
USING A HIGH THROUGHPUT COMPUTATIONAL GRID FOR THE RETRIEVAL OF 
AEROSOL PROPERTIES OVER CHINA LAND 

 
 

Wei Wan a, b, d, Yong Xuea, c *, Linyan Bai a, b, Jie Guang a, b, Yinjie Li a, b, Jianwen Ai a, b and Ying Wanga, b 

 

 
a State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of Remote Sensing Applications 
of Chinese Academy of Sciences and Beijing Normal University, Institute of Remote Sensing Applications, Chinese 

Academy of Sciences, P.O. Box 9718, Beijing 100101, China 
b Graduate School of the Chinese Academy of Sciences, Beijing, China 

c Department of Computing, London Metropolitan University, 166-220 Holloway Road, London N78 DB, UK 
d China Center for Resource Satellite Data and Applications ,Beijing 100073, China 

Email: {y.xue@londonmet.ac.uk,   eric_104@163.com} 
 

Commission X, WG X 
 

 
KEY WORDS: Meteorology; Pollution; Computer; Retrieval; Monitor; Parallel; Grid 
 
ABSTRACT: 
 
This paper describes the need for and the proposed designing of the high performance quantitative retrieval model to be used on 
Computational Grid for study of aerosol properties, with particular emphasis on Aerosol Optical Thickness (AOT) determination. A 
methodology using multi-resource remotely sensed data and adapting available aerosol retrieval model in a Grid environment is 
demonstrated. The algorithm comprises two complementary parts, collectively used in a distributed application. This paper focused 
on parallelization method based on a resource management and task partition strategy. A module, called DPPA (Dynamic Partition 
Points Algorithm for workload estimation), is designed as a portable technology for developing and deploying Grid execution in a 
generic data parallel paradigm. Experimental results are presented in a realistic application, using data collected by MODIS over 
China land. Derived result and computing performance of the proposed algorithm is given using the Grid test-bed at the Institute of 
Remote Sensing Applications of Chinese Academy of Sciences (IRSA, CAS). Combined, the experimental results show that Grid-
enabled model allowed on-demand large volume of ground-based data assimilation with parameters, and achieved substantial 
reductions in computational times. The research gives a thoughtful perspective on the potential of applying high performance 
computing practices to remote sensing quantitative retrieving problems.  
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

Aerosol optical properties are believed to be important for 
understanding aerosol radiative forcing, and impact on climate 
change(2001). Due to their high temporal and spatial variability, 
atmospheric aerosol monitoring is still a difficult task. Satellite 
remote sensing is an efficient way to monitor aerosol properties 
on a large scale, because the information provided is both 
timely and global in coverage. A number of passive satellite 
instruments have been used to retrieve global distributions of 
tropospheric aerosol properties. For years, many algorithms 
have been applied to these satellite datasets to retrieving 
information useful for studying aerosol over land 
(Kokhanovsky et al, 2007). The prediction relies on physical 
dynamic models whose variables must be quantitatively 
estimated from Earth observing data. However, this procedure 
needs to apply complex models on selected subsets of large 
volumes of multi-sensor or multi-temporal data. The increasing 
complexity of data processing and of retrieving computing has 
significantly increased computational demands.  
 
In recent years, computational Grid of commodity computers 
have rapidly become a promising solution, expected to play a 
major role in high performance computing systems for remote 
sensing missions (Foster et al, 2001). The new processing 
power offered by Grid from idle CPUs can be employed to 
tackle issues stated above. High Throughput Computing (HTC) 

Grid that can get the considerable amount of works done during 
task time benefits from distributed, heterogeneous and dynamic 
resources (Basney et al, 1997). Although the Grid technology 
seems to offer the potential for enhanced remote sensing 
retrieval, the scope of this potential remains nearly unexplored 
in this field of research. Only a few research efforts devoted to 
the design of Grid-enabled implementations for remote sensing 
retrieval exist (Chalermwat, 1999;Hawick et al, 1997; Plaza, 
2006; Teo et al, 2003;Yang, 2001) And most of them address 
remotely sensed image processing, but few published for 
retrieval model.  
 
