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ABSTRACT: 
 
The question of 3D data denoising has become a subject of intense research with the development of low cost acquisition systems. 
Recent works are based mainly on the adaptation of standard denoising methods historically developed in the context of image 
processing to a 3D point cloud or oftentimes on a 3D mesh. On one hand, methods which are independent from the acquisition stage 
are desirable since it allows to apply universal processes regardless from how the data were obtained. On the other hand, the noise 
which is to be removed or at least attenuated has specific origins; it also makes sense to get rid of it as close as possible to its 
physical origins, i.e. as early as possible in the global chain that goes from the acquisition to the final model. The paper addresses the 
question of Terrestrial Laser Scanner (TLS) data denoising. A method of denoising based on spatial filtering through wavelet 
decomposition is proposed. Its originality lies in the fact that it brings the problem back to the world of image processing. Each 
individual point cloud before registration is transformed into the corresponding range image which is the natural product of many 
TLS. Hence, TLS data denoising becomes a mere problem of image denoising. One can then envision to use the standardized image 
processing algorithms to process the point clouds before surface triangulation. In this paper, wavelet decomposition or more 
precisely speaking, subband coding is used to find out to what extent the important set of schemes deriving from the concept of 
subband coding is suited to the problem of TLS data denoising. 
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1. INTRODUCTION 

Terrestrial Laser Scanners have been used for about ten years as 
a new tool in a wide variety of applications. Whatever the built-
in technology (time of flight, phase shift, triangulation, etc.), 
the Signal to Noise Ratio (SNR) limits the accuracy of the point 
cloud and defines mainly the smallest object and the finest 
detail on the object which may be digitized adequately with a 
given instrument (Adami, 2007). Hence, the classical problem 
of data denoising remains relevant. For a given instrument 
which has been used at its best, i.e. its optimum resolution and 
accuracy conditions, what are the best post-processing methods 
which will allow one to obtain the maximum results? In other 
terms, what is the minimum size of the object and the minimum 
size of the detail on the object to be digitized provided one 
makes use of the extreme possibilities of the instrument 
combined with the most efficient post-processing methods?  
 
This paper deals with this very general question through the 
example of a Terrestrial Laser Scanner based on the time of 
flight technology which is designed for architecture needs. 
Hence, the accuracy on the range is given by the constructor (as 
being equal to 7 mm in our case).  
 
It will be shown that it is possible to denoise the point cloud by 
using the discrete 2D wavelet transform. 
 
The paper is organized as follows: paragraph 2 gives a brief 
description of the standard industrial chain which goes from the 
acquisition of the point cloud to the final 3D model. Among 
others, the paper recalls some recent propositions of data 
denoising which is usually performed on the 3D registered 

cloud or also on the 3D mesh. Paragraph 3 gives a very 
introductive description of data denoising by use of the so-
called discrete wavelet transform starting with the 1D case and 
including some general ideas on 2D signals. In paragraph 4, it 
will be shown that the 3D data of TLS may be processed as 
images provided that one modifies slightly the standard chain. 
Then, experimental results are given. They show that the 
denoising scheme gives pretty good results by using 
standardized algorithms. Last, paragraph 5 suggests further 
developments since so far, the experimental results prove the 
interest of the principle of the method but have not allowed to 
establish the best parameters to choose. 
 
 
2. THE STANDARD CHAIN: FROM ACQUISITION TO 

THE 3D MODEL 

The standard chain from the acquisition of the data to the final 
3D model consists in various stages whose order may often be 
changed as many variants exist. Besides, each stage may be 
realized by a wide variety of algorithms more or less 
automatically and is in itself a subject of research. The scope of 
this paragraph is to describe briefly the general idea of the 
standard industrial chain which has been implemented in most 
commercial softwares. 
 
The acquisition provides the raw point clouds, i.e. sets of points 
given by at least their X, Y, Z coordinates and usually the 
intensity of the laser pulse and sometimes more information. 
Each point cloud corresponds to one position of the laser 
scanner, called a station, several stations being necessary to 
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obtain a satisfactory description of the object with a maximum 
amount of information. 
 
