
RESEARCH ON PARALLEL BULK-LOADING R-TREES BASED ON  
PARTITION TECHNOLOGY OF DATABASE 

 
 

Zhou Qina, b, Zhong Ershuna, Huang Yaohuanc 
 

aInstitute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101 - 
 (zhouq.06b@igsnrr.ac.cn, zhonges@supermap.com)  

bGraduate University of Chinese Academy of Sciences. Beijing 100039 
cChina Institute of Water Resources and Hydropower Research, Beijing 100044 - huangyh@lreis.ac.cn 

 
 

KEY WORDS: Spatial Index, R-Tree, Partition, Parallel Computing. 
 
 
ABSTRACT: 
 
Bulk-loading of spatial data is time-consuming and can not satisfy the desire of the applications dealing with massive spatial data. In 
the article, the TGS-based (Top-Down Greedy Split) parallel technique is made to accelerate the processing of spatial data bulk-
loading, adopting the DCSO (Decompose- Conquer- Stitch - Output) strategy to build the R-tree in parallel. In order to manage and 
access the spatial data more efficiently, partition technology is applied to the physical storage of spatial data. This study accelerates 
the spatial data bulk loading efficient and makes the management and maintain of the spatial index easier and more flexible. The 
study also proves the R-tree constructed by parallel partitions performs better than serially strategy from the theoretical and 
experimental points of view as long as the decomposition of the study area is reasonable. Finally, an experiment is made to 
demonstrate the rationality of the proposed method and gains a perfect result. 
 
 

1. INTRODUCTION 

GIS(Geographic information system) applications often face 
massive spatial data sets, which usually  are multidimensional, 
such as two-dimensional points, lines, polylines, regions, 
polygons, surfaces, volumes and even data of higher dimension 
which includes z-value or time. Nowadays GIS store these 
spatial data in commercial or research database, called spatial 
database, through spatial database engine. The important task of 
data access method falls onto spatial database engine. 
Obviously, the need of efficient handling massive spatial data 
sets has become a major issue to the spatial database engine, 
and a large number of disk-based multidimensional index 
structures (data structures) have been proposed in the database 
literature (L. Arge, 2002; V. Gaede and O. G¨unther, 1998; J. 
Nievergelt and P.Widmayer, 1997; J. S.Vitter, 2001)  for recent 
surveys. R-tree is one of the data structures widely spread in 
spatial database systems due to its fine performance and is also 
adopted by spatial database engine to manage spatial data. 
When spatial data pumped into database through spatial data 
engine, it is common to construct an index structure for future 
access. To spatial database engine, constructing R-tree is a 
process of both time-consuming and disk I/O consuming and is 
simply too inefficient to be of practical use. 
 
There has been some static R-tree bulk-loading arithmetic. 
However, instead of inserting the objects into the R-tree one-by-
one, they operate on static datasets and accelerate the efficiency 
of constructing R-tree. But it is faintness because of the ever-
increasing size of the manipulated spatial data sets. 
 
This paper proposes a parallel technique for the R-tree 
constructing process based on partition technique of some 
mature commercial database to improve the constructing 
efficiency greatly. Meanwhile, the query cost on the result 
index tree is preserved. The article is organized as follows: 
firstly, there are some introductions to R-trees, parallel 
computing, partition technique and some related work; secondly, 
the new technique constructing the R-tree is proposed; thirdly, a 

query cost model is analyzed for the index structure; finally, an 
experiment is implemented and a result is given to demonstrate 
out the technique proposed. 
 

2. BACKGROUND AND RELATED WORK 

The R-tree, originally proposed by Guttman (1984), a height-
balanced multi-way tree, is extended from B-tree (R. Bayer and 
E. M. McCreight, 1972; D. E. Comer, 1979) in multi-dimension 
space. Each entry in a leaf node is a 2-tuple of the form (ID, 
MBR) such that MBR is the smallest rectangle that denotes 
containing object spatially and ID is the identifier of the spatial 
object. Each entry in a non-leaf node is a 2-tuple of the form 
(Ptr; R) such that R is the smallest rectangle that spatially 
contains the rectangles in the child node pointed at by Ptr. Let 
M be the maximum number of entries in a node and let m ≤ M / 
2 be a parameter specifying the minimum number of entries in a 
node. The root node has at least two entries unless it is a leaf 
node. An example of an R-tree is depicted in Figure 1. 

