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ABSTRACT: 
 
The use of non-metric digital cameras in close-range photogrammetric applications and machine vision has become a popular 
research agenda. Being an essential component of photogrammetric evaluation, camera calibration is a crucial stage for non-metric 
cameras. Therefore, accurate camera calibration and orientation procedures have become prerequisites for the extraction of precise 
and reliable 3D metric information from images. The lack of accurate inner orientation parameters can lead to unreliable results in 
the photogrammetric process. A camera can be well defined with its principal distance, principal point offset and lens distortion 
parameters. Different camera models have been formulated and used in close-range photogrammetry, but generally sensor 
orientation and calibration is performed with a perspective geometrical model by means of the bundle adjustment. In this study, a 
feed-forward network structure, learning the characteristics of the training data through the backpropagation learning algorithm, is 
employed to model the distortions measured for the Olympus E-510 SLR camera system that are later used in the geometric 
calibration process. It is intended to introduce an alternative process to be used at photogrammetric calibration stage. Experimental 
results for SLR camera with two focal length setting (14 and 42 mm) were estimated using standard calibration and neural network 
techniques. The modeling process with ANNs is described and the results are quantitatively analyzed. Results show the robustness 
of the ANN approach in this particular modeling problem and confirm its value as an alternative to conventional techniques. 
 
 

                                                                 
*  Corresponding author.   

1. INTRODUCTION 
 
Last decade has witnessed an extensive use of digital non-
metric SLR cameras for use in low cost applications in 
archaeology, architecture, cultural heritage and others. Increase 
in image resolution, the dropping prices, present facilities in 
storing/transferring images files and easy direct image 
acquisition (without digitizing films or paper prints) are the 
main reasons increasing the use of these instruments. Also, the 
use of low cost digital photogrammetric systems, such as Photo 
Modeler and 3D Mapper has contributed to the use of these “off 
the shelf” cameras among photogrammetrists and non 
photogrammetrists (Cardenal et. al., 2004). 
 
Digital cameras have been widely used for close range 
photogrammetry and machine vision applications. For any 
photogrammetric application, the accuracy of the derived object 
data is mainly dependent on the accuracy of the camera 
calibration, amongst many other factors.  
 
Camera calibration has always been an essential component of 
photogrammetric measurement, with self-calibration nowadays 
being an integral and routinely applied operation within 
photogrammetric triangulation, especially in high-accuracy 
close-range measurement. With the very rapid growth in 
adoption of off-the-shelf digital cameras for a host of new 3D 
measurement applications, however, there are many situations 
where the geometry of the image network will not support 

robust recovery of camera parameters via on-the-job 
calibration. For this reason, stand-alone camera calibration has 
again emerged as an important issue in close-range 
photogrammetry, and it also remains a topic of research interest 
in computer vision (Remondino and Fraser, 2006). 
 
A camera is considered calibrated if the principal distance, 
principal point offset and lens distortion parameters are known. 
In many applications, especially in computer vision (CV), only 
the focal length is recovered while for precise photogrammetric 
measurements all the calibration parameters are generally 
employed. Various algorithms for camera calibration have been 
reported over the years in the photogrammetry and CV 
literature. The algorithms are generally based on perspective or 
projective camera models, with the most popular approach 
being the well-known self calibrating bundle adjustment, which 
was first introduced to close-range photogrammetry in the early 
1970s.  
 
In the past decade, the artificial neural network approach, 
theoretically a sophisticated and robust method of pattern 
recognition and modeling, has been employed in many 
applications in diverse areas. It is generally agreed that artificial 
neural networks (ANNs) produce results with higher accuracies 
from fewer training samples (Hepner et al. 1990; Paola 1994; 
Foody 1995). An important characteristic of ANNs is their non-
parametric nature, which assumes no a priori knowledge, 
particularly of the frequency distribution of the data. Because of 
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 their adaptability and their ability to produce high accurate 
result, their use has spread in the scientific community. ANNs 
have been successfully employed in many fields for solving 
complex modeling, prediction and simulation problems that are 
often represented by noisy and missing data. Neural networks 
have been used in a variety of studies in photogrammetry field 
(e.g. Lilienblum et al., 1996; Basri and Heipke, 2003; 
Civicioglu and Besdok, 2006). 
 