Then, the different point clouds are registered and a unique 
point cloud is obtained for the whole object.  
 
The next step consists in isolating the object of interest in the 
segmentation step. 
 
Lastly, modeling or surface triangulation can be applied to 
obtain the mesh of the object. Further processing like texture 
mapping can still be applied depending on the final result one 
wants to obtain. This question of texture mapping is not central 
in this paper and will be neglected. Hence, the standard chain, 
illustrated on figure 1, will be defined until the mesh obtained 
by surface triangulation. 
 
 

 
 
Figure 1. The standard chain from the individual point clouds to 

the final model 
 
So far, the problem of denoising has been adressed through the 
processing of the 3D cloud or directly on the mesh. One can 
understand this approach which claims to be independent from 
the acquisition stage. Hence, the process becomes universal and 
one does not have to care for how the experimental data have 
been obtained. The first results which have been published were 
about the adaptation of standard isotropic methods well known 
in the image processing community to the 3D case of meshes. 
Historically, the classical Laplacian smoothing scheme has been 
developed (Gross, 2000; Ohtake, 2000). To overcome the 
oversmoothing problem due to lowpass filtering, Wiener 
filtering has also been adapted successfully to 3D meshes (Peng, 
2001). A second group of methods, inspired by anisotropic 
diffusion has been developed (Taubin, 1995; Hildebrandt, 2004). 
Recently, Bilateral filtering has been introduced in the question 
of mesh denoising (Fleishman, 2003). Many variants and 
enhancements of these basic methods have been introduced. 
Theoretical works have shown some equivalences between 
these methods (Barash, 2002). 
 
Though the care for acquisition independent methods is 
comprehensive, on the other hand, denoising as close as 
possible to the acquisition stage makes sense too for one can 
expect the noise to be more difficult to attenuate once 
cumulated in a complete 3D cloud obtained by merging of 
individual stations. Besides, adapting methods in the 3D case 
results in increased complexity, computation time and hardware 
resources. 
 
The method we propose is based on 2D denoising based on 
wavelet decomposition or more precisely on subband coding.  
 
 

3. WAVELET DENOISING 

3.1 Principle of wavelet denoising in the 1D case 

Denoising by wavelet decomposition has been investigated for 
a long time, mainly since the works of Donoho et al. (Donoho, 
1995). Though, it is far beyond the scope of this paper to 
describe the underlying theory, which may be considered as 
complicated for the non specialist, it may be interesting to give 
briefly the principal ideas which found the method and which 
may be understood quite easily provided that one has the basic 
knowledge in the mathematics of signal processing. However, 
the reader should not expect to have an exhaustive idea of the 
subtle questions which may arise and the many parameters and 
variants of the general method which exist and which are 
described in the adapted literature (Mallat, 1989; Vetterli, 1992). 
 
The well-known results concerning the frequential 
representation of a signal which is related to the Fourier 
transform are used in the denoising task; indeed, the noise to be 
removed usually has some specific characteristics which may 
be expressed easily in the frequency domain. Frequential 
filtering consists in applying in the Fourier domain a low-pass 
filter which rejects the great majority of the white noise. This 
well-known technique has however some severe limitations. If 
the original signal contains some high frequencies, they will be 
filtered the same way as the white noise. This is referred as the 
smoothing effect of low-pass filtering. 
 
To conclude with this very initial introduction, the classical 
scheme of denoising by low-pass filtering is not suited to 
signals which contain high-frequency components. 
 
To overcome this difficulty, Donoho et al. have used the 
wavelet decomposition at the early 90s. Though, one speaks 
traditionally about wavelet denoising because of its parenty 
with wavelet theory, it would be much more accurate to talk 
about subband coding or multiresolution analysis of signals. 
Multiresolution analysis or subband coding consists in passing 
first the signal to be denoised in a pair of filters: a low-pass 
filter that results in the approximation part of the original signal 
and a high-pass filter that results in the detail part of the signal 
as represented on figure 2. 
 