A
B

C
D

R1

R2

H

I

E

F
G

R3

R4

R5

R6

R

 
R

R1 R2

R3 R4 R5 R6

C DA B E F G H I  
Figure 1: R-tree constructed on rectangles A; B;C;….; I 

(Blocksize 3). 

1449



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008 

2.1 R-tree constructors 

The R-tree research has been limited to the development of 
algorithms for improving query efficiency or space utilization. 
Generally speaking, R-tree can be constructed by dynamic 
arithmetic or static arithmetic. A dynamic arithmetic constructs 
the R-tree beginning with an empty tree and insert the MBR of 
the spatial object into to the tree one-by-one, called OBO; while 
a static arithmetic constructs the R-tree with bulk-loading 
technique. Static arithmetic improves the objects loading 
efficiency greatly, for example, the Packed R-tree (Rousopoulos 
et al. 1985), Hilbert packed R-tree (Kamel And 
Faloutsos,1993 ), Bercken ’s Buffer R-tree (Lo & 
Ravishankar，1995), STR (Sort-Tile-Recursive, Leutenegger, 
1997), TGS(top-down greedy-split, Garcia, 1998), Arge ’s 
Buffered R-tree (Arge, 2002),  Bercken ’s Sample-Based 
(Bercken, 2001), OMT（Overlap Minimizing Top-down Bulk 
Loading, Lee, 2003）and so on. The static R-tree arithmetic is 
much more efficient than the OBO, but it is faintness when 
dealing with massive spatial data sets. 
 
Another defect of the index structure is that its maintenance is 
holistic and refers to all the spatial objects within the data set. 
When rebuilding index structure for the massive spatial data 
sets is required, because of the frequent insert, delete and update 
operations depressing the performance of the index, the whole 
index structure should be dropped or deleted from database. 
Again, we have to suffer from the time consuming of the index 
constructing progress. 
 
2.2 Partition technique in spatial database 

Partition technique is a data management strategy. It is widely 
used in common database applications, which do not refer to 
spatial data storage directly. The partition technique subdivided 
the data into smaller pieces and each piece of database object is 
called a partition. Each partition has its own name, and may 
optionally have its own storage characteristics. Partitioning will 
enhance the manageability, performance, and availability of a 
wide variety of applications. It is widely used in none spatial 
database dealing with one-dimensional data when the data size 
is massive. 
 
Also, partition technique can be adopted in spatial database to 
manage spatial objects, especially when the data set contains 
massive spatial objects. Generally speaking, there are several 
ways to part data in relational database, such as hash partition, 
list partition, range partition, compound partition and so on. 
Hash method parts the data according to a certain condition and 
the records are scattered into different parts; list method parts 
the data by the values of one or several columns and records 
with equal values on these columns will be in the same part; 
range method parts the data by appointed domains on one or 
several columns; compound method is the combination of 
methods listed above. 
 
Spatial objects are different from common data in that they are 
multi-dimensional and are co-relational in the space, which 
means that the longer the distance between two objects, the 
fainter the influence is. For the characteristic of spatial objects, 
hash and list method are not suitable; however, we can part the 
spatial data set by range and store different parts of data in 
different spaces or disks because it is easy to get the MBRs 
(Minimum Boundary Rectangle) of the spatial objects in 
database. So, in storage management, the partition data set can 
be updated or deleted in a relatively small granularity; and in 

logical management, the partition data can be accessed as a 
seamless big table. 
 
2.3 Parallel techniques 

Parallel processing is a class of computerized information 
processing that emphasizes the concurrent manipulation of data 
segments or concurrent execution of process components to 
solve a problem or to accomplish a task (Quinn 1987), often on 
a specially-designed computer. Using Flynn’s (1966) 
classification, common parallel computer architectures fall into 
two categories: SIMD (Single Instruction stream, Single Data 
stream) and MIMD (Multiple Instruction streams, Multiple 
Data streams)( Yuemin Ding, Paul J, 1996). Parallel computers 
can be classified into shared-memory and distributed-memory 
systems. Parallel technique is adopted to achieve higher 
availability and better performance, in any case. 
 
The number of applications that require parallel and high-
performance computing techniques has diminished in recent 
years due to the continuing increase in power of PC, 
workstation and mono-processor systems. However, GIS still 
provides a resource-hungry application domain that can make 
good use of parallel techniques for the attribute of data need to 
be processed. 
 
