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ABSTRACT: 

 

This paper presents a new remotely sensed solution for monitoring the recovery of a large disaster-affected area. It exploits the 

powerful data grid and computing grid technologies developed on GEO (Global Earth Observation) Grid system. Accessing the 

ASTER portal site of GEO Grid, all the necessary ASTER multi-spectral images and on-demand ASTER digital elevation model 

(DEM) are easily and quickly collected. Subsequently, satellite images are automatically analyzed on a grid-based computing 

mechanism. The core processing is a newly developed context-based mapping approach named scaling context image analysis. 

Phanga province of Thailand, which was strongly attacked by the 2004 Indian Ocean tsunami, is selected as the demonstration site. 

Four ASTER data sets acquired on November 15, 2002 (pre-event); December 31, 2004 (just after-event); February 8, 2005 and 

January 26, 2006  (post-event) are used. The efficiency in data collection and data computation is the merit of the proposed solution. 

 

 
1. INTRODUCTION 

The increasing frequency and magnitude of natural hazards of 

all types are the current focus of global concern. Recent 

decades, the world has experienced more regularly the 

devastated impacts of the big earthquakes such as the 1995 

Kobe, Japan earthquake, the 1999 Kocaeli, Turkey earthquake, 

the 2001 Gujarat, India earthquake, the 2003 Bourmedes, 

Algeria and the 2003 Bam, Iran earthquakes. Among the biggest 

earthquakes ever recorded, the M9.0 earthquake occurred off 

the Sumatra, Indonesia coast in December 2004 triggered a 

massive tsunami that caused significant damage and deaths to 

coastal communities in Indian Ocean. On the other hand, 

perhaps due to the climate change, hydro-meteorological events 

such as hurricane or typhoon have more frequently occurred 

resulting in the heavy winds, flooding, and mudslides. 

Numerous other events like wildfires, volcanic eruptions are 

also occurring worldwide. Those hazards pose a serious threat 

to the environment and human life. 

 

To prepare, mitigate and respond to such large-scale disaster, 

the advanced remote sensing and geospatial technologies are 

approached (Paylor II et al. 2005). Numerous researches and 

several operational uses of these technologies have been carried 

out to see what they can really help in the disaster management 

cycle (Adams et al. 2004; Eguchi et al. 2000; Estrada et al. 

2000; Matsuoka and Yamazaki, 1999; Singhroy and Mattar, 

2000; Tralli et al. 2005; Vu et al. 2005a). It is indicated that 

satellite remotely sensed image is an important data source for 

disaster management at all stages including post-disaster 

responses, recovery process, preparedness, and early warning. 

Their wide coverage, huge archives and reasonable-temporal-

resolution are significantly valuable in disaster management. 

They are even the only data source of the hard-hit and difficult-

to-access areas at the early stage. The recent uses of satellite 

images have focused on the response phase, whereas a little 

attention has been paid in their uses for monitoring and 

accessing the recovery phase (Hill et al. 2006). In spite of the 

availability of the huge archives of satellite images nowadays, 

how to collect the right data sources covering the long time span 

is still a difficult task (Vu et al. 2007). Moreover, to be used and 

understood by the decision makers and the disaster management 

practitioners who need information not satellite images; satellite 

images must be accordingly analyzed. 

 

This paper presents a solution for both retrieving and analyzing 

the remotely sensed data to monitor the recovery of a disaster-

affected area. With the aims to be employed in large-scale 

disaster, the medium spatial resolution ASTER images are 

preferred. The time-series ASTER images are collected through 

GEO Grid system. The GEO (Global Earth Observation) Grid 

concept is the marriage of grid technology to the global earth 

observation. It allows the providing securely and rapidly large 

archives of different attribute of earth observation satellite data 

(ASTER, MODIS, PALSAR and etc.) and integrated service 

with various observation databases and geo-scientific 

information (www.geogrid.org). The overview of GEO Grid 

infrastructure is shown in Figure 1. Accessing the ASTER 

portal site of GEO Grid, all the necessary images of the area of 

interest can be easily and quickly collected. Specially, advanced 

digital elevation model (DEM) processing techniques 

implemented in GEO Grid provides ASTER DEM on user 

demands. 

