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ABSTRACT: 
 
Rock segmentation is important for the success of the Mars Exploration Rover mission and its scientific studies. In this paper, a 
framework for automated rock segmentation using texture-based image segmentation and edge-flow driven active contour is 
developed and implemented. Three schemes: wavelet based local transform, multi-resolution histograms, and inter-scale decision 
fusion are combined and applied for texture-based image segmentation. The result is refined by active contour based on level set 
method, which is propagated in the edge flow vector field. Test images taken by the panorama and navigation cameras on the rover 
Spirit at the Gusev Crater landing site are used in this study. This paper presents the theory, implementation, and the test results 
along with discussions on the performance of the proposed method.  
 
 

1. INTRODUCTION 

The Mars Exploration Rover (MER), Spirit and Opportunity 
have collected a large amount of Mars surface imagery since 
their arrival on Mars in 2004. As the most important tasks of the 
MER mission, route planning and geologic analysis demand the 
identification of observed rocks. For route planning, rocks must 
be detected before producing rock maps at the landing sites. In 
terms of geologic and planetary science, rocks might hold the 
clues to past water activity and carry important information 
about environmental characteristics and processes. 
 
Rock segmentation in an image is essential for rock mapping. 
Currently, rock segmentation in MER imagery is mostly 
accomplished by manual labelling which is extreme time 
consuming and tedious. Further more, the increasing amount of 
data being collected by the rovers or similar missions makes 
manual operation impractical and automated solution demanded. 
In addition, automated rock segmentation is also needed as part 
of the on-board processing. Improvement in the mobility and 
lifespan of MER allows for more images to be collected than 
the capability of the outer space communication bandwidth to 
transmit to the Earth. This fact highlights a crucial demand for 
effective data compression schemes that can prioritize regions 
in an image based on their scientific values. Automated rock 
segmentation will benefit such on-board data compress schemes 
(Roush et al., 1999).  
 
To meet these needs on automated rock segmentation, this 
study presents an automated solution consisting of two stages: 
texture-based image segmentation as initials and active contours 
based boundary refinement. For the texture-based image 
segmentation, three texture analysis approaches are used: multi-
channel approach, multi-resolution histogram, and inter-scale 
decision fusion. These three approaches are integrated and 
embedded into a framework for rock detection using discrete 
wavelet transforms. This texture-based image segmentation can 
roughly segment the rocks in the MER images, but can not 
yield satisfactory rock boundaries. To resolve this problem, the 

initial boundaries are refined by means of active contours based 
on the level set method. This boundary refinement allows us to 
achieve not only finer boundaries but also topologically correct 
rock segmentation results. Finally, the suggested framework for 
automated rock detection is applied to Mars surface images 
collected by MER PANCAM using various filters and 
NAVCAM, all at the Gusev Crater landing site.  
 
The rest of this paper is organized as follows. Section 2 briefs 
the previous work for automatic rock extraction, while Section 
3 explains the proposed methodology and describes the detail 
process. Presented in Section 4 are our implementation and its 
results on MER images. The paper concludes in Section 5 with 
the evaluation about the properties and performance of the 
proposed method with perspectives on future efforts. . 
 
 

2. RELATED WORK 

There have been a number of efforts towards automatic rock 
extraction from imagery. For mining studies, Crida and Jager 
(1994) propose a knowledge-based approach for rock 
recognition from imagery, which consists of two parts. The first 
part includes three stages: blob edge detection, boundary 
completion, and blob extent calculation. The second part 
involves testing the hypothesis, where the classification of 
interesting regions detected as blobs in the first part is 
performed according to twelve rule-based features. Initially, the 
feature vectors are classified by thresholding and then the 
remaining vectors initially rejected as non-rocks are reclassified 
using a supervised k-nearest neighbour classification. Although 
it is one of the good initial efforts for rock detection, it suffers 
from heavy computation and the difficulty of threshold 
determination. Gilmore et al. (2000) show that rock is texturally 
distinctive features and can be detected successfully in Mars-
like desert pavement environment since rocks differ 
significantly from soils in terms of texture. They use Gabor-
filter for texture feature extraction and maximum-likelihood 
method for classification. They focus on general strategy rather 
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than specific rock extraction technique. Gor et al. (2000) 
integrate intensity data and range data by using unsupervised 
classification. They detect the height-map discontinuities that 
indicate the top of rocks and then perform a region growing 
segmentation.  However, this algorithm needs image scale as a 
significant control parameter and the range data produced from 
stereo imagery.  
 