 

3. PARALLEL BULK-LOADING R-TREE 

Static R-tree constructing process is a time-consuming progress 
and the recent researches are focused on the performance or the 
space utilization. The management of large spatial data sets is 
difficult and the data access efficiency is depressing as the table 
storing the data sets in the database growing larger and larger. 
We propose a strategy to improve the depressing situation. 
Firstly, partition technique provides a chance to manage data in 
database in a thinner granularity. Secondly, static R-tree 
constructing arithmetic can be paralleled by data decomposition 
to compress the time of R-tree constructing. Spatial data 
decomposed will be stored in different partition, and data 
updating, index structure reconstructing will be partition 
referred instead of global influenced. 
 
In this section, we firstly state the pre-treatment of the spatial 
data in the database, including the spatial data partition storage 
strategy, the management of the data and the spatial data 
partition algorithm before storage. Then based on the spatial 
data evenly partitioned, the R-tree bulk-loading method is 
introduced. At last, the query performance is analyzed. 
 
3.1 Spatial data pre-treatment 

3.1.1 Efficient Spatial data storage 

The most important characteristic of spatial data is spatial co-
relational, so spatial objects stored in database with physical 
clustering characteristic would improve access efficiency more 
than spatial objects scattered stored. There have been researches 
on spatial object clustering arithmetic, for example, the 
Hillerbet coding, the Moton coding, the Z order coding and so 
on. They focus on the dimension receding and then applying 
general index method into the encoded spatial objects and 
improve the performance. In our work, we apply the partition 
technique into the large spatial data set storage.  
 
Generally, there are several partition method provided by the 
database, like range partition, list partition, hash partition or the 
composition of the above. Actually, hash partition will scatter 

1450



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008 

the records in different parts and make all the parts have equal 
records, so it will scatter the nearby spatial objects into different 
storage partitions and destroy the spatial co-relationship. Range 
partition and list partition are more suitable for the spatial 
objects applications.  
 
In our work, the MBRs, including west, east, north and south 
positions, of the objects are recorded in four columns, and it is 
efficient to get bounds information from database in the process 
of sub-R-tree loading. So range partition is most suitable way in 
our research. 
 
3.1.2 Spatial data partition strategy 

As mentioned above, spatial data will be partitioned by range to 
preserve the continuity in space. So that it is essential to split 
the boundary (P) into several parts (P1, P2,……,Pn).  
 
Suppose that each part Pi contains Ni objects and N is the total 
number of the objects in the dataset. The objects in n subparts 
compose one division of N. That is to say N and Ni (1≤i≤n) 
must satisfy two conditions: 1)

1 2 ... nN N N N= ∪ ∪ ∪  and 

2) 1 2 ... nN N N =∅∩ ∩ ∩ .  
 
Different from Ni, the boundary of the sub-space Pi is not 
necessary a division of the space P, which means that the union 
of Pi may or may not cover the whole space of the dataset and 
the intersection of Pi may or may not be empty. But Pi is the 
union of the MBRs of Ni objects. 
 
In order to achieve load-balance in the process of parallel bulk-
loading R-tree, the number of objects in each part should be the 
same theoretically as we deploy the research in isomorphic 
environment and N1=N2=…Nn  is what we want. But the spatial 
objects can not be previewed and the status of the dataset can 
not be right in hand, such as the data distribution in the space, 
especially when the dataset size is massive. So an algorithm is 
needed to split the dataset into n parts aforehand, which will be 
explained in section 3.4.2. 
 
Suppose n=4, figure 2 shows how the spatial data is partitioned 
and each part will be stored in a separate partition in database. 
Objects intersect by the split lines can be resided in a part 
according to the area split by the split line (see Figure 2). 
Spatial objects within the data set boundary will be split into 
four parts (P0, P1, P2, P3) and each part is tunable to contain 
approximately equal objects.  

0 1

2 3

part3

part2

part1

part0

 
Figure 2: Partition of spatial data 

 
 
3.1.3 Spatial data maintenance 

Spatial data stored in partition is easier to maintain than all 
spatial objects stored in a big table in database. Partition 
technique makes the spatial data management in a relatively 

small granularity and preserves the holistic of the objects in 
logical. The data can be updated or operated by part. 
 
