WholeFileType">
 <xs:sequence>
 <xs:element ref="SegmentFile" minOccurs="0"
maxOccurs="unbounded"/>

 <xs:element name="Store_Time"
type="xs:string"/>
 <xs:element name="Store_Member"
type="xs:string"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string"/>
 </xs:complexType>
 <xs:complexType name="SegmentFileType">
 <xs:sequence>
 <xs:element name="SegmentFileName"
type="xs:string"/>
 <xs:element name="ColletionPath"
type="xs:string"/>
 <xs:element name="ChildSegmentFileName"
type="xs:string" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string"/>
 </xs:complexType>
</xs:schema>

49

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008

database according to mapping rules; analyze GML data ③
document, partition document according to storage granularity;

store partitioned GML fragment document in nativ④ e database.

GML query module mainly contain two sub-modules: attribute
query and spatial query. Attribute query implement query by
directly using query language XQuery, XPath carried by native
XML database; combined with spatial data type and spatial
operation operator, spatial query implement spatial analysis and
query function by extending XQuery language in native XML
database.

Currently, native prototype system mainly has functions of
GML storage and GML query, and has certain GML data
interface and relevant management interface which would make
a stable basis for future function extension

3.2 Implement of G2NXDBMs

3.2.1 Choosing of development technology and platform

This prototype system chooses Java as system development
language, and adopts JBuildinger2005 produced by Borland
Company as system integration platform. As well as we know,
many characters of java make it fit for XML programming
language. In addition, JAXP (Java API for XML Processing)
provides programming interfaces for Java to process XML
document, this make it convenient for us to process XML
document by using Java language.

This system use JTS(Java Topology Suite) open source code
when implement spatial analysis and query function, this is a
Java API about spatial prediction and function, it also comply
with Simple Feature Specification For SQL1.0 published by
Open Geospatial consortium (OGC), and provide an integrated,
consistent and strong implement of basic 2D spatial algorithm.
Its main characters includes: quick and exact spatial operation;
strong algorithm of spatial operation; using clear and exact
model in operation process; implement spatial operation of all
basic geometries[http://www.vividsolutions.com,2006][Harrie,
2006]. Besides standard query syntax and strong query
capability, JTS would decrease development load of prototype
system and make author transfer research point to GML storage
method and extraction strategy of native XML database.

At present, there are 30 types of mature commercial and open
source products aiming at native XML database, such as
Xindice[http://xml.apache.org,2006],IPedo[http://www.ipedo.co
m.cn,2006],eXist[http://exist.sf.net ,2006],OrientX[http://idke.r
uc.edu.cn,2006],Tamino[http://www.softwareag.com,2006],X-
Hive/DB[http://www.x-hive.com, 2006] and so on. This paper
selects Ipedo database produced by American Company-IPedo
as GML document storage platform. Choosing of Ipedo mainly
depends on its three supporting advantages of Java and XML:
It’s a mature commercial native XML database which provides
complete database management function and certain assurance
of performance; it is implemented by pure Java and provide rich
Java interfaces which is propitious to second development; it
support XML standard of W3C, such as XSL, DOM, XQuery
and so on.

3.2.2 Experimentation result and analysis

Experimentation platform of G2NXDBMs prototype system is
P4 2.4G, main memory is 512MB, Hard disk is 80G,
WindowsXP operation system.

Using different scale of GML data document to study storage
and query efficiency of this system, this experimentation
basically compared two types of storage method, one is GML
document file, and another is G2NXDBM prototype system.
Experimentation compared space required by these two
storage methods, select different size of testing data,
experimentation result is shown as Table 3. This table
indicates that G2NXDBMs prototype system take larger
storage space than GML document.
Storage
Method

File1
(kb)

File2
(kb)

File3
(kb)

File4
(kb)

File5
(kb)

GML
Document

330 566 1,157 2,331 4,727

G2NXDBM
Prototype
System

452 758 1,509 3,046 5,431

Table 3. Comparison of storage space

Experimentation also compared query efficiency of these two
storage methods. On the same machine, aiming at the same
query objective, query experimentation is carried out by two
storage methods. Figure 5 indicates that when file is small, time
required by these two storage methods is almost equal, however
as the document size increase, query time required by GML file
obviously increase and longer than G2NXDBMs prototype
system need. Because when querying GML document, the
whole XML file is parsed to a tree in main memory. Generally
speaking, parsing time determine query computing time, so
larger size of file longer time query needs. On the contrast,
G2NXDBMs prototype system store GML document by
fragments, and use mature query technologies such as XQuery
in native XML database, so it has certain advantage on query
aspect.