More recently, Castãno et al. (2004) detect rocks using edges 
extracted from multi-resolution images. Small rocks are 
detected by finding small closed contours from the edge image 
generated by Sobel and Canny operators, while large rocks are 
detected in the same way using a resolution-reduced image. 
When rocks are detected at both high and low resolutions, the 
ones detected at the highest resolution are retained. On the other 
hand, if rocks are detected only at the low resolution, they refit 
the boundary using snakes (Kass et al., 1988). This rock 
detection algorithm is efficient when intensity differences 
between rocks and background (soil) are significant to show 
clearly linked boundaries. Thompson et al. (2005) propose rock 
detection from colour image based on machine learning 
approach. Their rock detection algorithm consists of two steps; 
segmentation and detection. Image segmentation is performed 
by split-and-merge method using three bands: hue, saturation 
and intensity. They then detect rocks using belief network, of 
which the input vector contains colour, texture, and shape. 
However, the difficulty remains that a rock may have non-
homogeneous intensity and colour, which varies in terms of the 
illumination and geometry of the rock surface.  Dunlop et al. 
(2007) propose an approach to rock detection and segmentation 
using super-pixel segmentation followed by a region-merging to 
search for the most probable groups of super-pixels. A model of 
rock appearances learned from the training data set identifies all 
rocks by scoring candidate super-pixel groups with 
incorporating features from multiple scales such as texture, 
shading, and two-dimensional shape. Although this rock 
segmentation algorithm based on supervised multi-scale 
segmentation provides promising results for rock detection, 
some problems such as training set determination and boundary 
localization still remain. A comparison on the performance of 
rock extraction algorithms is provided by Thompson and 
Castano (2007).  
 
 

3. METHODOLOGY 

The proposed framework for rock segmentation in this study 
consists of two stages: rock detection using texture-based image 
segmentation and boundary refinement using the edge-flow 
driven active contours. The first stage is to provide initial rock 
detection through the following steps. First, multi-channels 
containing different texture properties are generated by 
applying a wavelet transform to the input image. Specifically, 
four coefficient channels of Haar wavelet transform, including 
approximation, horizontal, vertical, and diagonal detail 
coefficients are used as the resultant channels. After the multi-
resolution histograms are obtained, their changes across the 
resolutions are measured by the generalized Fisher information 
content to extract texture feature, which represents the spatial 
variation on the image. Finally, the inter-scale decision fusion 
designed by adopting the hierarchical and interactive k-means 
algorithm is performed to achieve the initial segmentation. As 
the second stage, the initial rock boundaries are refined using 
edge-driven active contours based on the level set method to 
compensate inaccurate localization of the initial segmentation. 
The refinement starts with the computation of the edge flow 

direction and the edge energy to generate the edge flows. These 
edge flows form a vector field as an external force to enforce 
the initial boundaries move towards the pixels with high 
probability being rock boundaries. After that, an edge penalty 
function is yielded by solving a Poisson equation to satisfy the 
condition that the Laplacian of the edge penalty function is 
equivalent to the divergence of the edge flow vector field. 
Finally, the initial rock boundaries propagate under the 
constraints of the prepared edge flow vector field and edge 
penalty function to yield the refined rock segmentation. 
  
3.1 Rock detection using texture-based segmentation 

Texture feature extraction. This study extracts the texture 
features by employing a multi-channel, multi-resolution 
approach. This is accomplished through image decomposition 
and diffusion by Haar wavelet transform. Haar wavelet 
decomposition works through averaging two adjacent values in 
a one-dimensional function at a given resolution to form a 
smoothed signal, namely approximation coefficients. The 
differences between the values and their averages become the 
detail coefficients. In discrete data set such as digital image, the 
construction of Haar wavelet coefficients can be interpreted as 
two dimensional filtering with four local transform filters: 
smoothing filter and horizontal, vertical, and diagonal edge 
detection filters. To achieve the Haar wavelet transformed 
image of size m by n , the image is convolved with each filter 
and then down-sampled by 2. As an outcome of this procedure, 
an approximation coefficient and three detail coefficients of 
size  by  are produced. This filtering and down-
sampling process can be iterated, leading the image from fine to 
coarse resolution. This decomposition ability of Haar wavelet 
transform allows the multi-channel approach to transform an 
image into a set of feature maps by using local transforms to 
achieve additional and condensed information for texture 
analysis.  