 
 

Figure 2. First level decomposition of signal 
 
Theoretical arguments show that these two parts of the signal 
may be downsampled by a factor two or decimated without 
losing any information. Hence, the signal is represented by its 
two parts, the approximation and the detail by a total amount of 
samples that is exactly the original amount of points in the 
original signal. The samples of the approximation and the detail 
are called the coefficients of the decomposition. It is beyond the 
scope of this paper to show how this subband coding or 
multiresolution is connected to wavelet theory. The only 
intuitive result to be known is that subband coding represents a 
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discrete wavelet transform and that the wavelet family to be 
used (Haar, Coifmann, Daubechies for instance) is deeply 
connected to the transfer functions of the low and high pass 
filters that are used in the decomposition. The reconstruction 
task consists in passing the two parts (approximation and detail) 
through what is usually called quadrature mirror filters to obtain 
without any modification the original signal. The denoising task 
is going to be performed by the modification of one part of the 
decomposed signal (actually, the detail) before the 
reconstruction task. However, before getting to that point, let us 
describe the multi-level decomposition. The idea is to split the 
approximation part into two components according to the same 
scheme as before. A low-pass filter applied on the 
approximation allows to obtain the approximation of the 
approximation and a high-pass filter allows to obtain the detail 
part of the approximation. One can carry on the decomposition 
to further levels. Since each filter is followed by a 
downsampling stage (a factor 2), it is quite easy to understand 
that the representation consists in exactly the same amount of 
point as the original signal in the direct space. Hence subband 
coding consists in cutting the frequency domain into the so-
called dyadic transform since each band is cut one step further 
into two bands so that each band is a 

n2
1 fraction of the 

frequency bandwidth, n  being the level of decomposition. 
Figure 3 represents a level 3 decomposition of a signal. 
 

 
 

Figure 3. Level 3 decomposition of a signal 
 
The denoising method is based on the modification of the 
detailed parts of the multiresolution analysis. To figure out how 
the method works, a good example is probably better than a 
long theoretical explanation. The original noisy signal shown 
on figure 4 is taken from one of the historical articles of 
Donoho et al. It consists in a NMR (Nuclear Magnetic 
Resonance) spectrum which exhibits sharp transitions, i. e.  
high-frequency components. If one uses the classical low-pass 
filtering to reduce noise, these high-frequency components are 
going to be modified too and the denoised signal will be 
smoothed too much. 

 
Figure 4. The noisy data (NMR spectrum) taken from 

Donoho et al 

Figure 3 shows the decomposition at level three which leads to 
the signal being expressed by: 
 
 

( ) 1233 dddatx +++=  
 
 
The denoising method acts on the detailed parts. The idea is to 
set up one threshold per detail and to retain only the coefficients 
which exceed these thresholds and to put the other ones to zero.  
 
 

 

 

 
 

Figure 5. Details and corresponding thresholds of the noisy 
NMR 

 
Indeed, the coefficients in between the symmetrical thresholds 
are likely to be part of the noise whereas the coefficients that 
are beyond these thresholds are likely to be part of the actual 
signal when this latter varies quickly. In other words, the 
decomposition allows to retain in the high frequencies the part 
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of the signal which varies on a great amplitude since these 
variations are likely to be part of the actual signal. 
 
The adapted thresholds are shown on each detailed part of the 
decomposition shown on figure 5. Last, figure 6 shows the 
denoised signal obtained after reconstruction. The sharp peaks 
have been conserved but the noisy part of the signal has 
obviously been reduced.  
 
