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ABSTRACT:

Image segmentation has the general goal to define regions within an image, in which all pixels have similiar properties. For fully-
polarimetric SAR data this is often done by spectral classification without any use of spatial information. On the contrary the proposed
method aims to find homogenous segments in the image, which should be compact and connected if possible. A multiresolution
image pyramid allows to calculate information based on regions of different size instead of single pixels or small neighbourhoods.
Furthermore, a relaxation approach is used to defer the segmentation decisions until more accurate information is available.

1 INTRODUCTION

Image segmentation is an important preprocessing step in many
applications. Numerous tasks such as classification, object de-
tection and so forth can be achieved much more easily and accu-
rately given an appropriate segmentation.

Due to the coherent nature of SAR sensors homogeneous ar-
eas are no longer homogeneous in the image, but contain strong
multiplicative distortions. This speckle effect poses severe prob-
lems to spatial segmentation algorithms. A lot of work is done
for radiometric classification without using any spatial informa-
tion, e.g. (Lee et al., 1997, Ferro-Famil et al., 2001, Anfinsen et
al., 2007, Hänsch et al., 2008) and there are very few approches
that try to combine spatial context and radiometric evidence as in
(Reigber et al., 2007).

In this paper, the segmentation algorithm proposed in (Hong and
Rosenfeld, 1984) is used to automatically derive the hierachical
structure of an image of fully-polarimetric SAR data. It is based
on a multiresolution image pyramid with the original image at
the base. Each higher level of the pyramid contains the image in
a lower resolution. The different resolutions are obtained by sim-
ply averaging pixels in overlapping windows of certain size dur-
ing the initialisation. Due to the overlap and window size each
element in the pyramid has several parents (at the next higher
level) and descendents (at the lower level).

Most algorithms for segmentation work with hard decisions: that
means, each pixel is uniquely assigned to a certain cluster or seg-
ment. Other methods, which merge or split regions, have to de-
cide for each region whether to split or to merge it. Because the
true segments or clusters are apriori unknown, such hard deci-
sions will be erroneous for some pixels. That is why the forced-
choice aspect of segmentation has, in practice, a negative influ-
ence on the final segmentation result. Particulary, if it is difficult
to undo wrong decisions made at the beginning. The algorithm
presented avoids this by labelling links between each element and
its parents with a certain link strength, representing the degree of
association between node and parent. This association is based on
a distance measure between the value of this pixel and the values
of its parents. As this algorithm is applied to fully-polarimetric
SAR data a distance measure is chosen, which respects the statis-
tical properties of such data and is based on the Wishart distribu-

tion. Having established a set of weights, pixels at higher levels
can be updated by the weighted average of the values of their de-
scendents.

The entire process is then iterativly repeated until convergence,
at which point a segmentation can be extracted. Some pixels in
the pyramid will have small link strengths to all of their parents.
They form independent subtrees in the pyramid and represent the
searched segments.

2 THEORETICAL BACKGROUND

2.1 Fully-polarimetric SAR data

Fully-polaritmetric SAR data measure amplitude and phase of the
backscattered signal in four different transmit and receive polari-
sation combinations. However, a common assumption is that the
cross polarisations are the same due to the reciprocity of natural
targets. Therefore each data point is a three dimensional vector~s:

~s = (SHH ,
√

2SHV , SV V ) (1)

where SRT is a complex component of the scattering matrix and
R ∈ {H, V } is the receive and T ∈ {H, V } is the transmit po-
larisation.

Often the data is represented as spatially averaged sample covari-
ance matrix in order to reduce speckle and get more statistical
information:

C =
1

n

n∑
i=1

~si~s
H
i (2)

where H denotes the conjugate transpose and n is the number
of samples used for averaging. If the distribution of ~s is a mul-
tivariate complex Gaussian with zero mean, which is a standard
assumption when dealing with fully-polarimetric SAR data, the
sample covariance matrix C of ~s is complex Wishart distributed.