2/m 2/n

 
 

 
 

Figure 1. Histograms of multi-resolution images generated by 
Haar wavelet transform 

 
Let the four channels formed by the wavelet transform 
coefficients be ( HHHLLHLL ). From each channel, the 
texture features are extracted by measuring the change of 
histograms across different resolutions, namely the multi-
resolution histogram method (Hadjidemetrous et al., 2004). 
Figure 1 shows that although the histograms of two input 
images with different shades are identical at the high resolution, 
they differ considerably in coarser resolutions due to the 
different spatial structures in the two original images Such 

LLLL ,,,
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histogram change reflects the variation of spatial information, 
i.e., texture, and can be measured by the generalized Fisher 
information content  JK
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where  and  are two consecutive coefficients at 
decomposition level J  and  generated from the original 
image  ,  denotes the bin count,  does intensity (gray 
value), and m does the number of bins. 
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As aforementioned, the Haar wavelet coefficients consist of 
four components  such that  in 
equation (1) is extended as equation (2) 
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This measurement is concatenated with measurements in the 
next two levels until the measurement nJK  between nJL +  and 

 to form a texture feature vector. As a result, the texture 
feature vector V  is formed as equation (3), where the images 
with the decomposition levels of J  to  used for 
computing  to .  

+
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Texture feature classification.  For inter-scale decision fusion, 
the multi-scale texture features are extracted with windows of 
various sizes. If the feature vector V  is composed of n  Fisher 
information K  from level J  to nJ +  computed by the 
window with size nwM 2×  by nwN 2×  where scale level nw  is 
integer, the feature vector  is rewritten as  nwV
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With the same manner, the m-th feature vector for inter-scale 
decision fusion is determined by a window with size 
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Once the multi-scale texture feature vectors are ready, the k-
means clustering for inter-scale decision fusion is performed as 
below. The k-means clustering starts with the lowest level (the 
coarsest resolution) feature vector mnwV + . As a result, image 
pixels belong to one of the clusters such that each image pixel 
has a label. Let the normalized label value be denoted by 

mnwLB +

nw

, the input feature vector C  for clustering at next 
level  can be written as equation (6) 
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Clustering at level mnw +  is repeated using the cluster centres 
computed from the clustering result at level 1−+ mnw . These 
steps are iterated until the clustering result at level 1−+ mnw  is 
stable. After that, the same steps are repeated with 1−m+nwV  and 

2−+mnwV  vectors. This procedure is concatenated until the 
clustering result is achieved at the highest level . As shown 
in Figure 2, this inter-scale decision fusion yields better 
clustering result than the classical classification at single scale 
due to the use of information extracted from multi-scale 
features. 

nw

 
On the one hand, the texture-based image segmentation yields 
compact rock detection results,  however,  they are still not fine 
enough to directly determine rock boundaries as shown in 
figure 3 (D). It leads the need for boundary refinement as to be 
discussed in the next stage.  
  

 
                     (A)                                             (B) 

 
                    (D)                                              (C) 
Figure 2. Rock detection using texture-based segmentation 
[Input rock image (A), with K-means clustering (B), with inter-
scale decision fusion clustering (C), and detected rock (D)]  
 
3.2 Rock boundary delineation using active contours 

Active contours by level set method. This study exploits an 
active contour for boundary refinement. Level set method is 
suggested to describe the evolution of a (contour) curve by 
Osher and Sethian (1988). In contrast to the traditional snake 
method, the numerical schemes for the active contours based on 
level set method benefit automatic handling of the topological 
change during the curve propagation. In this method, a curve is 
represented as a level set of a given function, i.e., the 
intersection between this function and a horizontal plane. To be 
specific, the zero level set }0),,(|),{()( ==Ψ tyxyxt φ  of a time-
varying surface function ),,( tyxφ , gives the position of a 
contour at time t . The evolution equation for a contour curve 
propagation is defined as equation (7) (Sethian, 1990). 
 

