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ABSTRACT: 
 
Detecting changes to topographic features is one of the major tasks of a national mapping agency.  At Ordnance Survey, Britain’s 
national mapping agency, the process of change detection has traditionally been a largely manual, labour-intensive task.  One of the 
goals of the Research department is to develop automatic and semi-automatic change detection processes which could be developed 
into production systems.  This paper describes the research undertaken, concentrating on the detection of changes to the built 
environment, specifically new and demolished buildings.  The research has progressed from a set of potential methodologies; 
through research trials of different software packages and different change detection methods; to the adoption of one of the methods 
in a full production trial. 
 
 

1. INTRODUCTION 

1.1 Background 

The detection of change is one of the most important aspects of 
the work of a mapping agency.  In the case of Ordnance Survey, 
Britain’s national mapping agency, this is still largely a manual 
process, relying on the observations of photogrammetrists and 
field surveyors and the notifications provided by external 
bodies.  In the field, a network of approximately 300 surveyors 
is engaged in the process of updating the national topographic 
database, used in the production of the flagship 
OS MasterMap® large scale topographic data product. Part of 
the field surveyor’s task is to note any changes to the natural or 
the built environment, in order to mark these changes for 
subsequent data capture. In addition to this, local authority 
planning departments provide information on planning 
applications which may affect buildings and other urban 
features. Major house builders inform Ordnance Survey of new 
developments, while a further source of intelligence on changes 
in the landscape is provided by a commercial survey 
organisation, which supplies information on changes which will 
affect Ordnance Survey’s products.   
 
The final source of changes is a group of image interpreters in 
the Photogrammetric Survey department, whose job is to 
scrutinise orthorectified digital aerial photography and mark up 
any changes.  These changes are subsequently captured in 
stereo  using digital photogrammetric workstations.  In spite of 
all the other sources of information, this last phase uncovers 
many changes which have, up to that point, gone un-noticed.  
Manually scanning through the images is a laborious task, and 
one which requires concentration and a disciplined 
methodology.  In an investigation carried out by the Ordnance 
Survey Research last year it was found that when scanning an 
image from top left to bottom right, constantly zooming in and 
out, it can be difficult to keep track of which areas of the image 
have already been looked at.   In some cases, a tendency was 
found for the image interpreters to gradually migrate to one side 

of the image, hence missing out one corner of the image and 
therefore miss any changes in that corner. 
 
1.2 Automating change detection 

In order to help the data collection process, automation of the 
workflow could be achieved at various points.  Fully automatic 
feature capture has been a long-term goal of several ISPRS 
working groups, but it is unlikely to be completely realised in 
the near future.  Semi-automation of the capture of topographic 
objects is a feasible option – especially in areas where many 
features are repeated (such as housing estates where every 
house is almost identical to its neighbour).  In Great Britain, 
however, this is very seldom the case. The continuous nature of 
topographic data revision usually means that changes are very 
local in nature, often involving only one or two features within 
an area of many un-changed features. 
 
Automation of the change detection process is more feasible, 
especially if the system is only required to detect that a change 
has occurred, without having to identify exactly what that 
change is. In recent years there has been continued 
improvement to photogrammetric and image processing 
software and the hardware on which they run.  This has enabled 
systems to become more automated, either by aiding the 
interactive data capture process or by performing a pre-
processing step on images before the human operator becomes 
involved.  The nature of the workflow at Ordnance Survey 
lends itself to the latter process, in which an automated process 
would identify potential changes, then an operator would 
confirm or reject each change.  It was envisaged that such a 
process would save a considerable amount of time in the data 
collection workflow. 
 
There has been much research in the last two decades on 
techniques to automatically detect changes between images 
taken on different dates.  Such techniques can be of value, but 
often they highlight many changes which are of no interest – 
such as minor changes to vegetation, or changes due to the 
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movement of traffic, shipping containers, and other transient 
features.  The effectiveness of the technique also depends, to a 
greater or lesser extent, on the nature of the data that is to be 
extracted.   For example, a process that can identify changes to 
road networks in a rural area may not work as well in an urban 
setting, and may be entirely unsuitable for the detection of 
changes to buildings.  The nature of the input data also plays a 
major role in the process.  The resolution (ground sample 
distance) of the images will often dictate which techniques are 
most appropriate to use, while the presence of an infra-red 
component in an image can be of great importance when 
separating vegetation from the built environment. 
 