 

 
Figure 1.  GEO Grid architecture - IT infrastructure (source: 

http://www.geogrid.org) 
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Data analysis exploits the powerful grid computing technology 

to accommodate the huge dataset required in monitoring a large 

affected area by a large-scale disaster. GEO Grid cluster is used 

as the base for implementing the scaling context time-series 

image analysis. It is to segment, classify and extract the objects 

of interest from the satellite images. Pixel-based image analysis 

approaches have been conventionally used to analyze the 

medium spatial resolution image like ASTER. Those 

approaches, however, solely compute the global statistics of the 

reflectance value in image classification and ignore the locally 

contextual information. As a result, it introduces the intra-region 

or “salt-and-pepper” error, hard to be further analyzed with 

other existing GIS data. The object-based and context-based 

approaches, hence, have been developed to overcome this 

drawback. The scaling context approach, which is a scale-space 

analysis approach, is described in Section 2. It is a further 

development from the author’s previous works (Vu et al. 2005b; 

Vu et al. 2007). It is then designed for monitoring the recovery 

of the disaster-affected areas and being implemented on GEO 

Grid cluster. The details will be presented in Section 3. The 

long coastal area of Phanga province of Thailand, one of the 

extremely devastated areas by the 2004 Indian Ocean tsunami, 

is selected to demonstrate the proposed idea. It uses one pre-

event data set (2002/11/15), one just-after event (2004/12/31), 

and two others after the event (2005/02/08, 2006/01/26) as 

illustrated in Section 4. 

 

 
2. SCALING CONTEXT IMAGE ANALYSIS 

Since objects appear in the ways depending on the scale of 

observation, the context describing them depends on the scale. 

Observing all the relevant information to an object on the scale-

space can help to find the clue for extracting this object. The 

proposed method here employs the area morphology theory 

(Vincent, 1992) in constructing the scale-space. Briefly, area 

opening operation of parameter s can remove the objects 

smaller than s whereas area closing of parameter s can fill the 

holes smaller than s. Hence, applying area opening followed by 

area closing with a parameter s, named AOC operator, on an 

image is like flattening this image by parameter s. This 

performance segments an image into the flat zones or iso-level 

sets. Therefore, iterative applying AOC operator with increasing 

s can generate a scale-space. Figure 2 illustrates the 

performance of AOC operator with s = 25 and s = 81. AOC 

scale-space analysis is the core processing in the developed 

object-based extraction approach (Vu et al. 2005b; Vu et al. 

2007), which solely uses the spectral bands.  

 

 
Figure 2.  Illustration of AOC operator performance 

 

Scaling context approach further extends the use of AOC scale-

space. While the spectral bands are still primarily used, other 

relevant textural information are also integrated in the analysis 

as the additional channels. For instance, the edge textures of the 

earthquake-damaged areas show the significant discrimination 

to that of undamaged ones (Vu et al. 2005a) or different 

vegetation indexes can play an important role in presenting 

different attributes of the tsunami-affected areas (Kouchi and 

Yamazaki, 2007). Selection of those additional channels 

depends on the applications and the operators. The number of 

input channels is not limited. However, more channels require 

longer time computation. 

 

Figure 3 presents the processing flowchart of the developed 

scaling context image analysis. Each step illustrated in this 

figure is implemented as an IDL script (Interactive Data 

Language), which is efficient in quickly implementing image-

processing algorithms. After the scale-space generation as 

described above, K-mean clustering is employed on each scale 

to group the pixels into the objects with the assigned index.  To 

assure that the same surface cover type has the same index 

across the scale-space, the correlation analysis is carried out. 