~s ∼ N(0,Σ) ⇒ C ∼ W (n,Σ) (3)
95



Hence, the density of C given the covariance matrix Σ is defined
by

pn(C|Σ) =
nnq|C|n−q exp(−n · tr(Σ−1C))

|Σ|n · πq(q−1)/2
q∏

k=1

Γ(n− k + 1)

(4)

where | · | is the determinant and tr(·) is the trace of a matrix,
Γ(·) is the standard gamma function and q is the dimensionality
of ~s.

2.2 Wishart-based distance measure

An often used distance measure for polarimetric SAR data is
based on the Wishart distribution and is defined in (Lee et al.,
1997):

dW (C,Σ) = − 1

n
ln p(C|Σ) (5)

= ln (|Σ|) + tr(Σ−1 ·C) + c (6)

where

c = − 1

n
ln

 nnq|C|n−q

πq(q−1)/2
q∏

k=1

Γ(n− k + 1)

 (7)

The constant term c in (6) is class independent and can be omit-
ted, if this distance is used as in (Lee et al., 1997) to decide if the
data point C more probably belongs to class c1 represented by
the covariance matrix Σ1 instead of belonging to class c2 repre-
sented by Σ2. The distance measure simplifies to:

dW (C,Σ) = ln (|Σ|) + tr(Σ−1 ·C) (8)

Although this distance measure is not a metric, because it is nei-
ther homogeneous, nor symmetric and does not fullfill the tri-
angle inequality, it is often used and has shown its effectiveness
in practice. Because of this and its direct relation to the density
function it will be used in a slightly modified version in this work.

3 WEIGHTED PYRAMID LINKING

3.1 Pyramid construction and initialisation

The basic structure used in this approach is a multiresolution im-
age pyramid. While the original data (fully-polarimetric SAR
data, multi-look complex covariance matrices) is forming the base,
the higher levels are versions of the image with subsequent re-
duced resolutions. The height of the pyramid (the number of lev-
els without the bottom level l=0) shall be noted by L. Each pixel
is represented by a node in this pyramid. The value v1(n

l(x, y))
of the node n at position (x, y) at level l is simply an average of
a window with certain size s at the previous level l − 1:

∀l ∈ [1, L] : v1(n
l) = v2(n

l) =
1

s
·
∑

n′∈des(nl)

v1(n
′) (9)

The difference between the covariance matrices v1(n
l) and v2(n

l)
will be explained in section 3.3. Just note, that they are set to
the same value during the initialisation. Each node n at level l
(0 < l < L) is therefore connected with a set of nodes at level
l− 1, called descendents des(n) and a set of nodes in level l + 1
called parents par(n). Nodes at the bottom level l = 0 have
only parents, while nodes at the top level l = L have only de-
scendents. Only vertical connections between nodes at adjacent

levels and no horizontal relations between nodes of the same level
are used.

The windows overlap by a predefined amount o of pixels
(0 < o < s). The size s of the window and the overlap o define
the decrease in resolution of the next level. The parameters used
in this paper are a quadratic window size s of 4× 4 = 16 and an
overlap o of two pixels in x- and y-direction. Given this setting
of o and s there will not be enough pixels at the border of a level
for a whole window, if the dimensions of this level are not even.
In that case, the level is simply extended with as many pixels as
needed. These additional pixels have the same value as the bor-
der pixels. Due to this manipulation the border pixels gain greater
influence on the pixels at the next level. However, this effect is
insignificant as experiments have shown.