In our work, as the spatial data is often edited continually, and 
frequent inserting, deleting, updating operations will depress the 
performance of R-tree greatly, we make use of the partition data, 
and bulk-loading the R-tree by part and construct sub-R-trees of 
sub-parts synchronously (parallel computing). In the long-term 
operations, some of the sub-parts should reconstruct sub-trees 
because of poor performance caused by frequent operations to 
the spatial objects. Then the sub-trees update into the original 
tree. So, we achieve the goal that, maintaining the global index 
in the part unit, while do not drop the whole original R-tree. 
 
3.2 Parallel bulk-loading static R-tree 

Different from inserting objects one-by-one of the dynamic R-
tree, static R-tree constructs the whole on the known spatial 
objects. The process of constructing static R-tree, called bulk-
loading R-tree, is a computing task of high parallelism. 
 
In our work, parallel computing technique is applied into the R-
tree bulk-loading process. We adopt TGS arithmetic and 
parallel constructing static R-tree based on the partitioned 
spatial data set. Before the work to be done in parallel, one of 
the most important tasks is the pre-treatment of the spatial data 
to part the objects in the dataset into n parts as mentioned in 
section 3.2. The spatial data partition algorithm is lightened by 
the TGS algorithm and explained in section 3.4.2. 
 
3.2.1 TGS algorithm 

TGS (top-down greedy-split) algorithm (Garcia, 1998) splits 
tree from top to down recursively. For a known spatial data set, 
TGS applies the splitting progress to the tree recursively: to the 
N MBRs of the N spatial objects, TGS splits the objects into 
two sub-sets horizontally in x direction or vertically in y 
direction and the splitting should satisfy two conditions as 
below:  
 
(1).Minimum the function cost f (r1, r2), in which r1, r2 are the 
MBRs of the two sub-sets. 
 
(2).Each sub-set contains i×S rectangles, in which i is less than 
the nodes in current tree height and S is the maximum number 
of the rectangles of current tree height. 
 
The two conditions apply into the constructing of the R-tree till 
the final R-tree created.  
 
In our work, the area of the objects’ MBRs, which is split by the 
scan line, is used as the cost function to select the right split line, 
formula 1. 

f（r1, r2）= SArea（r1）+ SArea（r2）    (1) 

where SArea（ri） is the area of the objects’ MBRs which are 
split by the scan line in NO.i sub-set. In the process of recursive, 
the scan lines splitting the minimum area of the MBRs will be 
selected. Thus, 
 

S= Min（fi（r1, r2）） i= 1,2,3,……,n       (2) 
where S is the scan line selected in current recursive and fi 
(r1,r2) is NO. i scan line (0<i<n, n is the total number of the 
scan lines in current sub-set).  
 
What we done based TGS is that, in order to accelerate the 
splitting progress, we create some scan line objects before 
choosing the split line in current recursion and subsequent 

1451



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008 

computing is oriented to these scan lines. The number of the 
scan lines is according to the objects count in current recursion, 
So the algorithmic complexity is O(n). The scan line is 
constructed as group (index, split-area), in which the index is 
the position of the scan line.  
 
Figure 3(a) shows how to deal with scan line in each recursion. 
Figure 3(b) is the process of the vertical scan line chosen 
algorithm. The horizontal algorithm simulates the vertical one. 
Figure 3(c) is an example in a single recursion. The sub space is 
covered by    m×n scan lines. For each object, related scan lines 
are dealt with together. For example, object A is related to scan 
lines Vk, Vk+1, Vk+2 and Vk+3 in vertical. Vk will be selected as 
vertical split line according to the algorithm list in figure 3(b), 
and Hi will be selected as horizontal split line according to 
figure 3(c). 
 

 
Figure 3(a): Scan line based TGS algorithm 

 

 
Figure 3(b): Vertical scan line chosen algorithm 

          A

V1 Vk VnVk+1Vk+2

B

H1

Hj

Hm

Vk+3  
Figure 3(c): Scan line based TGS algorithm 

 
3.2.2 Load balance 

One of the most important problems is the load balance in 
parallel bulk-loading R-tree. In our work, enlightened by the 
scan line chose algorithm listed in section 3.2.1, the scan line 
structure is changed as group (index, CRB, BRB), in which the 
index is the position of the scan line, CRB is the object count in 
right-or–bottom direction of the scan line and BRB is the union 
of the bounds of the objects in left-or-top direction. The data set 
is parted into 22n parts by 2n scan lines. The algorithm is shown 
as follows. 

