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ABSTRACT: 
 
In this paper, a methodology is proposed for the geometric refinement of LiDAR building roof contours using high-resolution aerial 
images and Markov Random Field (MRF) models. The proposed methodology assumes that the 3D description of each building roof 
reconstructed from the LiDAR data (i.e., a polyhedron) is topologically correct and that it is only necessary to improve its accuracy. 
Since roof ridges are accurately extracted from LiDAR data, the main objective is to use high-resolution aerial images to improve 
the accuracy of roof outlines. In order to meet this goal, the available roof polyhedrons are first projected onto the image-space. 
Then, the projected polygons and the straight lines extracted from the image are used to establish an MRF description, which is 
based on relations (relative length, proximity, and orientation) between the two sets of straight lines. The energy function associated 
with the MRF is minimized using a minimizing algorithm, resulting in the grouping of straight lines for each roof object. Finally, 
each grouping of straight lines is topologically reconstructed based on the topology of the corresponding LiDAR polygon projected 
onto the image-space. The preliminary results showed that the proposed methodology is promising, since most sides of the refined 
polygons are geometrically better then corresponding projected LiDAR straight lines. 
 
 

1. INTRODUCTION 

Data acquisition for mapping and GIS using photogrammetric 
techniques has traditionally been performed via the manual 
extraction of cartographic features from images of the terrain 
surface ranging in scale from 1:3000 to 1:90000 (Sowmya and 
Trinder, 2000). Although manual extraction is adequate in 
terms of accuracy and reliability, it is time-consuming and 
expensive. On the other hand, due to imperfections in the image 
acquisition phase and the scene complexity, feature extraction 
from imagery and LiDAR data is too complex to be fully 
automated. 
 
Building extraction methodologies are very important in the 
context of spatial data capture and updating for GIS 
applications. These methodologies may be classified into three 
categories according to the kind of input data, i.e.: LiDAR-
based methodologies, photogrammetrically-based 
methodologies, and LiDAR/photogrammetrically-based 
methodologies. An example of the first category is found in 
Rottensteiner et al. (2005), in which an algorithm for roof line 
delineation from LiDAR data is proposed. Basically, roof edges 
and roof ridges are derived separately and combined to form a 
consistent polyhedral model. Vosselman (1999) also described 
another approach for the reconstruction of buildings by 
polyhedron models from LiDAR data. Photogrammetrically-
based methodologies have been proposed for over 20 years. For 
example, Fua and Hanson (1987) proposed a methodology for 
locating and outlining complex rectilinear cultural objects 
(buildings) in aerial images. In Shufelt (1997) is described the 
PIVOT (Perspective Interpretation of Vanishing points for 
Objects in Three dimension) system, which aims at 
automatically extracting building from a single image. More 
recently, Müller and Zaum (2005) proposed a methodology for 
building detection in aerial images. First a region-growing 

algorithm is used to segment the entire image and then the 
buildings and vegetations are separated by a classification  
 
procedure based on a set of geometric and photometric features 
derived for each segmented region. 
 
 LiDAR/photogrammetrically-based methodologies seek to take 
advantage of the synergy between LiDAR data and imagery 
data. Basically, LiDAR-based techniques are superior in 
deriving building heights and in extracting planar roof faces and 
roof ridge lines, whereas photogrammetrically-based techniques 
are superior in extracting building roof outlines (Kaartinen et al., 
2005). A few LiDAR/photogrammetrically-based 
methodologies are found in the literature. Haala and Brenner 
(1999) combined multispectral imagery and DEM (Digital 
Elevation Model) derived from LiDAR data for separating 
building from vegetation. In Sohn and Dowman (2003) 
buildings are firstly extracted from both Ikonos imagery and 
from DEM/LiDAR data and, then, the results obtained from 
both data sources are combined to remove inconsistencies. 
Vosselman (2002) combined LiDAR, plan view, and high-
resolution aerial image data to automatically reconstruct 3D 
building. Basically, the plan view is used as reference to extract 
polyhedral building model from LiDAR data. The high-
resolution aerial images are used to refine the roof boundaries. 
In this paper, a methodology is proposed for the geometric 
refinement of LiDAR building roof contours using high-
resolution aerial images and MRF models. MRF models have 
been increasingly used in image analysis because they enable 
the exploitation of the local statistical dependence of image 
features and also allow global optimization to be accomplished 
through iterative local computations. This makes sense 
particularly in the context of roof building extraction because it 
is not necessary that all straight lines interact with one another. 
Instead, only a few straight lines that are spatially close to one 
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another and with specific angular relations with one another 
need to interact. Using projected LiDAR roof contours and their 
error projections, the neighboring set of straight lines associated 
with each building roof can be further reduced. This paper is 
organized as follows. Section 2 presents the proposed 
methodology. The preliminary results are presented and 
discussed in Section 3. Finally, the paper is finalized in Section 
4 presenting some conclusions and outlook. 
 