One task of the data collection area of a mapping agency is to 
detect changes between the features held in a topographic 
database, and the features present in an image or set of images.  
In an ideal situation, an automatic technique is required which 
compares the existing topographic data with a single up-to-date 
image and identifies the differences between them.  It would be 
very useful if the process could also filter out any changes 
which are unlikely to be of interest (e.g. traffic) and present to 
the photogrammetrist only those changes which are required by 
the data capture specification.  This paper presents various 
methods of automatic change detection investigated by 
Ordnance Survey during the last year.  These methods are 
largely based on image classification, followed by feature 
comparison techniques.  Per-pixel and per-object classification 
methods were tested, using both off-the-shelf systems and 
techniques developed in-house. 
 
 

2.   CHANGE DETECTION METHODOLOGY 

2.1 Which changes are important? 

Of the many different features present in the national 
topographic database, changes to the built environment proved 
to be the most critical.  The construction and demolition of 
buildings are both important to many users of spatial data and, 
as uncovered by the manual change detection processes, are 
often overlooked by third-party change intelligence sources.   It 
was therefore decided that our research should concentrate on 
the detection of new buildings and demolitions.  Once this 
decision had been made, the exact method of change detection 
had to be determined.  Rather than taking one single approach, 
several different methods were tried and compared, to find the 
one showing the most promise for future implementation into 
the production system. 
 
2.2 Source data  

Since the target of this research is the implementation of a 
change detection process within the photogrammetric data 
collection production system, it was important to use as inputs 
only those types of data which would be readily available to 
that system. For several years, Ordnance Survey has used an 
Intergraph Z/I Imaging Digital Mapping Camera (DMC) as its 
primary image data source.  The inputs to this research were 
therefore constrained to the data which can be extracted from 
this DMC imagery.  Both the panchromatic and 4-band 12-bit 
multispectral images from the DMC were used at some point in 
the research.  Rather than relying solely on the spectral aspects 
of the data, the projects also used a digital surface model, 
created fully automatically from the overlapping panchromatic 
imagery.  This allowed us to discriminate more easily between 
man-made and natural objects in the scene. 

Two test sites were chosen, both of which have undergone 
many changes recently: one near the Heathrow Airport 
Terminal 5 junction of the M25 London orbital motorway, the 
other in the urban centre of Bournemouth, a city on the south 
coast of England.  The images were collected during the 2005 
and 2006 flying seasons.  The two sites gave us the opportunity 
to test the algorithms in different physical environments, to 
indicate whether the process is likely to be transferable for use 
in different parts of the country. 
 
2.3 Change detection via image classification  

Each of the change detection methods investigated involved an 
image classification process.  Both per-pixel and per-object 
classifications were undertaken, using various methodologies 
and several different software packages.  Initially, the 
classification techniques were applied to the images to identify 
buildings, roads, trees, other vegetation, water bodies and roads.  
These were then filtered to identify the changes to buildings, 
which were the main focus of the research. 
 
2.4 Per pixel classification 

One of the main challenges in the detection of urban change is 
the spectral heterogeneity of the urban land cover (Small 2001).  
The many different surface types and objects present within an 
urban scene can often generate different spectral responses for 
essentially a single land cover.  In order to deal with this 
problem, two relatively new per-pixel image classification 
techniques, which had the potential to discriminate between 
objects in an urban scene, were applied to the images.  The first 
of these was the Support Vector Data Description (SVDD), a 
one-class classifier developed by Tax and Duin (1999).   The 
SVDD is based upon the principles of Support Vector Machines. 
Being a one class classifier, it works on the basis that only 
target class data are used in the training stage. The target class 
refers to the class of interest and it is assumed that it is  sampled 
well and that enough training data is available. However, in the 
testing and validating stage the classifier will encounter outlier 
data that was not present in the training stage. The classifier 
must therefore have the capacity to distinguish if the data in a 
testing set belongs to the target class or it is unknown and as 
such belongs to the outlier class (Tax and Duin, 1999). In order 
to give the maximum information about each class and to allow 
comparison between different images taken at different times, 
the variables used included band ratios and texture for each of 
the bands, NDVI (Normalised Difference Vegetation Index) and 
a DSM (digital surface model) for the area. The training set was 
composed of a mixture of different pixels from different roof-
top materials. The testing set was composed of pixels, 50% 
belonging to the target class and 50% belonging to all the other 
classes present in the image. All the pixels were chosen 
randomly from across the image. The pixels that formed the 
testing set were totally independent from those used in the 
training sets to avoid any biases in the confidence level of 
accuracy. 
 