Figure 5. Comparison of query time

Experimentation result indicates that storage space of
G2NXDBMs prototype system is larger than GML document.
But G2NXDBMs prototype system has obvious advantage on
aspects of query efficiency, support to XML technology and
data management. Comparison of overall evaluation on these
two storage methods is listed in Table 4.

Storage Method
Evaluation Index GML

File System
G2NXDBMs

Prototype System
Query Speed slow quick
Storage space small larger
Support to XML
technology

weak strong

Data management
function

weak strong

Table 4. Comparison of two storage methods

50

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008

4. CONCLUSION

Combined with characters of native XML database and GML
spatial data, this paper proposed native XML database based
GML storage model G2NXDBM, on the basis of this model,
this paper designs and develops G2NXDBMs prototype system
consisted of three parts: schema mapper, document storager,
and spatial analyser. The experimentation use GML data
describe city to testify rationality of prototype system, the
conclusion indicates that this system can effectively store and
query GML data.

Limited to content and time, the storage model G2NXDBM
proposed by this paper does not refer to a series of operation,
such as GML data insert, delete, and update, these problems are
needed to be studied further and resolved. In addition, native
XML database based GML native database should contain
content on aspects of storage, index, retrieve, concurrency,
security, integrality and so on. Thus, this paper would consider
factors of storage, index, retrieve, concurrency, security,
integrality in future, and gradually implement native GML
database.

ACKNOWLEDGEMENTS

This work was sponsored by the National Natural Science
Foundation of China (Research on the Storage and Index
Mechanism of GML Spatial Data, No. 040401045) and 863
Project of National Science and Technology ministry of China
(Research on GML-GIS and its implementation schema of
application, No.2006AA12Z221)

REFERENCES

H. V. Jagadish ,2002. H. V. Jagadish, Shurug AL-Khalifa, et
al.2002.TIMBER: A Native XML Database. Technical Report,
University of Michigan

Harrie, 2006. Using Java Topology Suite For Real-Time Data
Generalisation And Integration. http://www.ikg.uni-
hannvoer.de/isprs/workshop/Johansson_Harrie.pdf

http://exist.sf.net ,2006. eXist: http://exist.sf.net

http://idke.ruc.edu.cn,2006. OrientX:
http://idke.ruc.edu.cn/OrientX/

http://www.ipedo.com.cn,2006. IPedo:http://www.ipedo.com.cn

http://www.softwareag.com,2006. Tamino:
http://www.softwareag.com/tamino/architecture.htm

http://www.vividsolutions.com,2006.http://www.vividsolutions.
com/jts/jtshome.htm

http://www.x-hive.com, 2006. X-Hive/DB:http://www.x-
hive.com/products/

http://xml.apache.org, 2006. Xindice:
http://xml.apache.org/xindice/

J. McHugh, 1997. J. McHugh, S. Abiteboul, R. Goldman, D.
Quass, and J. Widom. Lore: A Database Management System
for Semistructured Data. SIGMOD Record, Vol.26（3）:54-66,
September 1997.

Liugang,2005. Naitve XML database research and application,
Microsystems Development, (8)

T. Fiebig, 2002. T. Fiebig et al. Anatomy of a native XML base
management system.
http://www.csd.uch.gr/~hy561/Papers/natix02.pdf

www.rpbourret.com,2005.XML Database Products: Native
XMLDatabases.http://www.rpbourret.com/xml/ProdsNative.ht
m

51

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008

52