 

 
Figure 3(d): Scan line based data decomposition algorithm 

Step1. Initialize the objects in current recursive. 
Step2. Select vertical split line SV. (Figure 3(b)). 
Step3. Select horizontal split line SH. 

 (simulates Step2 in figure 3(b)) 
Step4. Compare SH with SV according to the area they 

split. 
           if(SH.splitarea < Sv.splitarea)  S = SH ; 
 Else  S =Sv ; 

Step1. Determine the scan line count according to the 
number of the objects; 

nScanLineCount = sqrt(nObjectCount); 
Step2. Determine the scan line step; 
dbScanLineStep=dbVertialSize / nScanLineCount; 
Step3. Create scan lines. 
       scanlines = new scanline(nScanLineCount); 
Step4. For each MBR of the objects in current 

recursion, change the status of the related scan 
lines. 

      for(int i=0; i<nItemCount; i++) 
{ 

       /*get the left and right scan line covered by the 
MBR of the object*/ 

nLeftScanIndex=(rcItemBound.left -  
m_rcBound.left ) / nScanDistance; 

nRightScanIndex = ( rcItemBound.right - 
m_rcBound.left ) / nScanDistance; 

for( j = nLeftScanIndex; j<nRightScanIndex; j++ ) 
{  scanlines[j]. split-area += Area(MBRi);} 

} 
Step5. Select the scan line SV in vertical from 

scanlines which has the minimum split-area. 
Return SV. 

Step1. Determine the scan line count according to the 
number of the objects; 

nScanLineCount = sqrt(nObjectCount); 
Step2. The average count is: 
   nAverage = nObjectCount/2n. 

Step3. Select vertical split line SV as follows. 
Step3.1. Determine the scan line step;  

dbScanLineStep=dbVerticalSize/nScanLineCount; 
       scanlines = new scanline(nScanLineCount); 
Step3.2. Create scan lines. 
Step3.3. For each MBR of the objects in current 

recursion, change the status of the related scan 
lines. 

      for(int i=0; i<nItemCount; i++) 
{ 

/*get the left and right scan line covered by the 
MBR of the object*/ 

nLeftScanIndex=(rcItemBound.left -  
m_rcBound.left ) / nScanDistance; 

nRightScanIndex = ( rcItemBound.right - 
m_rcBound.left ) / nScanDistance; 

/*Scan line in center*/ 
nCenterScanIndex=(rcItemBound.left-

2*rcBound.left+rcItemBound.right
)/(2*nScanDistance); 

for( j = nCenterScanIndex; j<nRightScanIndex; j++ ) 
{   scanlines[j]. CRB ++; 

        scanlines[j]. BRB.Union( MBRi ); 
} 

} 
Step3.4. Select the scan line SV in vertical from 

scanlines in which the CRB is proximal to 
nAverage. And SV.BLT is the range of the part. 

    SV =Min(abs(scanlines[j]. CRB - nAverage)); 
Step4. Select horizontal split line SH similar to strp3.

1452



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008 

 
3.2.3 Parallel bulk-loading R-tree 

The outline of parallel bulk-loading R-tree is the DCSO [5] 
strategy. DCSO means: (1).Decompose computing task. 
(2).Conquer sub-tasks. (3).Stitch sub-result and (4) Output final 
result. DCSO is in common use in GIS parallel strategy.  

Parallel 
Computing

Sub-Tree

Combination 
of sub-trees

Part 1

Part 2

Part 3

Part 0

Part 4

0 1 2 3 n

 
Figure 4: Parallel constructing static R-tree 

Previous spatial data partition storage makes data decomposed. 
In parallel computing assigning a node or a CPU computing 
each partition data is the sub-task conquer step. Each computing 
node sends the sub-result to monitor node to stitch and finally 
the result, the R-tree, is constructed and put out (figure 4). 
 
3.3 Analyze of the query performance 

Region query is frequently used in R-tree query and other query 
modes like point query, spatial join query and so on. They can 
all be relegated to region query mode. So researches on cost 
models of R-tree mostly focus on region query mode.  
 