Hence, the method may be seen as a fine analysis band by band 
to identify where the actual components of the signal are 
located compared to the noise which is supposed to be spread 
over the whole range of frequencies. These actual components 
are identified every time they have an amplitude great enough 
so that they may be conserved. It is obvious then that some 
actual components are removed along with the noise whenever 
their amplitudes can not be isolated from the surrounding noise. 
Thus, the threshold has to be adapted through a trade-off 
between loosing too much actual signal or keeping too much 
noise. The reader may  investigate further important topics like 
for instance the different natures of thresholds (soft or hard), 
how they can be determined, or the optimum level of 
decomposition.  
 
The ideas developed in the former paragraph can be generalized 
to 2D signals which are generally called, images. Indeed, an 
image, on a mathematical point of view is a function of two 
variables. Oftentimes, the physical nature of the function is the 
intensity as being function of the two space variables in the 
Cartesian frame. When it comes to digital images, one talks 
about the intensity of each pixel as function of the two 
coordinates which are sampled on a rectangular and regular grid. 
However, on a more general point of view, the physical natures 
of both the function and its two variables do not matter. 
 
Denoising images by low-pass filtering leads to the same 
drawbacks as in the 1D case exposed above. The high-
frequency part of the noised is removed or at least attenuated 
but so is the high-frequency part of the actual signal. It results 
in the well-known smoothing effect. If the actual image exhibits 
sharp transition of the intensity, i. e. contains high-frequency 
components, they are going to be smoothed and the filtered 
image damaged. 
 
 

 
 

Figure 6. Denoised NMR spectrum 

Denoising images by a 2D wavelet transform has been 
investigated a lot. The ideas exposed in the former paragraph, 
the multilevel decomposition through low-pass and high-pass 
filters leading to approximations and details of the image, the 
thresholding of the detailed parts and reconstruction to obtain 
finally the denoised image, generalize easily to the 2D case. 
The main difference compared to the 1D case is that the detail 
part of the decomposition at level n is composed of three sub-
images, the horizontal detail, the vertical detail and the diagonal 
detail which are obtained by three high-pass convolution 
kernels that extract the high-frequency components of the 
image in these respective directions. Figure 7 shows the 
decomposition at level 2 of the well-known ‘lena’ image which 
has been used as a standard image to illustrate image processing 
but also to measure the performance in denoising and 
compression schemes within the image processing community.  
 
 

 
 

Figure 7. Level 2 decomposition of the famous ‘lena’ 
 
 

4. RANGE IMAGE DENOISING BY WAVELET 
TRANSFORM 

4.1 The image approach 

In the state-of-the-art methods briefly described above, the 
input data is either a global point cloud or a surface mesh. The 
methods developed, though successful, are not standardized yet 
and not easy to implement. The approach that has been 
developed for this paper which is based on a previous work 
(Smigiel, 2007) consists in coming back to the standard chain at 
the point where one does not have to deal with 3D data, i.e. on 
the very basic principle of laser scanning. The scanning consists 
in sweeping both the horizontal and vertical angle, respectively 
θ and ϕ: for each position of the laser beam, the range, R is 
measured. Hence, the coordinates of the measured point are 
given in the spherical frame tied to the laser by the triplet (R, θ, 
ϕ). It may thus be considered that the data obtained by the laser 
for one station is a 2D function ( )ϕθ ,R . If the scanning is 
rectangular, then this 2D function is nothing else but an image 
in the very classical sense with the exception that the intensity 
information (being function of two space variables) is replaced 
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by range. Thus, spatial filtering of the point cloud may be 
processed as a mere image filtering with all the methods that 
have been developed within the image processing community. 
The standard chain exposed in figure 1 is then preceded by the 
one shown on figure 8.  
 