This paper overviews the current and ANN approaches adopted 
for camera calibration in close-range photogrammetry, and 
discusses operational aspects for calibration. Also, the results of 
camera calibrations using two different algorithms are 
examined and discussed. Experimental results for SLR camera 
with two different lenses derived from the two calibration 
method, including an assessment of the effect and repeatability 
of the distortion variation, are presented and the effectiveness of 
the techniques is quantitatively analyzed.  
 

2. PHOTOGRAMMETRIC CAMERA CALIBRATION 
  
Different camera models have been formulated and used in 
close-range photogrammetry, but generally sensor orientation 
and calibration is performed with a perspective geometrical 
model by means of the bundle adjustment (Brown, 1971). A 
review of methods and models of the last 50 years is provided 
in Clarke & Fryer (1998). The basic mathematical model is 
provided by the non-linear collinearity equations, usually 
extended by correction terms (i.e. additional parameters or APs) 
for interior orientation (IO) and radial and decentering lens 
distortion (Fraser, 1997; Gruen & Beyer, 2001). The bundle 
adjustment provides a simultaneous determination of all system 
parameters along with estimates of the precision and reliability 
of the extracted calibration parameters. Also, correlations 
between the IO and exterior orientation (EO) parameters, and 
the object point coordinates, along with their determinability, 
can be quantified. A favorable network geometry is required, 
i.e. convergent and rotated images of a preferably 3D object 
should be acquired, with well distributed points throughout the 
image format. If the network is geometrically weak, 
correlations may lead to instabilities in the least-squares 
estimation. The use of inappropriate APs can also weaken the 
bundle adjustment solution, leading to over-parameterization, in 
particular in the case of minimally constrained adjustments 
(Fraser, 1982). 
 
The self-calibrating bundle adjustment can be performed with 
or without object space constraints, which are usually in the 
form of known control points. A minimal constraint to define 
the network datum is always required, though this can be 
through implicit means such as inner constraint, free-network 
adjustment, or through an explicit minimal control point 
configuration (arbitrary or real). Calibration using a testfield is 
possible, though one of the merits of the self-calibrating bundle 
adjustment is that it does not require provision of any control 
point information. Recovery of calibration parameters from a 
single image (and a 3D testfield) is also possible via the 
collinearity model, though this spatial resection with APs is not 
widely adopted due to both the requirement for an accurate 
testfield and the lower accuracy calibration provided. 
 
One of the traditional impediments to wider application of the 
self-calibrating bundle adjustment outside the photogrammetry 
community has been the perception that the computation of 
initial parameter approximations for the iterative least-squares 
solution is somehow ‘difficult’. This is certainly no longer the 

case, and in many respects was never the case. As will be 
referred to later, self-calibration via the bundle adjustment can 
be a fully automatic process requiring nothing more than 
images recorded in a suitable multi-station geometry, an initial 
guess of the focal length (and it can be a guess), and image 
identifiable coded targets which form the object point array. 
 
2.1. The Additional Parameters (APs) 
 
The most common set of APs employed to compensate for 
systematic errors in CCD cameras is the 8-term ‘physical’ 
model originally formulated by Brown (1971). This comprises 
interior orientation (IO) parameters of principal distance and 
principal point offset (xp, yp), as well as the three coefficients of 
radial and two of decentering distortion. The model can be 
extended by two further parameters to account for affinity and 
shear within the image plane, but such terms are rarely if ever 
significant in modern digital cameras. Numerous investigations 
of different sets of APs have been performed over the years 
(e.g. Abraham & Hau, 1997), yet this model still holds up as the 
optimal formulation for digital camera calibration. 
 
The three APs used to model radial distortion Δr are generally 
expressed by the odd-order polynomial Δr = K1r3 + K2r5 + K3r7, 
where r is the radial distance.  The coefficients Ki are usually 
highly correlated, with most of the error signal generally being 
represented by the cubic term K1r3. The K2 and K3 terms are 
typically included for photogrammetric (low distortion) and 
wide-angle lenses, and in higher-accuracy vision metrology 
applications. The commonly encountered third-order barrel 
distortion seen in consumer-grade lenses is accounted for by K1. 
(Fraser & Al-Ajlouni, 2006). 
 