The second per-pixel classifier was a decision tree method, 
specifically the CART decision tree software developed by 
Salford Systems.  Decision trees have long been popular in 
machine learning, statistics and other disciplines for solving 
classification problems.  Decision trees are very flexible and 
can handle non-linear relationships between features and classes 
(Friedl and Botley, 1997.  CART uses several different 
approaches to the splitting of the decision tree, including the 
Gini Index, entropy, and class probability.  CART uses an over-
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grow/prune-back strategy in which the decision tree is allowed 
to grow to a high level of complexity, and is then pruned back 
to a more manageable level.  This approach helps prevent the 
classifier getting stuck at a local optimum point too early in the 
classification process. 
 
2.5 Object-based classification 

An object-based classification was adopted by the third method, 
using Definiens software.  This object-based method offers 
some advantages over the traditional pixel-based approach, in 
that, in addition to the spectral data, it can incorporate shape, 
texture and local context into the classification process (Benz et 
al, 2004).  Also, by segmenting the image into homogeneous 
objects prior to classification, this approach helps to reduce the 
spectral variability within each class. 
 
The first stage of the classification process was the 
segmentation of the image into homogeneous objects.  
Definiens employs a region-merging segmentation method, 
starting with individual pixels and merging adjacent regions 
until a user-defined threshold of heterogeneity is reached (Benz 
et al, 2004).  After the initial segmentation, the objects were 
classified using a hierarchy that divides the objects into 
increasingly refined categories, using user-defined membership 
functions. The membership functions are determined by 
observation, i.e. by manual examination of the characteristics of 
the objects of interest in the image.  Although this is a slow 
process, it should only be required once, in the expectation that 
the objects of interest in other images will have similar 
characteristics.  Earlier splits were simpler and more reliable 
(e.g. vegetated objects were split from non-vegetated objects 
using only the Normalized Difference Vegetation Index, NDVI, 
with very high reliability).  Subsequent classes became 
progressively more difficult to separate and the reliability of the 
classification decreased.  Spectral properties, shape and texture 
features were all used in the identification of buildings.  
Shadow was also used to constrain the buildings class to those 
objects within a defined distance from a shadow object.  This 
methodology is discussed further in Sanchez Hernandez et al 
(2007). 
 
 

3. CLASSIFICATION RESULTS 

3.1 Classification accuracy 

The first test of the classification methods used a 300 m by 
270 m subset of the Heathrow dataset.  The aim of the test was 
to determine the accuracy of each classification, in order to 
assess its usefulness in a subsequent change detection step.  A 
training set of 600 pixels was selected, with 50% of the pixels 
in the buildings class and 50% in the non-building class.  A 
further set of 200 randomly selected pixels formed the test set.  
The overall accuracies of the test pixels are shown in Table 1.  
The first set shows the accuracy achieved using only the 
spectral components of the image, while the second set shows 
the accuracy achieved when the digital surface model was also 
included in the source data.  As can be seen, the DSM data 
increased the accuracy of the classification in all cases.  This 
was as expected, since the buildings can be spectrally very 
similar to the surrounding man-made roads and other surfaces; 
while the difference in height distinguishes them immediately 
from the ground surface. 
 
