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ABSTRACT: 
 
The aim of this study is to test the quality of the neural network for retrieving the temperature and humidity by comparison with the 
radiosond values and a linear regression method. Remote sensed images give useful information about the atmosphere.  In this article, 
MODIS data is used to retrieve temperature and humidity profiles of the atmosphere. Two methods of linear regression and artificial 
neural network are used to retrieve the temperature and humidity profiles. A multilayer feed-forward neural network is tested to 
estimate the desired geophysical profiles. Retrievals are validated by comparison with coincident radiosond profiles.  
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1. INTRODUCTION 

Remote sensing of the atmosphere is nowadays carried out by 
means of very sophisticated sensors, using both new and 
broader wavelength regions, and measuring with better 
frequency resolution and lower noise. As a consequence, larger 
amounts of data have to be efficiently processed in order to 
optimize the retrieval performance (Del Fratea et al., 2005). 
 
A remote measurement of the atmosphere from space with high 
spectral resolution can give a large amount of information about 
the atmosphere (Gribanov and Zakharov, 2004) 
 
So far, different retrieval algorithms were developed to retrieve 
atmospheric profiles. All approaches can be divided into linear 
and nonlinear ones (Blackwell, 2005). In this article, two 
statistical techniques for retrieving temperature and humidity of 
atmosphere (profiles) from data of passive remote sensing are 
proposed. 
 
We consider the retrieval of atmospheric temperature and 
humidity profiles (quantity as a function of altitude) from 
radiance measurements of MODIS sensor. A multilayer feed-
forward neural network (NN) is used to estimate the desired 
geophysical profiles. The derivation of particular rules or a 
priori statistical information to be processed is not needed in 
this approach. NN establish the inverse mapping and the input–
output discriminant relations on the base of data presented to 
them during the learning phase. Once the training process is 
completed, the network is able to give the new estimations in 
real time which can be very useful for many applications. To 
prevent the inversion algorithm from depending on 
climatological information also regularization techniques can be 
considered (Richards, 2005).  
 
Selecting the inputs to the network, on the base of the 
effectiveness of their information content in estimating the 
output, eliminates unnecessary or misleading inputs that may 

confuse the network. Minimizing them while avoiding 
significant loss of information, affects positively the NN 
mapping ability and computational efficiency. 
 
In this article, we first review the physics of spaceborne 
atmospheric remote sensing. Then we review used observation 
data contained in both MODIS and radiosond data. Next, we 
discuss using a neural network for estimating temperature and 
humidity profiles, and present performance analysing 
comparing the NN algorithm to the radiosonde values and a 
linear regression method and then we review multilayer feed-
forward neural networks for geophysical parameter retrieval 
from spectral measurements and we give an overview of the 
network parameters used in this work. 
 

 
2. SPACEBORN ATMOSPHERIC REMOTE SENSING 

Figure 1 is showing a typical measurement scenario for 
spaceborne atmospheric remote sensing. A sensor measures 
upwelling spectral radiance (intensity as a function of frequency) 
at various incidence angles. The sensor data are usually 
calibrated to remove measurement artifacts such as gain drift, 
nonlinearities, and noise (Blackwell, 2005).  

 
Figure1. Typical measurement scenario for spaceborne 

atmospheric remote sensing. 
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The spectral radiances measured by the sensor are related to 
geophysical quantities, such as the vertical temperature profile 
of the atmosphere. An appropriate retrieval algorithm is 
necessary to convert these radiances into a geophysical quantity 
of interest (Blackwell, 2005). 
The radiative transfer equation describing the radiation intensity 
observed at altitude L, viewing angleθ , and frequency ν  can 
be formulated by including the emitted atmospheric 
contribution, the reflected atmospheric and cosmic 
contributions, and the radiance emitted by the surface as 
follows (Staelin, 1969): 
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where νε  is the surface emissivity, νρ  is the surface re-

flectivity, )( zνκ  is the atmospheric absorption coefficient, *τ  
is the atmospheric zenith opacity, T(z) is the temperature profile, 

sT is the surface temperature, cT is the cosmic background 
temperature (2.736 ± 0.017 K), and 
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)(Tνξ  is the radiance intensity emitted by a blackbody at 

temperature T, which is given by the Planck equation: 
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The first term in Equation 1 can be recast in terms of a 
transmittance function ( )vT z  
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The derivative of the transmittance function with respect to 
altitude is often called the temperature weighting function 
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and gives the relative contribution of the radiance emanating 
from each altitude. 
 