 

2. METHODOLOGY 

The proposed methodology comprises preprocessing steps, the 
establishment of the energy function (U(x)) based on an MRF 
model, the solution of the energy function by applying a 
minimization algorithm, and the completion of the detected 
straight lines´ groupings for reconstructing the refined image-
space roof contours. In the following sub-sections, details on 
briefly described steps of the proposed methodology are 
described. However, it will be given considerable emphasis on 
basic MRF theory and on development of the energy function. 
 
2.1 Preprocessing 

The preprocessing steps mainly comprise the projection of the 
3D roof contours onto the image-space and the extraction of the 
image straight lines that are nearby the projected LiDAR roof 
contours. The techniques used in these steps are well-known 
and, as such, only more general details are presented. 
 
In order to project the 3D building roof contours onto the 
image-space, two basic steps are necessary. First, the 
collinearity equations are used, along with the exterior 
orientation parameters, to transform the roof contours into the 
photogrammetric reference system. Second, an internal camera 
model and the associated interior orientation parameters are 
used to add systematic errors and to transform the roof contours 
from the photogrammetric reference system to the LC-image 
coordinate system. The error projections are estimated in order 
to construct a registration error model. 
 
The registration error model is a simple bounding box 
constructed around each projected LiDAR straight line, which 
enables the straight line extraction process to be focused only 
on limited regions of the image, avoiding the extraction of 
irrelevant information. There is a large amount of research in 
the literature in the subject of straight line extraction. Examples 
of methods are the Burns line detector (Burns et al., 1984) and 
the Hough transform based methods (Balard and Brown, 1982). 
The algorithm for straight line extraction is based on standard 
image processing algorithms and seems to be effective for the 
present application. First, the Canny operator is used to 
generate a binary map with thinned edges. Next, an edge 
linking algorithm is applied to the edge map for organizing the 
pixels that lie along edges into sets of edge contours. In order to 
extract the straight lines, the edge contours are approximated by 
polylines through the recursive splitting method (Jain et al., 
1995). Very small straight lines (2-3 pixels length) and straight 
lines differing too much in orientation (e.g., 20o) from the 
projected LiDAR roof contour are removed, since they are 
unlikely to be valid candidates for constituting roof contours. In 
the last step, simple perceptual grouping rules (i.e., proximity 
and collinearity) are used to merge collinear straight lines and 
then to further reduce the number of candidates for representing 
the roof contours. 
 

2.2 MRF concepts and the energy function 

2.2.1 Basic concepts of the MRF theory 

MRF theory provides an efficient way to model context-
dependent features such as straight lines forming a roof building 
contour. In an MRF, the sites in S= {1, …, n} are related to one 
another through a neighborhood system defined as N= {Ni, i∈  
S}, where Ni is the set of sites neighboring i. A random field X 
is said to be an MRF on S with respect to a neighborhood 
system N if and only if, 
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is a normalizing constant and U(x) is an energy function, which 
can be expressed as: 
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Equation 4 shows that the energy function is a sum of clique 
potentials (Vc(x)) over all possible cliques c∈C. A clique c is a 
subset of sites in S in which every pair of distinct sites are 
neighbors. The value of Vc(x) depends on the local 
configuration on clique c. For more detail on MRF and Gibbs 
distribution see e.g. Kopparapu and Desai (2001) and 
Modestino and Zhang (1992). 
 
2.2.2 The energy function: 

Straight lines resulting from the image processing techniques 
are used to construct an MRF model expressing the specific 
shapes of building roofs, having as reference the polygons 
resulted from the photogrammetric projection of LiDAR roof 
contours. The associated energy function is defined in such way 
that each straight line is associated with a discrete random 
variable (xi) assuming binary values according to the following 
rule: 
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The above rule gives rise to an n-dimensional discrete random 
vector, where n is the number of straight lines to be considered 
in the optimization process. This random vector is the unknown 
in the optimization process. Theoretically, the search space has 
2n combinations to be considered in the global minimum 
computation of the energy function. The optimization algorithm 
used will be described later. 
 