The correlation analysis, which measures the similarity between 

the distribution histograms of each class on the original image, 

is employed to find out the best match with the finest scale as 

the reference. Let Hi,0 is the histogram of class i on the finest 

scale and Hj,k is the histogram of a class j on the scale k. Their 

correlation is computed as follow. 

 

                  

! 

"(i, j,k) =
cov(H j,k ,Hi,0)

std (H j,k ) # std (Hi,0)
  (1) 

where cov is the covariance of these histograms and std is the 

standard deviation of each histogram. The correlation values of 

histogram of class j on the scale k with every class on the finest 

scale are computed. The maximum value shows the best match 

and this class index on the finest scale replaces class j on the 

scale k. 

 

 
 

Figure 3. Flowchart of the scaling context image analysis 

 

Across the scale-space from a coarse scale to a finer scale, an 

object follows the process of creation and split. Depending on 

the classified index, a newly created object might be a child of 

the current object that this new object falls into. Otherwise, this 

object is on its “root” scale and can be extracted. The links 

between objects across the scale-space are depicted in Figure 4. 

Let examine a three-scale-space such that S1 is the coarsest one 

and S3 is the finest one. In the current scale S2, there are two 

newly created objects named A and B. While A has same index 

to the bigger one in scale S1, B has different one. As a result, B 

can be extracted in this scale S2 with its two-levels tree and A is 

associated with its father in S1 and two children in S3 to form a 

three-levels tree.  
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Figure 4. Illustration of the father-child relationship across the 

scale-space 

 

In implementation of searching, linking and building the 

farther-child relationship across the scale-space, a hybrid 

processing on scaled images and relational database is 

developed. A database is prepared with the following attributes: 

ID (object id), SCALE (the scale it exists), SPE (the spectral 

index), SUPID (father’s id), SUPSCALE (the scale father 

exists), X0 and Y0 (the starting point), Xcen and Ycen (the centre 

point), and AREA (its size). The searching is started from the 

finest to the coarsest scales. It collects all the adjacent pixels 

that have the same spectral index to form an object and assigns 

the ID. The object attributes are then recorded into the database. 

Subsequently, the father-child relationship is formed through 

assigning the father’s id and father’s scale into the database 

following the idea illustrated in Figure 4.  An object that has no 

father will have SUPID equals 0. It is the cue for final object 

extraction. 

 

The final result is a 3-bands image in which the first band 

presents the object ID, the second band presents the scale of the 

extracted objects and the third band shows their classified 

spectral indexes. In addition, other attributes as the results of 

object extraction are stored in the database. The SUPID and 

SUPSCALE attributes, however, can be excluded in the final 

database as it serves only the linking and extraction. In the case 

the vector format is required, the first band will be used for the 

conversion to ESRI shapefile format. Other attributes can be 

also added into the shapefile database. 

 

Computational time is the main concern in employing the 

scaling context approach since the analysis integrates an 

enormous amount of relevant information contained in a multi-

bands image. The most time consuming steps are the generation 

of the scale-space and the searching to link across the scale-

space prior to the extraction (see Figure 3). As the processing 

runs on a number of scales as well as a number of bands, it 

seems logical that speedup could be achieved using parallel 

processing.  For example, let assume a script runs on a N-bands 

image, sequentially on a single CPU, it takes 

! 

T
i

i=1

N

" , where Ti is 

the time spent on the i
th

 band.  Using the simplest form of 

parallel processing in which each band is assigned to be carried 

out on a CPU, the computational time required to finish all the 

bands will be only 

! 

MAX
i=1

N

(T
i
) , which means the maximum of all 

Ti values. Therefore, the computing grid system of GEO Grid is 

exploited for data analysis in addition to the utilization of 

database grid system for remotely sensed data collection. It 

should be noted that the GEO Grid clusters are multi-tasks 

operating, which means that there might be a numerous other 

tasks are running when a script is submitted to the cluster. The 

computational time would be much reduced if the clusters were 

running less other tasks. More details on the implementation of 

this scaling context image analysis specifically for the 

monitoring recovery application will be discussed in Section 3. 