Decentering distortion is due to a lack of centering of lens 
elements along the optical axis. The decentering distortion 
parameters P1 and P2 (Brown 1971) are invariably coupled with 
xp and yp. Decentering distortion is usually an order of 
magnitude or more less than radial distortion and it also varies 
with focus, but to a much less extent. The projective coupling 
between P1 and P2 and the principal point offsets increases with 
increasing focal length and can be problematic for long focal 
length lenses. The extent of coupling can be diminished through 
both use of a 3D object point array and the adoption of higher 
convergence angles for the images. 
 
 

3. MATHEMATICAL MODEL 
 
The work with non-metric digital cameras for photogrammetric 
purposes is accompanied by the following problems: 
 
• Defining the image co-ordinate system (non-metric 

cameras do not have fiducial marks). 
• Defining the unknown elements of internal orientation 

(focal length and image co-ordinates of the principle point 
of the photograph). 

• Maintaining the elements of internal orientation 
unchanged in time - usually when working with non-
metric cameras, the elements of internal orientation get 
slightly changed after every single exposure. 

• Defining the distortion of lens - the distortion with 
amateur cameras often amounts to considerable values 
and have substantial effect. 

 
There are three basically different methods for solving the 
above mentioned problems known. These are laboratory 
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 calibration (calibration in advance), calibration during 
processing, and self calibration methods. The first one was used 
in this study. 
 
In accordance with the co-linearity condition, every object 
point, its image and the projection centre, should belong to one 
and same line, called ray. Mathematically this can be 
represented by means of the following three equations: 
               

 
                                                           
                                (1) 
 
 

 
where:  i = 1, 2, ... n 
 
n : the number of measured image points, 
(xi, yi, O)T  : image co-ordinates of point i, 
(xo, yo, f)T  : the elements of internal orientation, 
λi  : the scale factor, 
R  : the rotation matrix, defining the spatial rotation 

of the geodetic coordinate system in relation to 
the image co-ordinate system. R is function of the 
three angles ω, φ, κ, 

(Xi, Yi, Zi)T  : the geodetic co-ordinates of point i, 
(Xo, Yo, Zo)T  : the geodetic co-ordinates of projection centre О. 
 
It is not justifiable to render different scale factor for each i 
point. The scale factor could be eliminated by dividing the first 
and second equations from the system by the third one: 
 

 
 
where; mij terms are the elements of R matrix. 
 

  
 

 
 
 

                                            (3)

 
A system of kind (2) could be composed for each measured 
image point i. This means that if the object is photographed by 
one stereo-pair, each point from the object would originate two 
systems of kind (2) or in total 4 equations, since each point is 
appeared on two photographs. 
 
3.1. Additional Parameters in Mathematical Model 
 
Lens distortions, as well as some other possible defects of the 
camera, are origin for systematic errors in image co-ordinates, 
because the images get drawn away from correct central 
projection. One of the conditions of the least squares adjustment 
is that the adjusted quantities should not contain systematic 
errors. With amateur cameras, as distinct to professional 
cameras, these defects may have significant values and hence 
may considerably disturb the processing. 
 

If the lens distortion is known, the image co-ordinates may be 
adjusted before the bundle adjustment. This process is known as 
image refining. Even in case of some distortion, the refining is 
ineffective, because with non-metric cameras it gets changed in 
time. It is more effective for the image defects to be reduced by 
introduction of additional parameters into the mathematical 
instrument: 
 

 
 
where the additional parameters Δxp and Δyp are function of 
some unknowns and take part in adjustment together with the 
rest of unknowns. 
 
 

4. CAMERA AND IMAGE ACQUISITION 
 
The Olympus E510 digital SLR camera contains a 10 
megapixel CCD sensor (3648×2736 pixel with approximately 5 
μm pixel spacing) with a format size of 18.25 mm×13.7 mm. 
The camera system has two different lenses (14-42 mm and 40-
150 mm). 
 
In this study, in order to metric calibration of the digital camera 
a planar calibration testfield (Figure 1), which is a plate with 
regular grids, has been used. It has 144 circular coded targets on 
it. Four of these targets were used as control points. Using the 
calibration grid, 6 images were taken for each focal distance 
setting. In other words, 12 images were totally taken for two 
different lenses, including the ideal geometric conditions and 
network geometry.  
 