These cost models can be classified into two categories: 
evaluate the cost beforehand and calculate the average cost on 
the constructed R-tree. The former method has been recited by 
D. E. Comer, 1979 in detail, which evaluates the disk I/O based 
on spatial object count (N), height of the tree (h), objects 
density in space (D) and the query window size (qx, qy). The 
result out from the beforehand theory is an ideal situation and is 
the most perfect performance of R-tree which can be placed as a 
standard to be compared with the real R-tree performance. The 
latter method estimate the query cost based on the height of the 
tree (h) and the node size of the tree, as shown in formula 3 (I. 
Kamel, C. Faloutsos, 1992). 
 

,
1

( ) ( )
n

j i i
j i

DA q s q
=

⎧ ⎫
= +⎨ ⎬

⎩ ⎭
∑ ∏

         (3) 
 
where j is the level of the tree; n is dimension number; sj,i is 
average node size in level j; q is query window and qi is the size. 
In two dimensions, namely n=2, formula3 evolves into formula 
4:  

, ,
1

( , ) ( )*( )

* * * *

N

x y i x x i y y
i

x y y x x y

DA q q n q n q

TotalArea q L q L N q q
=

= + +

= + + +

∑   (4) 

 
where Lx is the total length of the nodes in x direction and Ly is 
the total length of the nodes in y direction.  
 
Based on the formula 4 we can qualitatively conclude that the 
query efficiency is influenced by the nodes’ total area and the 

nodes’ size. Minimize the total area and the size of the nodes in 
R-tree can reduce the disk I/O and improve the performance. 
 
In this study, spatial data is split into parts and stored in 
partition in database. The data processing makes the parts 
branches of the tree and preserves the neighbourhood of spatial 
objects in space in the tree nodes. In sound partition strategy, 
the R-tree nodes trend to square and improve the R-tree quality 
and the spatial query efficiency, rather than depressing the 
performance. The following experiments will demonstrate it. 
 
 

4. EXPERIMENTAL RESULTS 

4.1 Choose platform of parallel computing 

Originally, parallel computing runs on MPP (Massively Parallel 
Processors) which is distributed and oriented to the users. But 
the building of the parallel system is very expensive. With the 
rapid development of commercial computer and the network, 
the parallel computing platform is moving to clusters composed 
of SMP (Symmetric Multiprocessors) and personal computers. 
Compared to MPP, cluster is scalable, transparent, high 
assistance and high performance. Cluster is flexible and can be 
upgraded and expanded easily. So in the experiments a small 
cluster system is built to complete the R-tree computing of large 
data set. 
 
4.2 Experimental environment 

In the cluster, four personal computers with the same 
configuration are used: Intel(R) Pentium(R) 4 CPU 2.60GHz 
and the operation system: Microsoft Windows 2000 
Professional. 
 
One data server of the configuration: Intel(R) Xeon(TM) CPU 
2.40GHz and the operation system is Microsoft Windows 2003 
Enterprise Server Edition; database software is Oracle 10g. 
 
The experimental data is part of Chinese contour data with the 
scale of 1:250000 and the total objects count is 1,504,110. The 
data loaded into database with five partitions with the number 
from 0 to 3. Objects in each partition are shown in table 2. 
 
4.3 Analysis of the results 

(1) Comparison of time consuming 
TGS arithmetic is applied into the constructing process of the 
experiment data. Table 1 and table2 record the sequential 
computing and parallel computing results respectively. 
 

Node Objects count Cost time（second）
 No.1 1,504,110 1233.531572 

Table 1: Sequential computing result 
Partition Objects 

count 
Node Cost time

（second） 
0 288,368 No.0 91.852623 
1 419,166 No.1 120.312142 
2 327,038 No.2 108.62197 
3 469,538 No.3 150.215142 
Combination of 
sub-trees 

 No.0 0.045449 

  Total time   196.523180 

Table 2: Cluster computing results 

1453



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008 

The speed-up rate of the four nodes cluster system here is 6.27. 
Static R-tree arithmetic like the TGS will be computing task 
inflating as the dataset size expanding. Each node in the cluster 
system completes the constructing of the sub-tree in one 
partition simultaneity, so hyper-speedup is gained. In addition, 
profiting from the partition technique, spatial data can be 
accessed by parts and the dataset’s index can be reconstructed 
on one of the partitions respectively, instead of dropping the 
whole tree and suffering from the wearily time of the R-tree 
reconstructing process, and make spatial data in database easier 
to maintain. 