 

 

3. MONITORING THE RECOVERY OF A TSUNAMI-

AFFECTED AREA 

The scaling context image analysis described in Section 2 is 

employed as the core processing of the remotely sensed 

monitoring of the recovery process. The monitoring application 

requires the time-series multi-spectral and DEM images. The 

data set acquired at each time is separately analyzed by the 

scaling context approach. Consequently, the extracted objects 

form the time-series maps for comparison. The demonstration 

of the proposed approach used four ASTER data sets of Phanga 

province, Thailand, which were collected from GEO Grid portal 

site. These scenes were acquired on 15 November 2002, 31 

December 2004, 8 February 2005 and 26 January 2006 (Figure 

5). All were in the same season with the date the tsunami 

attacked, 26 December 2004. Approximately, their extents are 

1200 pixels x 3200 pixels of 15 m spatial resolution. They are 

named 2002/15/11, 2004/12/31, 2005/02/08 and 2006/01/26 for 

the illustration in this paper.  

 

 
 

Figure 5. False colour composite images of the demonstrated 

area, from left to right: November 15, 2002, 

December 31, 2004, February 8, 2005 and January 

26, 2006. 

 

All the IDL scripts built for monitoring the tsunami-affected 

areas application are listed in Table 1. The processing steps 

were constructed in a sequential manner, which means that a 

script required the results of a former script as the input. Thus, 

the parallel processing could only take place in running each 

script on multi-channels of multi-data-sets. The implementation 

of scaling context image analysis in this paper followed the 

“task farming” approach. It simply means that each node runs 

on a data set independently and the combination will be carried 

out afterwards. The designed framework for implementation is 

depicted in Figure 6. In this figure, Ti where i= 1, 2, …, X 

denotes the acquisition time; Bj where j= 1, 2, …, Y denotes the 

band number; Sk where k= 1, 2, …, Z denotes the scale 

parameters. The boxes on the same row mean run in the parallel 

way. Details on the developed scripts and their corresponding 

roles in Figure 6 are described in the following paragraphs. 
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Script name Parameters Purpose 

DEMMASK DEM file name, elevation threshold Elevation threshold 

COMMONAREA Folder name storing all the DEM files Extract the common area from time-series data 

sets 

IMGRESIZE SWIR file name, new resolution (15m) Resize an image 

MASKAPPLY File name to be masked and the result of DEMMASK Apply a mask on an image to extract the area of 

interest 

VICOMP R, NIR and SWIR file names Compute NDVI, NDSI and NDWI 

MERGEBAND(1) File names (all original bands) to be merged Merge all bands into a multi-bands image, to 

form the original image 

AOCSCALE File name (single-band), object size Compute the scaled image of parameters equals 

to object size 

MERGEBAND(2) File names (results of AOCSCALE) to be merged Merge all bands into a multi-bands image, to 

form the image on each scale 

SPECLASS The results of MERGEBAND(2), number of classes, 

number of iteration 

Multi-channels clustering 

MANY2ONE Folder name storing all files (results of SPECLASS), 

file name (result of MERGEBAND(1)) 

Cross scale-space correlation 

SCALELINK File name (result of MANY2ONE), text file name 

storing the excluded classified indexes. 

Link across the scale-space and object extraction 

 

Table 1. The implemented scripts for time-series context-based image analysis 

 

 
 

Figure 6. Time-series image analysis based on scaling context approach flowchart 

 

To make the scaling context approach accommodate to the 

monitoring application, i.e. time-series image analysis, a pre-

processing step (Figure 6) included five modules is required 

prior to the core processing. First, the elevation threshold is 

carried out to exclude the high elevation areas where a tsunami 

would not attack. Second, the common extent from the time-

series DEM images is defined to crop all the analysed images. 