 

3. OBSERVATION DATA 

3.1 MODIS Data 

The brightness temperature (Tb) is a measure of the intensity of 
thermal radiation given out by an object. This measure is in 
units of temperature, because it is correlated with the intensity 
of radiation and the physical temperature of the radioactive 
body. 
The first Moderate Resolution Imaging Spectroradiometer 
(MODIS) was launched in December 1999 on the polar orbiting 
NASA Earth Observing System (EOS) Terra satellite and the 
second MODIS was launched on the polar orbiting Aqua 
satellite in May 2002. Each MODIS acquires daily global data 
in 36 spectral bands—29 with 1 km, 5 with 500 m and 2 with 
250 m nadir pixels (Salomonson et al., 2006). 
 
The Terra satellite was launched for global change research 
purposes. Terra’s scientific instruments are used to provide 
atmospheric temperature and humidity profiles, clouds, 
precipitation and radiative balance; terrestrial snow and sea ice; 
sea surface temperature and ocean productivity; soil moisture; 
improvement of numerical weather prediction; monitoring of 
terrestrial and marine ecosystem dynamics (Cintra and Silva, 
2006). 
 
Most of channels that are opaque, due to atmospheric 
absorption, are referred to as sounding channels, while channels 
in which the atmosphere has little absorption are called window 
channels. Observations in the sounding channels are sensitive to 
atmospheric temperature and constituent profiles and can be 
used to determine these parameters (Salomonson et al., 2006). 5 
spectral Bands employed in this article have been listed in the 
table 1. 
 

 
 

Figure2. Iran Image from MODIS Sensor on June 24, 2004 
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Sensor Band (Bandwidth µm) 

23 (4.02 – 4.08) 
24 (4.433 – 4.498) 
25 (4.482 – 4.549) 
31 (10.78 – 11.28) 

MODIS 

32 (11.77 – 12.27) 
 

Table 1. Characteristics of used MODIS sounding channels to 
retrieval atmosphere profiles 

 
In this paper, we used the brightness temperature (Tb) from 
MODIS sensor as in Table 1. Therefore, in order to estimate 
atmospheric state from MODIS data, first we should measure 
brightness temperature using above Channels.  These data were 
collected from the satellite passages at experimental sites of 00 
and 12 GMT. 
 
3.2 Radiosond Data 

Radiosond data were acquired at a few meteorological stations 
in Iran. Within the framework of the Iranian Meteorological 
Organization (IRIMO), all observations were performed at 
“synoptic” hours: 0 and 12 h UTC. Therefore, the temperature 
and humidity profiles of radiosondes were also extracted during 
these stations. The sites of the experiment were: Mehrabad 
Airport of Tehran (35°41’ N, 51°19’E), Kermanshah (34°17’ N, 
47°07’E), Shiraz (29°32’ N, 52°36’E) and Bandar Abbas 
(27°13’ N, 56°32’E).  
 
The main objective of this project is to get atmospheric profiles 
of temperature and humidity from radiosond data and compare 
it to the profiles retrieved by using the MODIS sensor, at the 
same time.  
 

4. METHODOLOGY 

The objective of the geophysical parameter retrieval algorithm 
is to estimate the state of the atmosphere (represented by a 
parameter matrix X) given observations of spectral radiance 
(represented by a radiance matrix R). Note that the inverse 
model typically does not exist, as there are generally an infinite 
number of atmospheric states that could give rise to a particular 
radiance measurement. 
 
There are generally two approaches to this retrieval problem. 
The first approach, called the variational approach, uses a 
forward model (for example, the transmittance and radiative 
transfer models previously discussed) to calculate the sensor ra-
diance that would be measured, given a specific atmospheric 
state. The second approach, called the statistical, or regression-
based, approach, does not explicitly use the forward model to 
derive the estimate of the atmospheric state vector. Instead, an 
ensemble of radiance/state vector pairs is selected, and a 
statistical characterization [p(X), p(R), and p(X, R)] is sought. 
In practice, it is difficult to obtain these probability density 
functions directly from the data, thus alternative methods are 
often used. Two of these methods are linear least-squares 
estimation (LLSE), or linear regression, and nonlinear least-
squares estimation (NLLSE). Neural networks are a special 
class of NLLSE, and are discussed later (Blackwell, 2005). 
 