Before proceeding with the development of the energy function, 
it is necessary to define two metrics, called the proximity and 
orientation metrics. Both metrics are the basis for defining the 
neighbour system for the problem under consideration. 
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Figure 1.  Geometric elements for defining the proximity and 
orientation metrics 

 
The metric for the proximity between two straight lines Fi and 
Fj is defined as follows, 
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Equation 6 is based on the principle that straight lines that are 
somehow interrelated and near to one another are perceived as 
belonging to a same unit. In this case, the unit is the reference 
roof contour, i.e., the projected LiDAR roof contour. The 
equation 6 is then an indirect proximity measurement between 
Fi and Fj, since it explicitly expresses the nearness between a 
pair of straight line (Fi and Fj) and the projected LiDAR roof 

contour. But, one can interpret that if both Fi and Fj are closed 
to the unit, then they are somehow near. It is also easy to note 
that the following properties hold: P(i, j)  0 and P(i, j)= P(j, i). 
In particular, P(i, j)= 0 if only if both straight lines (Fi and Fj) 
superpose the like parts of the projected LiDAR roof contour. 

≥

The metric for the orientation between two straight lines Fi and 
Fj follows the same principles of the proximity metric and it is 
defined tanking into account the sigmoid function, i.e., 
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The sigmoid function has some interesting properties: 1) it has 
only a minimum point at = ; 2) it takes value over [0; 1]; 3) 

it is symmetric around θ = ; and 4) the constant β  can be 
used to control the shape of the sigmoid function. The larger is 
the parameter , the harder is the penalization of deviations of 
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where: tp and ts are the proximity and orientation thresholds, 

respectively 
 
The energy function U(x) is elaborated based on three energy 
terms. The first term is an one-site click energy defined in such 
way to favor longer straight line, taking as reference the nearest 
projected LiDAR straight line. This energy term (U1(x)) is 
expressed as follows, 
 
 

 ∑=
=

n

1i
F

L

F
i1

i

i

L

L
x)(U x                                                  (9) 

 
where: n is the number of image straight lines 

  is the length of the projected LiDAR straight 

line that is nearest to the ith image straight line (Fi) 
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  is the length of the ith image straight line (Fi) 
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The second term is a two-site click energy that favors straight 
lines that are nearer to the projected LiDAR roof contour. This 
term is called the proximity energy term and is formulated 

llows, 
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he energy function can be finally expressed as follows: 

U(x             (12) 
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ne, 
even when the complexity of the building is relatively high. 

 associated with 
e problem in hand, two constraints are used: 

checked need to res

fo

 
T
 
 )= )(.U  )(.U  )(.U 332211 xxx ααα ++

 
w 32  1  and ,, ααα
 
The second and third terms of energy have in the denominator 

the term ∑ >
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i 1 x . This means that each configuration needs to 

allow at least two correspondences. The optimal configuration 
(xopt) is obtained by minimizing the energy function, i.e., xopt= 
argmin(U(x)). Th

n
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In order to obtain the optimal configuration  (xopt) it is 
necessary to find the global minimum of the energy function 
(U(x)). The global minimum can be found by the so-called 
brute force searching method. This method is a simple and 
general problem-solving technique, which consists of 
exhaustively searching for the best candidate among all possible 
configurations. It is simple to implement and, if a solution 
exists, it always finds it. The great problem of using the brute 
force method is that in many practical problems the number of 
candidates can be so large that the problem becomes intractable. 
In general, the brute force method can be used when the 
problem complexity is relatively simple or when there are 
problem-domain heuristics that can allow the search space size 
to be reduced properly. In the sequence, it will be showed that 
the problem in hand can be transformed into a tractable o