 

 
 

Figure 8. The filtering chain ahead of the standard chain of 
e 

The raw point cloud from one station given by the (X,Y,Z) 

.2 Results 

The general aim of this research being to find out to what extent 

he experimental data have been acquired with a Trimble GX 

he vertical resolution and the horizontal resolution have been 

he blackboard which has been put into the scanned scene has 

hat is why we have also modelled the 38.1 mm radius spheres 

efore denoising, the triangulation results in a disturbed surface 

figure 1. The chain is applied for each station befor
registration. 
 

coordinates is first transformed into the (R, θ, ϕ) triplet (the 
laser scanner measures directly these values but transforms 
them into their X,Y,Z equivalent and outputs them in the output 
file). Then the (R, θ, ϕ) set is transformed into an image with a 
rectangular grid by exploiting the Δθ and Δϕ information of the 
scan. The filters are applied and the inverse transformations are 
applied to come back to the X,Y,Z space. Then, these modified 
(X,Y,Z) clouds may enter the standard chain described on 
figure 1; the individual clouds that have been the objects of the 
former filtering are registered, the registered cloud is segmented 
and finally enters the surface triangulation step. Hence, 
denoising the point cloud becomes merely a question of image 
denoising. 
 
4

architectural TLS may be used to scan small objects, the 
method has been applied on blocks of Corinthian capitals found 
in Mandeure, a gallo-roman city in the East of France. The 
volume of these capitals is a fraction of one cube meter which is 
quite small compared to the usual objects that are digitized with 
an architectural TLS. To quantify the noise reduction, different 
methods may be applied. As the final goal of 3D digitization, 
the visual quality of the final mesh is the central issue. However, 
for objects with complex geometry, it is not an easy task to 
control noise reduction on the final mesh on a quantitative basis. 
Thus, a first test consists in modelling simple geometrical 
objects (planes, spheres) before and after noise reduction and to 
compare the standard deviation of the point set.  
 
T
TLS using time-of-flight technology with the following 
parameters: 
 
T
set to 50mm at 100m for an average scan distance of about 8m. 
Each point has been acquired through 25 laser shots in order to 
increase the accuracy of the range measure.  
 
T
been modelled with the following results. Before wavelet 
denoising, the standard deviation around the mathematical 
plane is 1.7mm and after wavelet denoising, it has been 
decreased to 0.27 mm. The standard deviation ratio is thus close 

to 6 which can be considered as a nice result. The “thickness” 
of the point cloud has been reduced by a factor 6. However, as a 
plane does not contain high frequencies, this result can not in 
itself justify the method.  
 
T
which are used for cloud registration before and after denoising. 
The table below shows the three coordinates of the modelled 
sphere centre before and after denoising and in the last column 
the standard deviation of the points of the cloud which have 
been used for sphere modelling. One can see that the denoising 
scheme does not affect the sphere position which is an 
important result. Indeed, the spheres being used for registration 
of the individual point clouds, any displacement of a sphere 
centre would prevent the registration stage to be operated 
correctly. However, the result concerning the standard deviation 
is not clear. For one of the experimented spheres, the standard 
deviation decreases a little bit whereas for the two others, things 
are getting worse. Hence, the test with spheres is quite 
deceiving. This could be explained by a poor choice of the 
thresholds that have been used and that would not fit the 
spheres. The last test which may be done consists in modelling 
a real point cloud obtained by scanning a real object before and 
after denoising. The test has been applied on an archeological 
object consisting in a Corinthian capital block shown on figure 
9 and 10. A simple mesh using the Delaunay triangulation on 
the complete set of points has been applied without any post-
processing to evaluate to what extent our denoising scheme 
improves the final model. 
 
B
whereas after denoising, the global surface appears smoother 
without having lost the sharp edges of the object. In particular, 
one may notice the almost square hole at the bottom of the 
object whose edges have not been affected by denoising. 
 
 

 
 

5. CONCLUSION AND FURTHER WORKS 

In this paper, we have shown the feasibility of the method 

 

which consists in denoising the TLS data through the range 
image. The first advantage consists in the availability of many 
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Secondly, in the recent years, new image denoising methods 
have appeared like the so-called anisotropic diffusion methods 
or NL-means. It would be interesting to find out to what extent, 
they would be suited in the case of range image denoising. 

image processing based denoising schemes, subband coding 
being just one of them. The second advantage lies in the fact 
that one can always expect interesting results when denoising as 
close as possible to the physical measurement. Hence, 
denoising the data before registration makes sense. 
 