This paper is concerned with high performance retrieving 
algorithms based on genetic Grid platform, with particular 
emphasis on Aerosol Optical Thickness (AOT) retrieval. We 
propose this new high performance aerosol retrieval algorithm 
that is used for Moderate Resolution Imaging 
Spectroradiometer (MODIS) from Earth Observing System 
(EOS) satellite data. A methodology using multi-resource 
remotely sensed data and available aerosol retrieval algorithms 
in an operational scheme is demonstrated. The algorithm 
comprises two complementary parts, collectively used in a 
distributed application. The first part is the modified multi-
angle AOT retrieval algorithm described in our previous 
research publications (Tang et al, 2005), which is used for 
retrieval over land for a given region. This is a more general 
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technique compared to DDV method that is based on the NASA 
near IR-visible surface albedo correlation approach and 
therefore restrictedly depends on the surface type (dense dark 
vegetation, or heterogeneous land) (Kaufman et al, 1997). The 
ground station data are routinely coming from more than 16 
nationwide locations by the AERosol Robotic NETwork 
(AERONET) of ground-based sun- and sky-scanning 
radiometers (Smirnov et al, 2000) are used for assimilation as 
variables describing model initial states. The second part is 
parallelization method based on a resource management and 
task partition strategy. We designed the algorithm, called DPPA 
(Dynamic Partition Points Algorithm for workload estimation), 
which is a portable technology for developing and deploying 
general-purpose Grid execution. DPPA aggregates the resource 
discovery-requirement match model into work load estimation 
algorithm, and empower standalone remote sensing retrieval 
models by decomposing the models with data parallel paradigm. 
This approach has several advantages. First, the partitioning 
provides a natural approach for low-level image processing. As 
we know, image processing generally involves some processes 
which are repeatedly applied to small set of neighbouring pixels 
within the image data structure. Second, the models retrieving 
information from remote sensed data usually use several 
spectral bands as input at one time. In this way, the cost of 
inter-processor communication can be reduced. 
The remainder of the paper is structured as follows. Section 2 
describes the methodology of AOT retrieval. Section 3 
describes the design of algorithms used to deal with task 
partition, and a detailed description of DPPA algorithm for 
load-balanced parallelization. Section 4 introduces the 
implementation for high performance algorithms. Section 5 first 
describes the test-bed and data used in this study, and then 
presents the experimental results. Finally, Section 6 concludes 
with some remarks. 
 
 

2. IMPLEMENTATION OF THE HIGH 
PERFORMANCE ALGORITHM ON GRID PLATFORM 

2.1 Algorithm description 

The algorithm determines that any of the 1×1 pixel sub regions 
(defined as 1 km × 1 km in size) can be classified as 
heterogeneous land, and the execution defaults to the SYNTAM 
model. As shown in Figure 1, a step-by-step approach of the 
retrieval workflow is described below. 
1. The model starts with the setting up of geometric and 

processing parameters. Geometric parameters supply the 
longitude, latitude, sun and view zenith angles as well as 
azimuth angles. Processing parameters provide information 
about the atmospheric data, cloud mask, and AERONET 
ground-based data. 

2. The next process of radiative calibration is applied, where the 
model converts instrument counts to top of the atmosphere 
reflectance.  

3. Effects of spectral absorptions of water vapour, 2CO  and 

3O  are fixed. The clouds and sun glint pixels are masked 
using the MODIS clear sky discriminating method. 

4. AOT retrieval is an operational scheme comprises of ground 
station data assimilation and SYNTAM model.  

5. After geometric correction and map projection, the step of 
mosaic is applied to stitch individual images in a larger 

composite, and remap the granules onto a latitude and 
longitude grid covering the China land.  

6. The last step is finalizing the AOT product to permanent 
storage. When information of geophysical phenomena needs to 
be stored, the Hierarchical Data Format (HDF) format is used. 
 

 
 
Figure 1. The flowchart of retrieval model  

 
 
2.2 Task partition and scheduling 

We consider this scenario: the Grid is de-centralized and 
managed by local scheduler and resource manager, having no 
limit as to number of nodes. Tasks are submitted for execution 
through a front-end submission node. No communication is 
assumed between nodes. Inner-mistakes like occasional faults, 
crashes, and other related events are handled by the local 
resource manager. Divisible load theory (Bharadwaj et al, 2003 ) 
is considered that jobs can be divided and sub-divided. Tasks 
use a standard Master-Worker paradigm to execute in 
parallelism where the master decomposes task, coordinates the 
actions of the workers, gathers the partial results from them and 
provides final results. To balance the workload of the nodes, 
each node should do an amount of work that is proportional to 
its speed. Therefore, two major goals of our partitioning 
algorithm are: 

1. Obtain an appropriate set of workload fractions 
),,1(}{ Piai L∈  

Parameter setup 

Radiative calibration 

Cloud screening 

Retrieval with 
SYNTAM equations  

AERONET 
data 

Mapping 

Data assimilation 

Gas absorption 
correction 

Geo-reference    

Mosaic

Core model 
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2. Translate the chosen set of values into a suitable 
decomposition of the input data, taking into account the 
properties of the task.  