               0|| =∇+ φφ Ft  given )0,( =txφ      (7) 
 

For level set method, the evolution equation evolves the contour 
curve with three simultaneous motions determined by each 
speed function with 
 

acp FFFF ++= .   (8) 

In the above equation,  denotes the expanding speed of the 
contour defined by a constant speed  in its normal direction 
such as .  is the moving speed proportional to the 
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curvature k  such that it is defined as , where kFc ε−= ε is a 
coefficient. Finally,  represents the speed moving passively 
by an underlying velocity field , in which 

, and thus . Plugging this speed 
function rewrites the evolution equation as equation (9). 
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The first term after the time derivative on the left is concerned 
with the propagation expansion speed and should be 
approximated through the entropy satisfying schemes. The 
second term is related with the advection speed and can be 
simply approximated by upwind scheme with the appropriate 
direction. The third term is curvature speed alike a non-linear 
heat equation, to which an appropriate solution approach is the 
central difference scheme since the information propagates in 
both directions. The following paragraphs will present details. 
 
Edge flow. In this study the active contour is deformed by the 
edge flow towards the image pixels that have high probability 
to be the segment boundaries (Ma and Majunath, 2000). The 
method was originally designed for boundary detection or 
image segmentation considering regional image attributes.. 
Figure 3 illustrates edge flows generated from the image that 
move towards an expected boundary edge. Each flow vector 
indicates direction towards the closest edge and an edge can be 
found at locations where the flow vectors meet from opposite 
directions. This edge flow method requires edge linking step for 
a proper image segmentation result, which can be done through 
active contour since it propagates the closed polygons. 
 

 
 

Figure 3.  Boundary detection using edge-flow 
 
The general form of an edge flow vector Γ at an image location 
s  with an orientationθ  is defined in equation (10) as a function 
of the edge energy ),( θsE , the probability ),( θsP  of finding the 
image boundary in the direction θ , and the probability 

),( πθ +sP  in the opposite direction πθ +

))
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The first component measures the energy of local image 
information change and the rest two components determine the 
contour flow direction. The prediction error ),( θsErr  at pixel 
location  is defined as equation (11) using the 
smoothed image I  obtained by applying the Gaussian 
kernel with a variance . The error function 
essentially estimates the probability of finding the nearest 
boundary in two possible flow directions 
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From these prediction errors, an edge likelihood ),( θsP  using 
relative error is obtained  
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The probable edge direction is then estimated by  
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On the other hand, the edge flow energy ),( θsE  at scale σ  is 
defined as the magnitude of the gradient of the smoothed image 

 along the direction ),( yxIσ θ ′ . 
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where nG  represents the unit vector in the gradient direction, 

 is the first derivative of the Gaussian along the x-axis, 
and  is the first derivative of the Gaussian along 
orientation
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Once the flow direction and the edge energy are computed, the 
“edge flow” field is computed as the vector sum in equation (16) 
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Boundary refinement using active contours. The edge flow 
vector field computed in the aforementioned steps is used as the 
external force to enforce the contour move towards edges. The 
contour curve evolution can be formulated as equation (17) 
where Γ

G
 is the edge flow vector field and   

G
 N =∇φ / |∇φ |

 
NgFNgkNNCt
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0)( −+⋅Γ=                          (17) 

 
The edge penalty function g�  attracts the contour towards the 
boundary and has a stabilizing effect when there is a large 
variation in the image attribute value. It is produced from the 
edge-flow vector field Γ

G
 by solving the Poisson equation as 

equation (18), where Δ  is the Laplacian (Sumengen et al.,2002). 
  

ĝΔ−=Γ⋅∇
G

      (18) 
 

Comparing with the traditional gradient edge penalty function, 
edge penalty function derived from edge flow is more rigid to 
noise as shown in figure 4. 
 

 
         (A)                   (B)                   (C)                    (D) 
 

Figure 4. Comparison of edge penalty functions 
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 [Original image (A), noise added image (B), edge penalty 
function using gradient (C), and using edge flow (D)] 

 
To summarize, we achieve the level set formulation of the edge 
flow-driven active contour as equation (19) 
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This active contour scheme propagates initial rock boundaries 
obtained from the first texture-based segmentation stage for 
refinement with edge flows. Figure 5 demonstrates the edge 
flow generation and edge penalty function computation, which 
are obtained through applying the aforementioned procedures to 
a rock image. The box marks the zoomed in area. 
 
 

 
              (A)                          (B)                           (C)   
 
Figure 5. Edge flow and edge penalty function from rock image 
[Edge flow vector field (A), edge flows corresponding to the 
zoomed-in area (B), and computed edge penalty function (C)] 
 
This refinement stage using active contours based on level set 
method can offer not only finer rock boundaries as shown in 
figure 6(A), but also correct topological errors caused by coarse 
resolution of the texture-based image segmentation as shown in 
figure 6(B). 
 