 

Classification SVDD Decision Tree Object-Based
Spectral only 70.0% 73.0% 76.0% 
Spectral + DSM 85.0% 90.5% 91.0% 

 
Table 1: Overall accuracy of the classified Heathrow subset 

 
For the object-based classification, a slightly different method 
was applied when the DSM data were included.  First, the 
image was classified by a user-defined sequence of processes 
within Definiens.  The main features used in this classification 
were shape, slope, and height in context to neighbouring 
features.  The spectral information used in the process was of a 
lesser importance and was limited to the normalised difference 
vegetation index (NDVI) and the brightness.  These were 
chosen since other spectral features are likely to differ 
significantly between images captured in different areas, at 
different dates and in different lighting conditions.  Localised 
differences in height between building features and the 
surrounding land are less likely to differ between images and 
these should prove more reliable.  It is thought that this will 
allow the process to be generalised and will therefore increase 
the potential for transferring the rule-set to different images.   
 
The results on a larger test area were similar to those shown in 
Table 1.  As with any classification process a certain amount of 
misclassification is inevitable.  In the per-pixel classifications, 
the main reasons for misclassification were the presence of 
objects on the surface which could not be distinguished from 
the surrounding buildings.  These objects included large 
vehicles and shipping containers, which are similar in height 
and area to small buildings.  A further cause of mis-
classification was the use of the DSM data as absolute height 
values (rather than heights relative to the surrounding pixels).  
Using the absolute heights works well in a flat area, but in areas 
of undulating terrain there will be problems between rooftops 
and man-made surfaces at the top of slopes.  
 
In the object-based classification, vehicles and containers were 
also often misclassified as buildings. This classification, 
however, could distinguish successfully between rooftops and 
manmade surfaces, by using the local slopes around each of the 
objects.  Some misclassifications still remained, due to very 
low-rise buildings such as sheds and garages, which were not 
recognised as buildings. This occurred because these objects 
failed to meet the height and area thresholds within the rule-set.  
This was expected to occur because the rule-set was devised to 
meet the Ordnance Survey specification for significant changes 
(“Category A” changes).   Category A includes newly built 
residential buildings and demolitions, but small, non-residential 
buildings are not within this specification.  A Definiens rule-set 
could be constructed to detect these small buildings, but this 
would inevitably lead to misclassifications of objects of a 
similar size and height, such as vehicles.  In the end, a trade-off 
must be made between the proportion of building features 
correctly identified as buildings (true positives) and the 
proportion of non-building features that are misclassified (false 
positives).  
 
The results indicated that the decision tree and the object-based 
methods were the most reliable, so these two methods were 
further developed, by introducing post-classification change 
detection processes which are described in the following section. 
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4. POST-CLASSIFICATION CHANGE DETECTION 

4.1 Identifying changes 

In order to test the accuracy of the classifications in a change-
detection process, the classified buildings were compared with 
the building objects in the Ordnance Survey topographic 
database (used to generate the OS MasterMap® product).  In 
the test area, all the significant building objects which were 
either greater than 50 m2 in area, or had a postal address (and 
hence were residential buildings) were determined from the 
topographic database.  In total, this revealed 965 buildings to 
test, of which 34 had been demolished.  In addition to these, 
there were 17 significant new buildings on the image, making a 
total of 51 Category A changes. 
 
4.2 Detecting demolitions and new buildings 

Both the decision tree and object based classifications were 
tested using the same method of post-classification change 
detection.  Demolitions and new buildings were considered  
independently. 
 
Demolitions were identified by intersecting the areas classified 
as buildings with the known OS MasterMap® building 
polygons.   For each building polygon, if at least 50% of its area 
was classified as a building, that building polygon was 
considered to be verified by the classification.  If less that 50% 
of its area was classified as a building, then it was considered to 
be a change (i.e. the building was considered to have been 
demolished). 
 
To identify new buildings, the first step was to mask out all the 
regions in the test site where constructions would be unlikely to 
have occurred.  These consisted of all roads, rail or water 
bodies present in the OS MasterMap® data.  All existing 
buildings in the data were also masked out, together with a 3 m 
buffer around each building, to help eliminate any remnant-
objects produced by misalignment between the image and the 
topographic data or by the draping effect of the DSM.  The 
remaining area, consisting of vegetation, farmland and man-
made surfaces, was then searched for any objects classified as 
buildings.  Objects smaller than a given size threshold were 
filtered out, to leave a set of potential new buildings.  
 