First, we shall use a mathematical model that captures the 
realistic scenario to distribute the workload. The target Grid is 
heterogeneous, with p worker processes running 

on p processors labelled pPPP ,,, 21 L .The affine 

communication cost is iii Gag + for a message of size L , 

where iG is the inverse of the bandwidth of the link between the 

master and iP , and ig is the latency. The affine computation 

cost is modelled as iii wao + for a load size ia , where io  

start up time and iw is processor cycle-time. We extended the 
theorem as follows (Beaumont et al, 2003): 

First, when all elemental transfer times iG are equal to G , sort 

the p  processors so that ii wgwgwg ≤≤≤ L2211 . 

Then the ordering where tasks are sent to PPPP ,,, 21 L  is 
optimal. 
 
Secondly, we use the Node Selection Method based on a 
general-purpose resource selection framework that provides 
necessary information about the Grid (Liu et al, 2002). This 
framework combines application characteristics and real-time 
status information to identify a suitable resource set. An 
extended ClassAds language (Raman et al, 1998) is used to 
express resource requests, and a method called set matching is 
used to identify suitable resources. The selection criteria are set 
according to processor local memory, disk space, Flops, and 
bandwidth.  
 
Based on considerations stated above, we developed a Dynamic 
Partition Point Algorithm (DPPA).  
 
Algorithm 1,  Dynamic Partition Point Algorithm 
Input:  Image data I or parameters I. 
Output: A vector of partition points P of input data or 

parameters. 

1. Obtain the selected processor set using Node Selection 

framework. The number of available resources P and 

each node’s identification 

number ),,1(}{ Pipi L∈ are identified.     

2. Calculate 
∑=

= P

i i

i
i

v
v

a
1

)1(
)1(

, ),,1( Pi L∈ , to 

obtain the value of node portion.  

3. Use the calculated values of ),,1(}{ Piai L∈  to 

produce P partitions of the input. 

 

Data partition mode:  

Using standard data portioning approaches (e g. spectral-

domain or spatial-domain partitioning) separate data into P 

parts. Obtain a first partitioning of  I so that the volume of data 

in each partition is proportional to the values of ia .  

Parameter partition mode:  

Calculate possible combinations that cover the range of the 
parameter space I solely for the purpose of partitioning. The 
parameter combinations I are in general unknown but typically 
assumed to be one of N discrete cases. 
 
2.3 Data partition  

Two traditional standard approaches have been used for data 
partitioning in remote sensing: The first is Spectral-domain 
partitioning. This approach subdivides the multi-channel 
remotely sensed image into small blocks or sub-volumes, and 
each is made up of one spectral bands. The second is Spatial-
domain partitioning. This approach subdivides the multi-
channel image into slices, and each is made up of several 
contiguous spectral bands. 
But in this work, we adopt the combination of first two 
strategies, in which the data is partitioned into blocks made up 
of spatially adjacent pixels which retain the full spectral band 
content associated to them. The data partitioning is described as 
follows. Consider an image of size nn× , and p  be the 
number of processors in Grid, Block partition is: The pixel 

vector ),( ji is allocated to processor ),( jiPB , 

where, mnimnjjiB +=),( , if mnj  

is even; 

mnimnjmmnjjiB −+= )(),( , 

if mnj  is odd. Vector ),( ji  has k  elements, 

representing the k  bands as input. 
 
2.4 Border handler and overlapping function 

A data parallel paradigm is used to scale up to the number of 
runs that are desired in a Grid environment. An important issue 
in image processing operations is that accesses to pixels outside 
the spatial domain of the input image are possible. To 
implement a high efficient data parallel algorithm, we have to 
reduce data transfer/communication cost with a step further. An 
overlapping handling strategy is adopted when some of the 
pixel positions are outside the input image domain for one node 
in Grid. In this situation, both those pixels inside the image 
domain and a copied circle are read for input.  
 
Apart from the strategy above to update overlapping parts of 
partial data, a function to handle border need to be implemented. 
The function decides when to use overlapping handling strategy 
or just fill outside border pixels with default values.   
 
By consider border-handling and overlapping, extended types 
of partitioning is Block-cyclic partition: The pixel ),( ji is 

allocated to processor )(iPBC , where )(iBC is 

)( bjbi +  mod m, and b is a blocking factor indicating 
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the number of elements to be packed in a block. Vector ),( ji  

has k  elements, representing the k  bands as input. 
 
2.5 Load-balanced Parallel Retrieval Algorithms 

We have implemented load-balanced retrieval SYNTAM model 
coupled with DPPA algorithm. The algorithm can be divided 
into six steps.  
 