  

 

C.1 C.3 

C.4 C.2 

 
Figure 1. Calibration grid used in this study 

 
A comparison between different methods was carried out using 
a grid and 12 images acquired with Olympus digital camera at 
an image resolution of 3648×2736 pixels. In all cases, the target 
images were automatically measured by intensity-weighted 
centroids (Trinder, 1989) using the PhotoModeler software by 
EOS system. 
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 5. ARTIFICIAL NEURAL NETWORKS 
 
Artificial neural networks (ANNs) are computational models 
that attempt to imitate the function of the human brain and the 
biological neural system. They are considered as heuristic 
algorithms, in that they can learn from experience through 
samples and subsequently applied to recognize new data. The 
robustness of ANNs rests on their ability to generalize and 
classify noisy or incomplete data. They also do not make any 
assumptions about the frequency distribution of the data. ANNs 
can also provide superior results for limited data compared to 
the conventional methods (Blamire, 1996; Foody, 1995). 
Artificial neural networks learn the characteristics of the 
training data typically in an iterative way by taking every single 
data into consideration; therefore, they are viewed as data-
dependent models (Kavzoglu, 2001). Despite their significant 
advantages, they have the main drawback of having a poorly 
interpretable nature. Therefore, they are often called black-box 
methods.  
 
Although various types of neural network models have been 
developed, the majority of applications in the literature have 
used the multi-layer perceptron (MLP) model trained with the 
back-propagation algorithm. The basic element of ANNs is the 
processing node that corresponds to the neuron of the human 
brain. Each processing node receives and sums a set of input 
values, and passes this sum through an activation function 
providing the output value of the node. The structure of MLP 
includes three types of layers: input, output and hidden layers 
(Figure 2). All inter-node connections have associated weights, 
which are usually randomized at the beginning of the training. 
When a value passes through an inter-connection, it is 
multiplied by the weight associated with that inter-connection. 
 
The backpropagation learning, the most popular learning 
algorithm, is based on an iterative gradient decent strategy. 
After weight initialization, outputs are estimated for the input 
data presented to the network and then the difference (i.e. error) 
is estimated. New weights are calculated in a way that the error 
is minimized. The whole process is repeated until a user defined 
criterion is achieved.  
 

  

 Input Layer  

                Hidden Layers            

 

 

 

 Input 
 Patterns 

 

 

 

    Output
   Patterns

 Output Layer 

 
 

Figure 2. Generic structure of a MLP network 
 
The use of ANNs is somehow complicated, due to problems 
encountered in their design and application. From the design 
perspective, the specification of the number and size of the 
hidden layer(s) is critical for the network’s capability to learn 
and generalize. A further difficulty in the use of MLPs is the 
choice of appropriate values for network parameters that have a 
major influence on the performance of the learning algorithm. It 
is often the case that a number of experiments are required to 
determine optimum parameter values. Therefore, a trial-and-
error strategy is frequently employed to determine appropriate 
values for these parameters. It should be noted that all 
experiments were carried out considering the guidelines 

suggested by (Kavzoglu and Mather, 2003) for designing the 
network structure and setting up the learning parameters.     
 
 

6. RESULTS AND DISCUSSIONS 
 

Two calibration processes were applied for selected lenses with 
14 and 42 mm, determining the additional parameters The 
calibration of the Olympus E510 digital camera was performed 
using Photomodeler (version 5) self calibration module, using 
several images of a plane grid supplied with the software. The 
results of calibration with 14 and 42 mm lenses are shown in 
Figures 3 and 4. In addition to this, 3D co-ordinates of the 
coded targets were calculated using conventional 
photogrammetric approach.  

 

 
 

Figure 3. Calibration information for 14mm lens 

 

 
 

Figure 4. Calibration information for 42mm lens 
 
 

Bundle adjustment with additional parameters was applied for 
14 and 42mm focal distances using Photomodeler software. 
Then, the distortions were calculated for x- and y-coordinate 
directions for both settings that are shown in Figures 5 and 6. 
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 Note that the estimated distortions were shown as vectors with a 
scale factor.  
 