4.3 Results of post classification change detection   

Table 2 shows the results for the decision tree classification, 
and Table 3 shows the results for the object-based classification.  
It can be seen in both cases that, of the 51 Category A changes 
on the image, 49 were successfully identified, with only one 
actual change not flagged as a change (false negative) each for 
demolitions and for new buildings.  These errors were caused 
by a single feature - a residential building that had been 
demolished and rebuilt with a similar footprint.  Such rebuilds 
are inevitably difficult to detect when the footprint in the map 
database of the recently demolished building is similar to the 
footprint in the image of the building constructed in its place. 
 
 
 
 
 
 
 
 

 Demolitions New Total
Actual changes 34 17 51 
Objects classified as 
changes 

288 161 449 

Actual changes correctly 
classified (True Positives)

33 16**
 49 

Non-changed objects 
classified as change  
(False Positives) 

255 150 405 

Actual changes not 
classified as changes 
(False Negatives) 

1 1 2 

% Classified as changes 
that were actual changes 

11% 10%** 11% 

% of actual changes 
classified as changes 

97% 94% 96% 

 
Table 2. Results of change detection from decision tree 

classification for the 2 km2 Heathrow test site. 
 
In the decision tree results (Table 2) there are a large number of 
false positives, in which objects which haven’t actually changed 
are falsely identified as changes.  These errors are caused by a 
variety of factors.  One factor was that the change detection 
works on classified features, rather than individual pixels.  In 
order to do this, the groups of pixels classified by the decision 
tree had to be grouped into contiguous areas and converted to 
vector form.  The process of grouping and vectorising 
inevitably leads to a slight degradation in the quality of the 
results.  A second factor is the misclassification of an area of 
active construction as a building.  In the construction site, 
earthworks for a new road were of a similar spectral nature to 
the buildings, and were elevated above the average ground 
surface height, making them similar in height to the building 
objects nearby.  Other false alarms were caused by the presence 
of large vehicles and shipping containers – features which were 
much in evidence in this area of active construction work. 
 
 

 Demol New Total
Actual Changes 34 17 51 
Objects classified as changes 79 96 175 
Actual changes correctly 
classified (True Positives) 

33 16*** 49 

Non-changed objects classified 
as change  (False Positives) 

46 84 130 

Actual changes not classified as 
changes (False Negatives) 

1 1 2 

% Classified as changes that 
were actual changes 

42% 17% 28% 

% of actual changes classified 
as changes 

97% 94% 96% 

 
Table 3. Results of change detection from object-based 

classification for the 2 km2 Heathrow test site. 
 

                                                                 
** Of the 161 objects flagged as new builds, 11 contained actual 

changes, but this included 16 individual new buildings as 
many were close together and so were merged in the 
classification 

*** Of the 88 objects flagged as new builds, 12 contained actual 
changes, but this included 16 individual new buildings as 
many were close together and so were merged in the 
classification 
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In the object-based classification, the true positives were the 
same as for the other method.  The difference in the object-
based method is in the number of false positives.  Although 
there are still many features incorrectly flagged as changes, 
there are significantly fewer than in the decision tree method. 
Of the 965 buildings present in the topographic database, 886 
(92%) were detected by the method, leaving 79 predicted to be 
demolished.  Of these, 46 were false alarms, caused mainly by 
low-rise buildings such as industrial sheds and small residential 
properties that were in the topographic database but were below 
the height threshold required to be classified as buildings.  For 
new buildings, 16 of the 17 actual changes were identified, but 
84 other objects were flagged as new buildings but turned out to 
be false alarms.  These errors were mainly from objects such as 
caravans, lorries and shipping containers being mis-identified as 
new buildings and from garages and that fall outside the 
Category A specification.  
 
 

5. CHANGE DETECTION PRODUCTION TRIAL 

The results of the change detection led us to choose the object-
based method for further development.  To test the method in a 
more realistic environment, a prototype production system was 
developed, using a combination of software already used within 
the production area and software required for the classification 
and change detection process.  It was decided that the process 
would be tested on a live production job and directly compared 
with the manual process of change detection currently 
employed. 
 