Third, the short-wave ASTER band, which is at 30 m spatial 

resolution, is resized to 15 m spatial resolution. As 

recommended by Kouchi and Yamazaki (2007), this short-wave 

band is used to compute the Normalized Difference Soil Index 

(NDSI) and Normalized Difference Water Index (NDWI) in 

addition to the famous Normalized Difference Vegetation Index 

(NDVI). Fourth, all the bands are extracted to the defined 

common extent from step 2. The last module of the pre-

processing step is the computation of the NDVI, NDSI and 

NDWI. Those five modules are named DEMMASK, 

COMMONAREA, IMGRESIZE, MASKAPPLY, and VICOMP 

as shown in Table 1. It normally takes only a few seconds for 

each run. In the test of Phanga data, there were 4 data sets each 

of which contained 7 bands. Totally, 28 bands were prepared 

and ready for the scaling context image analysis. 

 

The main processing started from AOCSCALE script, which 

could take advantage from the parallel processing. As 28 bands 

were prepared, 28 AOCSCALE jobs could be submitted to the 
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clusters. Moreover, the scale-space was generated from several 

scale parameters; say 4 scales, thus 28 x 4 = 112 jobs could be 

submitted. Likewise, 4 x 4 = 16 jobs of SPECLASS script and 4 

jobs SCALELINK script respectively were submitted to run 

simultaneously corresponding to 4 data sets. Practically, only 

three most time-consuming scripts, i.e. AOCSCALE, 

SPECLASS and SCALELINK, were developed to utilize the 

parallel processing. Other scripts were submitted to compute on 

a single CPU and took only a few seconds for each. 

 

Vegetation dominantly covered the test area whereas all the 

man-made features were very small. Therefore, only 4 scales of 

9, 25, 49, and 81 for running AOCSCALE script were enough 

to discriminate the diverse object sizes in the scene. Regarding 

the parameters of the SPECLASS scripts, as a rule of thumb, a 

redundant number of classes and number of iterations were 

used, e.g. 15 classes and 15 iterations.  Depending on the real 

data and the threshold of 5% change allowance in each class, 

the number of classes was determined automatically after a 

number of iteration.  As a scene might contain the useless 

information such as no-data areas, the cloud and shadow, the 

SCALELINK required a text file listing the spectral indexes of 

those unused classes as the input parameter.  

 

The extracted results by scaling context image analysis are 

shown in Figure 7 in which the green colours present the 

vegetation, and brown-red colour presents the others. In the 

analysis, the irrelevant classes like cloud, shadow, and water 

were masked out. Generally, it is easy to observe the quickest 

re-growth of vegetation and the slower recovery human 

activities. Figure 7 shows non-uniform pattern of vegetation in 

the 2004/12/31 and 2005/02/08 scenes unlike the other two 

2002/11/15 and 2006/01/26 scenes. It inferred the effect of 

tsunami strike, which washed away the vegetation and resulted 

in more ground exposed, and the quite complete recovery of 

vegetation in early 2006. It was also clear that there were two 

distinct severe affected areas as shown in Figure 5. For the sake 

of illustration, they are named North and South zones. 

 

 

Figure 7. Extracted results of the entire areas, green colours 

present the vegetation cover 

 

To more clearly illustrate the results of the scaling context 

analysis, a small area of the North zone was extracted as shown 

in Figure 8. While the upper row in this figure depicts the false-

colour-composite scenes, the lower row presents the extracted 

objects based on their IDs. Due to the huge amount of extracted 

objects, the colour code is just able to show the discrimination 

of an object to its neighbours. Thus, the same colour of two 

objects that are far way each other does not mean they have the 

same ID. It is easy to observe the change of the biggest 

vegetation object. Vegetation dominated the area in the 

2002/11/15 scene. Due to tsunami attack, this object was 

fragmented into several smaller objects as shown in the 

2004/12/31 scene. It gradually reformed in the 2005/02/08 and 

2006/01/26 scenes. Another observation is a water body in the 

top-middle of the scene. It was clearly presented as a water 

body in the scenes 2002, 2004, and 2005. However, it might be 

filled in late 2005, which was resulted in its merge with a 

concrete object nearby in the scene 2006/01/26.  