4.1 Linear Regression Approach for Temperature and 
Humidity 

A method to estimate temperature and humidity of the 
atmosphere from Tb of satellites data is based on the statistical 
correlation. It considers the hypothesis that temperature and 
humidity, in a layer of the atmosphere, can be obtained through 
a linear combination of the MODIS channels (Lambrigsen, 
2003). Thus, the temperature and humidity in the layer can be 
estimated by: 
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Where n is the number of channels, T(L) and RH(L) are 
temperature and humidity in the layer, a(L) and ( )b Li are 
regression coefficients of channels combinations, and 

( )Tb iν is the brightness temperature measured in frequency iν . 
The layers were chosen so that each one represented the 
maximum of the weight function for the MODIS channels. The 
estimation of the regression coefficients in Equations (6) and (7) 
used radiosonde data launched in the experimental sites for all 
timetables.  
This method was used as a reference in this work and the 
statistical results of this method will be used for comparison 
with the results of the NN. 
The NN applications are still a challenge for meteorologist 
investigators. Though an NN provides a way to establish a non-
linear relation of the characteristics of the meteorological 
phenomena, the wrapped physics is not possible to explain with 
precision, as does the method presented by Cintra and Silva 
(2006), that justifies the comparison of its results with the NN 
method. 
 
4.2 Neural Network Approach for Temperature and 
Humidity  

The use of multilayer feed-forward neural networks, such as the 
multilayer perceptron, to retrieve temperature profiles from 
spectral radiance measurements has been addressed by several 
investigators (Motteler et al., 1995; Butler et al., 1996; 
Blackwell, 2005). Neural network retrieval of moisture profiles 
from spectral data is relatively new, but follows the same 
methodology used to retrieve temperature. 
 

 
 

Figure3. Used Neural Network to retrieve atmospheric profiles 
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Feedforward neural network with the single hidden layer was 
trained for atmosphere profile retrieval. The training phase of 
the MLP required: 
 
• Input data (x) of simulated and measured brightness 
temperatures in five channels of the MODIS (Tb23, Tb24, Tb25, 
Tb31 and Tb32) at four sites of the experiment. 
 
• Output Data (y) as the total temperature and humidity 
integrated from observations of profiles of radiosondes 
measured in the sites of the experiment from the surface (ho) up 
to the altitude in which there is the steam of water (h) in a unit 
column of dry air.  
 
The training set was formed by the data of Mehrabad airport 
and Kermanshah stations. The Tb data were simulated by 
MODIS channels’ data at all timetables. The temperature and 
humidity were based on all profiles measured in these sites. 
The testing set was formed by the data from Shiraz and Bandar 
Abbas stations used like standards and radiosondes profiles at 
all timetables. 
For the activation or generalization tests the Tb data of 
Mehrabad airport and Kermanshah measured by the channels 
of the MODIS and the calculated temperature and humidity of 
the radiosonde profiles at timetables of 00 GMT and 12 GMT 
were used. These data were also used in the reproduction of the 
results obtained by the linear regression method proposed in 
Lambrigsen (2003). 
 
Several tests were done with different architectures; the one that 
provided better results was a two-layer MLP with six neurons in 
the hidden layer. 
 
Considering a criterion of the least squared error and the best 
generalization did the choice of the number of neurons in the 
hidden layer. The ANN was trained with 20.000 “epochs”, 
using the learning rate of 0.001. 
 
The training obtained the least squared error of 0.0032, thus 
achieving a convergence with a good computational 
performance. 
 
 

5. RESULTS 

The results are punctual and they are presented in the temporal 
variability. The linear regression method was applied for 
checking the results using the same data. 
 
Figures (figures 4 to 11) present the estimated temperature and 
humidity by the radiosondes and ANN for all the sites in this 
study. From the graphs one may infer a high correlation 
between the estimated temperature and humidity by the ANN 
and the radiosondes data.  
 