In order to avoid the combinatorial explosion
th
 
1) Uniqueness constraint: each projected LiDAR straight line 

must have at most one correspondence, which is either an 
image straight line or no entity. This means that 
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straight lines. Let n1, n2, …, nm be the number of straight 
lines that are nearby the corresponding projected LiDAR 
straight lines. It is easily noted that n= n1 + n2 + … + nm. 
The number of configurations that needs to be checked is 
C1= (n1 + 1).(n2 + 1) … (nm + 1)<<  | X |= 2n. 
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reasonable to expect a minimum of correspondences for 
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The brute force search method modified with the two domain 
constraints described above is called constrained brute force 
search method. In order to demonstrate that the two domain 
constraints can reduce the search space to a tractable size, an 
example considering a relatively complex building with 20-side 
roof contour (m= 20) is analysed. Usually, the proposed 
preprocessing techniques extract 1-3 straight lines around each 
projected LiDAR straight line. Tanking into account an average 
extraction of two straight lines around each projected LiDAR 
straight line, the following holds: 1) n= 40; 2) n1= n2= … = n20= 
n´= 2; 3) | X |= 2n= 1,099,511,627,776; 4) C1= 3,486,784,401 
(~99,7% reduction); 5) C2= 1,048,786 (p= 90), which is a 
reduction of about 99,9996% wh  compa
candidates resulted from the uniqueness constraint. In other 
words, it is true that C2<< C1<< | X |=
 
2.4 Building contour completion 

The optimisation method generates isolate image straight lines, 
whose one-to-one correspondences to the projected LiDAR 
straight lines are known. Projected LiDAR straight lines having 
no correspondences are kept together the matched image 
straight lines. Thus, the problem to be solved consists of the 
corner determination by line intersection. This is a
p
c tour can be used to identify adjacent straight lines

 
3. EXPERIMENTAL RESULTS 

The test data consists of a high-resolution aerial image and a 3D 
bulding model generated automaticaly and previously by a 
preexisting methodology that processes LiDAR point clound. 
The test area is located in the city of Curitiba, Brazil. The 
image has 4500 pixels x 3000 pixels and the pixel footprint is 
about 20 cm. The interior orientation parameters of the camera 
and also the exterior orientation parameters of the images are 
known. Figure 2 shows the test building used in the preliminary 
experiment. This is an (inverted) E-shaped building, with a 19-
side roof contour. Please note th
fa
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Figure 2.  Test building 
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Figure 3.  Projected LiDAR straight lines 
 
Figure 3 shows the projected LiDAR straight lines obtained 
through the projection of the 3D roof contour. The resulting 
polygon is relatively close to the building roof edges, as a small 
registration error of about 5-pixel maximum is present. This 
largest registration error occurs with the LiDAR straight line 5. 
However, the LiDAR straight lines 13 and 15 do not aproximate 
correctly the details that are nearby them. 
Figure 4 shows that twenty-four straight lines are extracted by 
the preprocessing steps. The projected straight lines have the 
following number of candidate for matching: ten projected 
straight lines have only one candidate; seven projected straight 
lines have two candidate; and two straight lines have no 
candidates. This result shows that the preprocessing steps filter 
out irrelevant information properly. Straight lines that are 
successfully matched to the projected LiDAR roof contour are 
overlaid in white on the image. The remaining straight lines that 
are rejected by the matching process appear in black. As shown 
in figure 4, the methodology found fourteen (74%) 
correspondences, in which thirteen (69%) are correct and one 
(5%) is incorrect (false positive). Please note that the incorrect 
matching occurred because the matched straight lines is nearer 
to the projected LiDAR straight line 5 than the another 

candidate for matching. In addition, both candidates for 
matching have similar length and orientation related to the 
projected LiDAR straight line 5. Figure 4 also shows that the 
methodology did not find five (26%) correspondences (false 
negatives). All false negative cases are related to either the 
absence of candidates (i.e., the nearby LiDAR straight lines 11 
and 17) or the presence of invalid candidates (i.e., the nearby 
LiDAR straight lines 4, 13, and 15). 
 

 
 

Figure 4.  Matching result 
 

 
 

Figure 5.  Completion result 
 
Figure 5 presents the result of the proposed completion strategy. 
Fourteen projected LiDAR straight lines are replaced by the 
matched straight lines. These straight lines are potentially better 
representations for the corresponding projected LiDAR straight 
lines. The projected LiDAR straight lines 4, 11, 13, 15, and 17 
are kept because they do not have correspondences among the 
straight lines extracted by the preprocessing steps. The refined 
image-space roof contour is determined by using the new 
straight line grouping constructed through the above rules, 
along with the topology of the projected LiDAR roof contour 
polygon. Basically, the new image-space roof contour polygon 
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