 
Lastly, the authors are aware that so far, the work is quite 
prospective. In the near future, the processing of complete 
experimental sets from the initial point clouds up to the final 
model will be done on raw range images and the corresponding 
denoised images to compare the results on a quantitative basis. 

However, many further questions have to be answered. Firstly, 
concerning wavelet denoising, there exist many variants to the 
general concept: for instance, the question of the mother 
wavelet to use depending on the object to digitize is still open. 
Besides, the question of the values of the threshold to set is also 
to be solved. To conclude with the question of wavelet 
denoising, other extensions of the general method could also be 
studied like for instance wavelet packet decomposition which 
consists in decomposing the detailed part of the signal into its 
approximated part and detailed part which could help to 
identify better where the useful components of the signal are 
located to distinguish more efficiently between noise and signal. 
 

 
 

REFERENCES 

References from Journals: 

Fleishman, S., Drori, I., Cohen-Or, D., 2003. Bilateral Mesh 
Denoising. ACM Trans Graphics, vol. 22, pp. 950-953. 
 
Barash, D., 2002. A fundamental relationship between bilateral 
filtering, adaptive smoothing and the nonlinear diffusion 
equation. IEEE Trans. Pattern Analysis and Machine 
Intelligence, vol. 24, no. 6. 

 

 

 
Donoho, D. L., 1995. Denoising by soft thresholding. IEEE 
Trans. Inform. Theory, vol. 41, pp. 613–627. 
 
Mallat, S.,1989. A theory for multiresolution signal 
decomposition: the wavelet representation. IEEE Trans. Patt. 
Recog. and Mach. Intell., vol. 11, pp. 674-693. 
 
Vetterli, M., Herley, C., 1992. Wavelets and filter banks: 
Theory and design. IEEE Trans. Signal Process., vol. 40, pp. 
2207-2232. 
 
References from Other Literature: 

 
Figure 9. Mesh obtained by De unay triangulation on the raw 

 

Gross, M., Hubeli, A, 2000. Fairing of nonmanifolds for 
visualization. Proceedings of IEEE Visualization,  407-414. la

point cloud 
 

 
Ohtake, Y., Belyaev, A. and Bogaeski, I, 2000. Polyhedral 
surface smoothing with simultaneous mesh regularization. 
Proceedings of Geometric Modeling and Processing, 229-237. 

 

 
Peng, J., Strela, V., Zorin, D., 2001. A simple algorithm for 
surface denoising. Proceedings of IEEE Visualization, pp. 107-
112. 
 
Taubin, G., 1995. A Signal Processing Approach for Fair 
Surface Design. SIGGRAPH ’95 Conf. Proc., pp. 351- 358. 
 
Hildebrandt, K., Polthier, K., 2004. Anisotropic Filtering of 
Non-Linear Surface Features. Eurographics ’04, vol. 23, no. 3. 
 
Smigiel, E., Callegaro, C., Grussenmeyer, P., 2007. Digitization 
of the collection of moldings of the university Marc Bloch in 
Strasbourg: a study case. XXI International CIPA Symposium, 
2007, pp. 674-679. 
 

 
Figure 10. Mesh obtained by elaunay triangulation on the 

 

Adami, A., Guerra, F., Vernier, P., 2007. Laser scanner and 
architectural accuracy test. XXI International CIPA Symposium, 
2007, pp. 7-11. 

 D
denoised point cloud 

 

450


	1. INTRODUCTION
	2. THE STANDARD CHAIN: FROM ACQUISITION TO THE 3D MODEL
	3. WAVELET DENOISING
	3.1 Principle of wavelet denoising in the 1D case

	4. RANGE IMAGE DENOISING BY WAVELET TRANSFORM
	4.1 The image approach
	4.2 Results

	5. CONCLUSION AND FURTHER WORKS