 
(2) Comparison of query efficiency 

The R-tree for the static dataset is not unique based on the 
arithmetic and the R-tree parameters. The tree constructed 
sequentially and parallel is different because of the pre-
processing of the spatial data. Based on section 3.3, diminishing 
the size of the tree nodes will reduce the disk I/O. The leaf 
nodes of the two result trees are showed in figure 5 and figure 6.  
R-tree constructed sequentially will give strip nodes in space 
with small data density. By pre-processing of the spatial data, 
the strip nodes that spanning several parts can be avoided. So, 
qualitatively speaking, the parallel computing tree performs 
better than the sequential one. 
 

 
Figure 5: Leaf nodes of the R-tree (sequential) 

 

 
Figure 6: Leaf nodes of the R-tree (parallel) 

Because the point query is special station of the region query, 
the experiments on the query efficiency are made with regions. 
 
The sizes of query windows are n percent of the whole dataset 
each where n is 1, 2, 3, 4 and 5 and 200 times randomly query 

are made on the dataset. The statistic results are shown as figure 
7 and figure 8. 
 

0

5000

10000

15000

20000

25000

30000

1% 2% 3% 4% 5%

I/O times (Parallel) I/O times (Sequential)  
Figure 7: Comparison of Disk I/O 

 

0

500

1000

1500

2000

2500

3000

1% 2% 3% 4% 5%

Parallel Query Cost（kms）

Sequential Query Cost（kms）  
Figure 8: Comparison of query times 

 
Concluding from figure 7 and figure 8, the tree constructed in 
parallel performs better than the sequential one in both disk I/O 
and random region query time. But one of the important points 
is that the partition of the spatial data should be balanced or the 
parallel tree will be unbalance and is not a standard R-tree and 
then the query efficiency will be depressed. 
 
 

5. CONCLUSIONS 

Parallel bulk-loading R-tree with cluster system will accelerate 
the process progress and gain hyper-speedup ratio. When the 
spatial objects stored in database by partition, the maintenance 
of the data is flexible and the index tree can reconstructed by 
parts. But one of the defects is that the balance of the R-tree will 
be broken up if the spatial data is not partitioned evenly. In the 
experiment of this paper, the dataset is parted based on TGS 
algorithm. More algorithms, especial in heterogeneous 
environment, should be studied for the spatial data 
decomposition. Load-balance in the spatial data pre-process is 
very important and is the main issue need to be resolved in the 
future. As a whole, the method proposed in the article is sound 
and could resolve some problems in spatial database 
applications. 
 
 

REFERENCES 

L. Arge, K. H. H., J. Vahrenhold, and J. S. Vitter (2002). 
"Efficient Bulk Operations on Dynamic R-Trees." Algorithmica 
33: 104–128. 
 
L. Arge. External memory data structures. In J. Abello, P. M. 
Pardalos, and M. G. C. Resende, editors,Handbook of Massive 
Data Sets. Kluwer Academic, Dordrecht, 2002. 

1454



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008 

V. Gaede and O. G¨unther. Multidimensional access methods. 
ACMComputing Surveys, 30(2):170–231,June 1998. 
 
J. Nievergelt and P.Widmayer. Spatial data structures: concepts 
and design choices. In M. J. van Kreveld,J. Nievergelt, T. Roos, 
and P. Widmayer, editors, Algorithmic Foundations of GIS, 
volume 1340 of Lecture Notes in Computer Science, Springer-
Verlag, Berlin, 1997. 
 
J. S.Vitter. External memory algorithms and data structures: 
dealing with massive data. ACMComputingSurveys, 33(2):209–
271, June 2001. 
 
A. Guttman. R-trees: a dynamic index structure for spatial 
searching. In B. Yormark, editor, SIGMOD ’84, Proceedings of 

Annual Meeting, volume 14.2 of SIGMOD Record, pages 47–
57. ACMPress, New York, June 1984. 
 
R. Bayer and E. M. McCreight. Organization and maintenance 
of large ordered indexes. Acta Informatica,1:173–189, 1972. 
 
D. E. Comer. The ubiquitous B-tree. ACM Computing Surveys, 
11(2):121–137, June 1979. 
 
I. Kamel, C. Faloutsos, Parallel R-trees, in: Proceedings of the 
1992 ACM SIGMOD International Conference on Management 
of Data, San Diego, June 1992, pp. 195–204. 
 
Yuemin Ding, Paul J. Denshamd. Spatial strategies for parallel 
spatial modeling. Geographical Information Systems, 10(6), 
1996. 

 

1455



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008 

 

1456