      
                      (A)                                                (B) 
Figure 6. Rock boundary refinement by edge-flow driven active 
contours. [Yellow line denotes initial rock boundaries before 
refinement, red line is rock boundaries after refinement, and 
green lines is boundary propagation during refinement].  
 
 

4. IMPLEMENTATION AND RESULTS 

The suggested framework for automated rock segmentation is 
applied into Mars surface images for automatic rock detection 
to examine its performance. Mars surface images for this 
implementation are collected by rover Spirit using MER 
PANCAM with various filters. Additionally, implementation is 
extended to NAVCAM image (Eisenman, 2004). Each image 
consists of 1024 by 1024 pixels with 256 gray levels.  
 
After pre-processing such as histogram equalization, the texture 
features are extracted by the proposed wavelet-based texture 
feature extraction method. In this experiment, three resolution 
levels are used for feature extraction and each resolution level 
contain four Fisher information contents of each channel such 
that the extracted texture feature vector V  is composed of 12 

Fisher information contents { , , }. Also, the texture 
feature vectors with three scale levels { , 2 , } are used for 
inter-scale decision fusion. They are extracted using windows 
of three sizes.  Equation (20) shows the resultant texture feature 
vectors in this implementation, where the window size for 
calculating the Fisher information  is determined by 

j . 
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After multi-scale texture feature vectors are generated, the 
inter-scale decision fusion is performed through clustering 
explained in previous section. As a result, the initial rock 
boundaries are achieved. Figure 7 shows rock detection result 
superimposed atop the original image. From the initial rock 
boundaries shown in Figure 7a, the final rock boundaries are 
extracted by contour evolution based on level set method with 
further refinement. In the contour evolution step, the edge flow 
vector field is first generated and the edge penalty function is 
computed considering the scale determined by the 
variance of the Gaussian kernel .  We focus on rocks 
larger than 1/2500 of the entire image, i.e., about 2020×  pixels 
or more. Finally, after the boundary refinement, the rock 
segmentation results are yielded as shown in Figure 7b. 
Additionally, figure 8 shows segmentation results from the 
other MER PANCAM images, which demonstrate satisfactory 
performance. Figure 9 represent some failed cases. On the 
upper left corner in Figure 9, the structured soil region is 
misclassified into rocks. Also it shows difficulty to segment 
rocks partly covered by soil which have ambiguous boundaries. 
In figure 10 and 11, the implementation is extended to 
NAVCAM which has wider field of view (FOV: 45 degree) 
than PANCAM (FOV: 16 degree). Despite of more spatial 
resolution variation due to the wider FOV, the proposed method 
still shows satisfactory rock segmentation results, although 
figure 11 suffers from similar problems of figure 9. 
 
 

5. CONCLUSION AND FUTURE WORK 
 
Automated rock detection is necessary for the Mars Exploration 
Rover mission. This paper presents a framework to segment 
rocks from the MER images. In the two stage solution, rocks 
are firstly detected by texture-based image segmentation. For 
that purpose, three methods, wavelet based multi-resolution 
histograms, multi-channel approach, and inter-scale decision 
fusion are integrated. It yields reliable rock detection results but 
shows poor localization quality. To compensate this 
shortcoming, the rock boundary is refined by active contour 
algorithm based on the level set method in the second stage. 
The edge flow vector field is used as the external force to 
enforce the contour moving towards the edges and the stopping 
function is derived from the edge flow instead of the traditional 
gradient edge penalty function to warrant more robust results. 
This framework is applied to MER PANCAM and NAVCAM 
images to investigate its performance.  
 
Experiments demonstrate satisfactory rock segmentation results 
through this fully automated process and give several worthy 
notes. First, the suggested framework can account for variations 
of rock size with no parameter tuning through the multi-scale 
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approach. Also, the results are robust to fault edges and edge 
leaking. This framework can be expected to be embedded into 
various rover image analysis applications such as path 
determination, rock analysis, and training data supplement for 
satellite remote sensing on Mars or other similar applications. 

 
 

Figure 7a. Initial rock detection by texture-based segmentation 
 

 
Figure 7b. Detected rocks [PANCAM, R1 filter (430nm)] 

 

 
Figure 8. Detected rocks [PANCAM, R7 filter (980nm)] 

 
Figure 9. Detected rocks  [PANCAM, L3 filter (670nm)] 

 

 
Figure 10. Detected rocks [NAVCAM image 1] 
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