The MODIS Brightness Temperatures were only measured at 
timetables of 00 UTC and 12 UTC. These data were acquired 
on the same days of satellite coverage of this site. Straight lines 
correspond to non-available data, that is, days with no 
observations. These figures present graphic line of the estimated 
atmosphere profiles by the regression model and the ANN 
method versus radiosondes. One may notice that the results of 
the ANN are closer to the radiosondes than the results of the 
linear regression method. 
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Figure 4. The temperature measured by radiosondes in 

Mehrabad airport station and the estimation provided by the 
MLP (blue/dot) and the linear regression method (red/square). 

 
Humidity Retrieval (Mehrabad)
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Figure 5. The humidity measured by radiosondes in Mehrabad 

airport station and the estimation provided by the MLP 
(blue/dot) and the linear regression method (red/square). 

 

Temperature Retrieval (Kermanshah)
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Figure 6. The temperature measured by radiosondes in 

Kermanshah station and the estimation provided by the MLP 
(blue/dot) and the linear regression method (red/square). 

 
Humidity Retrieval (Kermanshah)
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Figure 7. The humidity measured by radiosondes in 
Kermanshah station and the estimation provided by the MLP 

(blue/dot) and the linear regression method (red/square). 
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Temperature Retrieval (Shiraz)
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Figure 8. The temperature measured by radiosondes in Shiraz 
Station and the estimation provided by the MLP (blue/dot) and 
the linear regression method (red/square). 
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Figure 9. The humidity measured by radiosondes in Shiraz 

Station and the estimation provided by the (blue/dot) and the 
linear regression method (red/square). 

 

Temperature Ritrieval (Bandar Abbas)
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Figure 10. The temperature measured by radiosondes in Bandar 
Abbas Station and the estimation provided by the MLP 

(blue/dot) and the linear regression method (red/square). 
 

Humidity Retrieval (Bandar Abbas)
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Figure 11. The humidity measured by radiosondes in Bandar 
Abbas Station and the estimation provided by the MLP 
(blue/dot) and the linear regression method (red/square) 

 
 
 

 MEAN Radiosond  ANN  Regression
Sites T (k) H (%) T(k) H(%) T(k) H(%)
Meh. Airport  247.2 28.4 247 19.9 247 20.1
Shiraz  248 14.7 248 13.7 248 11.1
Kermanshah 250 21.8 250 15.5 251 17.3

Bandar Abbas 242.6 10.3 244 9.89 243 9.91

 RMSE Radiosond  ANN  Regression
Sites T (k) H (%) T(k) H(%) T(k) H(%)
Meh. Airport  32.73 15.6 32.4 17.4 32.3 17.9
Shiraz  34.78 3.6 34.3 5.6 35.5 5.42
Kermanshah 34.50 11.1 31.9 12.1 33.4 11.2

Bandar Abbas 45.49 12.5 45.4 13.2 44.2 11.4
 

Table.2. Estimated statistical parameters for three methods 
 
The statistical results described in Table 2 present: the mean 
value of the radiosondes temperature and humidity values and 
output of the ANN. The rms error was in compared to the 
radiosondes and the ANN. The statistics of the regression 
method were redone for comparison with the ANN.  
 
 

6. CONCLUSION 

In this article, it is shown that the feedforward neural network 
with single hidden layer can be applied to the inverse problem 
of atmospheric state estimation. Fast retrieval of temperature 
profiles from MODIS radiance spectra with acceptable accuracy 
can be obtained. The method of this paper can be expanded to 
retrieval of water vapour, ozone and methane profiles from high 
resolution radiance spectra obtained by future sensors.  
Based on the obtained results, one may conclude that artificial 
neural network method may satisfactorily estimate the 
atmospheric state to the variability. The estimation of the 
atmospheric state allows the direct connection of the brightness 
temperature to the quantity of temperature and humidity. 
The observations of the radiosonde offer quite limited space 
coverage, especially in Iran, and then it is of the great 
importance to develop a method to estimate atmosphere profiles 
from satellite data. These estimated data will improve the 
limitations of meteorological observations of conventional 
stations. 
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