 
 

Figure 5. Distortions as 2D vectors estimated for 14mm lens 
 
 

 
 

Figure 6. Distortions as 2D vectors estimated for 42mm lens 
 
In the second stage of this study, distortions estimated through 
the bundle adjustment with additional parameters were taught to 
a MLP neural network using backpropagtion with momentum 
learning algorithm. After several trials, it is decided that a 
single hidden layer with 10 neurons (or nodes) would be 
sufficient to learn the distortion characteristics of the camera. 
Distortions for the two focal distances were introduced to two 
separate networks with the same structure (2-10-2 where 2 
shows the number of inputs, 10 shows the number of hidden 
layer nodes and the latter 2 indicates the outputs). 50 well-
distributed control points on the grid were selected for training, 
24 for validation and 70 for testing the network’s performance. 
In the learning process, distortions of selected 50 points were 
introduced to the network and the process was stopped when 
the error on the validation set started to rise significantly.  
 
Whilst the momentum was set to 0.6 throughout the learning, 
learning rate was systematically reduced from 0.3 to 0.05 to 
reach the global minimum in the error surface. Trained 
networks were tested on how well they learn the distortion 
surfaces in x- and y-directions. Distortion differences were 
estimated at each point and statistically analyzed (Table 1). It is 
clear from the figure the network trained for 42mm lens 
produced better results compared to those for 14mm lens. This 
could be easily derived from standard deviation and R-square 
values estimated for the distortions. It should be noted that the 
values presented in the table are in millimeter level.  
 
Assuming that the distortions estimated through bundle 
adjustment with 6 images of the grid are the real distortions, 

differences were estimated to determine the neural network 
performances. Differences were depicted on Figures 7 and 8. 
Further analyses show that the networks in fact create trend 
surfaces representing the complicated distortion surface. These 
surfaces are more complicated than a two or three-dimensional 
polynomial surfaces. Standard deviations estimated for network 
performances were about 30 micron that can be overall 
regarded as a successful modeling for complicated distortion 
surfaces.  
 

14mm 42mm Criteria x y x y 
Minimum -0.060 -0.072 -0.072 -0.061 
Maximum 0.080 0.061 0.063 0.060 
Standard Dev. 0.027 0.030 0.024 0.027 
R-square 0.777 0.770 0.890 0.854 
       
Table 1. Analysis of the performance of neural net learning for 
14mm and 42mm lenses 
 
 

 
 
Figure 7. Distortion differences as 2D vectors showing the 
performance of the neural network trained for 14mm lens 
 
Trained networks can be considered a distortion surface for the 
lenses and distortion for any required point on the grid can be 
easily estimated. Thus, a correction term estimated from the 
trained networks can be added to image coordinate estimations. 
Instead of a simple polynomial formulation, which has been a 
traditional way for representing distortions, a more complex 
representation of the distortion for any camera can be achieved 
with neural networks.        

 

 
 
Figure 8. Distortion differences as 2D vectors showing the 
performance of the neural network trained for 42mm lens 
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7.  CONCLUSIONS 
 
With recent developments and achievements in digital 
photography and technology, digital cameras have become 
popular and used for variety of purposes. Calibration of these 
cameras has become an important issue and a research agenda 
in the scientific community. Camera calibration is regarded as 
an essential step in photogrammetric 3-D object restitution. 
Calibration parameters including focal length, principal point 
location and lens distortion are usually determined by a self-
calibrating approach. In fact, calibration parameters are 
estimated by a bundle adjustment with additional parameters 
based on the collinearity equations, simultaneously with the 
object reconstruction. In the calibration of non-metric cameras, 
accurate determination of optical distortions due to lens (i.e. 
radial and tangential lens distortions) is of vital importance.    
 
Low degree polynomials have been conventionally used to 
model the distortions, particularly for radial lens distortion. The 
use of polynomials can give inferior results for some particular 
cases and camera types. In this study, artificial neural networks, 
specifically a multi-layer perceptron, is suggested to model the 
distortions existing for an Olympus E510 digital SLR camera. 
The distortions estimated through bundle adjustment with 
additional parameters were used as inputs to neural networks. 
After training the networks with some intelligent approaches, 
network performance tested both graphically and statistically. 
Results show that distortions can be modeled with standard 
deviation of less than 30 micron. It is noticed that the trained 
networks are in fact complex trend surfaces formed by weights 
of the interconnections in the network.  
 
Results produced in this study confirm the value of neural 
networks in this particular modeling problem (i.e. distortion 
modeling for a non-metric digital camera). Camera calibration 
is only one subject area in photogrammetry that neural network 
approach can be an alternative. They can be also employed in 
various photogrammetric applications.       
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