 

 
Figure 8. False colour composite (FCC) of an extracted small 

area in the North zone (upper row) and the extracted 

objects presented by their IDs (lower row).  

 

Regarding the human activities, the small man-made objects 

along the coastline, which disappeared in the scenes 2004/12/31 

and 2005/02/08, were recovered in the scene 2006/01/26. A bit 

further inland where was at the edge of affected zone, there 

existed a rather large concrete object in the bottom-middle of 

the scenes 2004/12/31, 2005/02/08 and 2006/01/26, which was 

not in the scene 2002/11/15. It appeared as a bright dot in FCC 

images in Figure 8 (the second, third and the fourth columns). 

Its extracted result was merged with the bare ground due to the 

tsunami strike in 2004/12/31 scene. Its size was reduced in 

2005/02/08 scene because of the recovery activities.  Finally, it 

was clearly discriminated from the surrounding in 2006/01/26 

scene. Figure 9 depicts only the small vicinity of this concrete 

object to illustrate the observation. This object probably was 

built after 2002 and before the tsunami strike. 

 

A small coastal area in the South zone was also extracted for 

investigation (Figure 10). Figure 10 shows a good match 

between the extracted results and the original images. In this 

area, less human activities in 2002/11/15 scene as vegetation 

dominated, which was extracted as the biggest orange object 

(first column of Figure 10). Due to the tsunami strike, most of 

vegetation was washed away and the bare ground was exposed. 

The vegetation object was reduced in size and the ground 

objects in grey and green colours dominated the scene (second 

column). Similar situation could be observed in the 2005/02/08 

(third column). In 2006, vegetation somehow was recovered 

like before the disaster. However, there might be more 

construction in the area. The vegetation object and the concrete 

object are shown in grey and yellow colours, respectively in the 

last column of Figure 10. 

 

 
Figure 9. Observation of a concrete object in the North zone 
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Figure 10. Observation of an area in the South zone 

 

Grid computing is a great solution for speeding up the time-

consuming processing steps. It enables the detailed and 

complicated context-based analysis of the large scenes in which 

diverse aspects of possessed information are integrated. The 

scaling context image analysis developed in this paper focussed 

in the monitoring post-disaster recovery application. However, 

the extracted results here show that it can generally serve as a 

context-based tool for image classification/segmentation and 

feature extraction from images of various spatial resolutions. 

Less number of required parameters and operator’s interaction 

are the good points of the proposed approach. 

 

 
4. CONCLUSIONS 

The remotely sensed solution for monitoring the recovery after 

a large-scale disaster has been introduced and designed for 

implementation on GEO Grid infrastructures. The data 

collection exploited the database grid system with available free 

ASTER products whereas the data analysis was based on the 

grid-based computing power with the scaling context image 

analysis as the core processing. The extracted GIS-ready-to-use 

results would ease the works of the decision makers and disaster 

management practitioners. Serving the recovery process in the 

disaster management cycle, the automated grid-based approach 

on GEO Grid helps to reduce the cost invested on data and 

processing system. Thus, it provides a feasible solution to the 

developing countries, which are facing numerous large-scale 

disasters. The proposed approach can be easily extended to 

monitor the recovery after other disaster types as well as is 

promising for the application to the post-disaster response 

phase. Further works will concentrate in optimization of parallel 

computation on GEO Grid. Additionally, a portal site will be 

developed as the interface for the end-users. Scaling context 

image analysis generally and monitoring the disaster-affected 

areas particularly will be the mounted applications on GEO 

Grid system. The ultimate goal is to widely introduce to the 

users in developing countries. 
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