Two test sites in Sunderland in NE England were chosen for the 
production trial, one area (site A) of 23 km2, the other (site B) 
of 25 km2.  The DMC imagery was processed to provide the 
inputs required by the object based classifier.  These inputs 
consisted of an orthorectified 4-band image mosaic, a DSM and 
a slope map derived from the DSM.  The newly-acquired 
NGATE module of SOCET-SET was used to produce the DSM 
fully automatically (i.e. without any seamline editing or other 
manual processing).  The same rule-set used on the first test 
dataset was also used in the trial, to test whether the rules could 
successfully be applied to different areas. 
 
The object-based change detection method was applied to the 
Sunderland image data and OS MasterMap topographic data.  
This resulted in a set of polygons representing potential 
demolitions and new buildings.  These were presented to the 
image interpreters using a similar user-interface to the one they 
would normally use for manual change detection.  The interface 
was modified slightly to automatically direct the user to each 
potential change in turn, and zoom in to the image at that point.  
The user then compared the image to the topographic data in 
the area of potential change and clicked a button to either 
accept or reject the change.  Once a button was clicked, the 
result was recorded and the user was immediately presented 
with the next potential change on the list. 
 
5.1 Results of the trial 

In site A, 142 potential changes were detected.  Of these, 35 
were accepted as real Category A changes (representing 25% 
completeness) and just one real change was missed.  In site B, 
427 potential changes were detected, of which 77 were accepted 
as genuine (18%).  There were 14 real changes that were missed 
in site B, which are discussed below.  In terms of time taken to 
identify the changes in the two sites, it was found that the 

application of the automatic change detection process reduces 
the overall time by 50% (compared with the manual process).  
This is a significant improvement on the manual process, and 
would be improved further by some small changes to the user 
interface, which were requested by the operators. 
 
5.2 Changes that were missed  

The results show that 14 of the changed features were not 
detected by the automatic process, even though the initial test 
had very good completeness statistics.  The nature of the 
omissions in site B were: 

• 5 demolitions 
• 4 new buildings 
• 5 minor modifications to school buildings 

Of the 5 demolitions, 3 were small buildings which did not have 
an address in the database, and therefore were assumed to be 
insignificant, non-residential buildings.  In the manual change 
detection process, these were recorded as changes, even though 
they did not meet the exact criteria to be considered as Category 
A change.  This is a situation in which the human operator will 
err on the side of caution, while the automated process simply 
filters these features out.  A second reason for the omissions 
also involves an interpretation of the specification, this time 
relating to minor changes to school buildings.  The automated 
process ignored minor changes to existing buildings, while the 
human operator treated school buildings as a special case and 
marked up any changes in such features.  This could be 
overcome by identifying schools in the topographic data and 
treating them as special cases in the automatic process.  A third 
reason for the discrepancies was the time lapse between the 
imagery and the topographic data.  In several cases, there were 
genuine changes between the map data and the image, but the 
map data was more up-to-date, having been updated via field 
survey since the imagery had been flown.  The human operator 
can readily verify this, while the automated process cannot. 
 
5.3 Opinions of the operator 

When asked for his opinion of the automated process, the 
operator considered that it would halve the time taken to collect 
the change data, and that it was “a very useful tool for change 
intelligence”.  To determine whether this evaluation of the 
process is widely accepted, further tests of the system are 
planned. 
 
 

6. CONCLUSIONS AND FURTHER WORK 

An automated tool for detecting changes to buildings using an 
object-based classifier has proved to be sufficiently successful 
in a research environment to be taken up in a production trial.  
In this trial, the tool was well received and was shown to 
significantly reduce the amount of time taken to identify the 
changes over a 48 km2 area.  At the time of writing, a large 
production trial is planned, which will use recently-captured 
imagery in an area which has changed significantly since the 
previous update to the topographic data.  This will allow us to 
test the method in another area, and to determine its 
effectiveness and efficiency in an area with a large number of 
changes. 
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