Algorithm 2, Parallel SYNTAM  
Input:  Image band I, initial parameter P, number of tasks N 
Output:  Set of AOT output O. 
1. Data pre-process. 
2. AERONET data are interpolated, projected, matched, and 
assimilated as Initial Parameter.  
3. With DPPA algorithm to estimate workload on each node, 
the data are partitioned into small blocks and distributed to 
processors.   
4. Paralleled computation with SYNTAM equations. 
5. Collect results from nodes.  
6.  Spatial smoothing with the retrieved aerosol optical depth.  
 
 

3. A CASE STUDY: AOT RETRIEVAL OVER CHINA 

3.1 Data and test-bed 

The image scenes used for experiments were collected by 
MODIS instrument, which covered China land. Each mosaic 
(geographic projection ,range 15°N -55°N, 70°E-135°E , 
spatial resolution 0.01°, data array 6501×4001) was selected 
from AQUA/TERRA database of daytime images, which 
consisted of 14 granules, 7 spectral bands and a total size of 
approximately 6.7 Gbytes. The data were acquired from the 
NASA Distributed Active Archive Centre. Volume of auxiliary 
data, e.g. the AERONET data, atmospheric data, and cloud 
masks (MODIS L35) are about 1.2 Gbytes. 
 
We installed the application in a test-bed of computational Grid 
pool in the IRSA, CAS. We configure levels of the Grid. Level 
1 is connected to the dedicated CPU server serving as database 
and invokes tasks directly without parallelization. Level 2 and 
Level 3 reside on submission machines connected to large size 
Grid pools. The pool of work stations are made up of 
commodity PCs in Table 2 256 Mbytes to 1 Gbytes. The 
network used to interconnect the nodes to nodes could be 
Ethernet 100 Mbits/sec. The operating systems used were Linux 
Red-Hat 9.0, Windows NT5.0, and Windows XP. 
 

3.2 Experimental results 

We successfully produced 4 GBytes of aerosol property 
products in under a 5-hour period. As for the computational 
performance, Table 2 shows the comparison of configurations 
between the sequential execution on an Intel P4-2.0 GHz 
computer and distributed execution on the Grid test-bed. The 
input data are partitioned into tasks of various sizes. For 
example, a task size of 197Mb regional granule image, or of 
3940 Mb nationwide image will results in 4, 8, or 16tasks. 
Selection of task granularity and number of tasks determined by 
DPPA algorithm are important in load balancing and scalability 
experiments. Table 2 shows performance for varying number of 
tasks and sizes of input data. The execution time increases when 

the number of tasks is decreased due to insufficient number of 
tasks to keep all the processors occupied.  
 
 

4. CONCLUSION 

In this paper, we have discussed the design and implemetation 
of Grid-enabled high performance retreival model in a remote 
sensing AOT retrieval application. Specifically, we have 
presented several highly innovative parallel techniques for 
parameter assimilation, inversing computation of the AOT 
model, and implemented them on heterogeneous and massively 
distributed Grid platform. The experiments showed that we 
were able to process the whole image scene and retrieving AOT 
parameters with in 5 hours, and made it possible to apply the 
models over large area data covered by multiple scenes in a 
practical manner. Our study reveals that the combination of the 
computational power offered by Grid is likely to introduce new 
perspectives in the remote sensing systems for exploiting 
improvement of accuracy, productivity and performance of 
remote sensing quantatitive retrieval model.  
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Dataset Description Type Size 

NASA satellite imagery Several hundred scenes HDF 5.6 Gbytes 
MODIS cloud product data Remote sensing auxiliary data GeoTIFF 1.8 Gbytes 

China geology Geologic country map at 1:1,000,000 scale Shapefile 300 Mbytes 
Atmospheric data China’s precipitation, ozone, and CO2 data for 

June 2007 
ASCII file 500 Mbytes 

AERONET data AERONET stations in China, 2007 ASCII file 60 Mbytes 
 

Table 1. Earth science data used for AOT retrieval. 
 

Data size 
(Mbytes) 

Sequential time 
(min) 

Number of task Grid run time (min) Speed up  Efficiency 

197  413   4 
8 
16 

100 

118 
63 

39.7 
33 

3.5 
6.55 
10.4 
12.5 

0.875 
0.818 
0.658 
0.125 

3940  5809  4 
8 
16 

100 

1826.6 
905 

414.9 
434 

3.18 
6.42 
14 

13.3 

0.79 
0.81 
0.87 
0.13 

 
Table 2. Number and size of input files in reference to performance 
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