3.2 Weight adjustment

The most important part of this approach is the introduction of
link strengths w̃ between nodes on adjacent levels of the pyra-
mid. Instead of using only the descendent with the largest degree
of association, all descendents contribute accordingly to their link
strength to the node value at the next level. The link strength
w̃(n, n′) between node n and its descendent n′ ∈ des(n) is
based on proximity and similarity:

w̃(n, n′) = exp(−dspec(v2(n
′), v1(n))) (10)

· exp(−var(n′))

· exp(−dspat(n
′, n)

The first factor has the most crucial role. It measures the spec-
tral distance between two nodes at adjacent levels in the image
pyramid. Any proper distance measure can be used here. As
mentioned above an often used distance measure for polarimet-
ric SAR data is (8), which is based on the Wishart distribution.
Note, that the link strength is used to define the contribution of
a descendent to the value of the current node in comparison to
all other descendents of this node. Furthermore, the values of
neighbouring nodes at one level are unlikely to be equal and the
number of looks can be different, too. All nodes in the pyramid
at the same level will have the same number of looks merely after
the initialisation. That is why c in (6) cannot be omitted and (8)
cannot be used here. Therefore dspec(v2(n

′), v1(n)) is defined
as:

dspec(v2(n
′), v1(n)) = − ln p(v2(n

′)|v1(n)) (11)

where p(v2(n
′)|v1(n)) is the density of the Wishart distribution

defined in (4).

Within the second factor the euclidian distance dspat(n
′, n) be-

tween the spatial positions of the two nodes is used. The spatial
distance within the 4× 4 neighbourhood is defined as:
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 (12)

As the link strength now depends on geometric closeness the re-
gions tend to be more compact, whereas they would have more
irregular shapes without this factor.

The third factor represents the variability of the descendent of
node n. Since the goal is to segment the image into homoge-
neous regions, nodes that represent segments with high variabil-
ity should get a lower link strength than nodes representing more
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homogeneous regions.

var(n) =
∑

n′∈des(n)

dspec(v2(n
′), v1(n))w(n, n′)(13)

w(n, n′) =
w̃(n, n′) · a(n′)∑

n∗∈des(n)

w̃(n, n∗) · a(n∗)
(14)

The weight w(n, n′) between a node n and its descendent n′ have
to be normalized, so that

∑
n′∈des(n)

w(n, n′) = 1 holds. The
variability var(n) of a node n becomes therefore the weighted
average of the spectral distances dspec to its descendents des(n).
The area a(n) of node n will be explained in more detail in the
next section.

3.3 Node value recalculation

After the weights of each connection have been adjusted, the val-
ues of every parent have to be recalculated. Starting at the level
l=1 of the pyramid the values of all nodes in all levels have to
be recomputed. The weights used have to depend on the link
strength between the two nodes. However, they should also de-
pend on the size of the image area a(n′) represented by the de-
scendent n′: Consider a node at a particular level of the pyramid,
that has only one strong connection down the pyramid to only one
image pixel. This node should have less influence than another
node, that covers a large area within the image.

a(n) =
∑

n′∈des(n)

w̃(n, n′) · a(n′)∑
n′∗∈par(n′)

w̃(n′∗, n′)
(15)

As the sum in the denominator is computed over the parents of
n′, the area of a node is distributed among its parents in a nor-
malized way. This ensures that the total area of all nodes at each
level is the same as the area of the original image.

Every node in the pyramid plays two roles. On the one hand
it is the sample covariance matrix of its descendents estimated by
weighted averaging. On the other hand it is the descendent of a
node on the next level. In order to apply the distance measure
(11) it has to be Wishart distributed and the number of looks has
to be known. One can show, that the sum of Wishart distributed
random variables Xi is again Wishart distributed:

Xi ∼ W (ni,Σ), i = 1, ..., k ⇒
k∑

i=1

Xi ∼ W

(
k∑
i

ni,Σ

)
(16)

However, this holds only if all Xi have the same covariance ma-
trix Σ and are independent. This assumption should be strongly
violated at higher levels of the pyramid, because their nodes cover
large regions of the image. Furthermore, a multiplication with a
scalar changes the distribution:

X ∼ W (n, Σ) ⇒ a ·X ∼ W (n, a · Σ) (17)

The weighted average can therefore not be assumed to be Wishart
distributed. That is why each node holds two values. The first one
is simply the weighted average of the values of its descendents
and therefore an estimation of the true covariance matrix:

v1(n) =
∑

n′∈des(n)

v2(n
′) · w(n, n′) (18)

where w(n, n′) is defined by (14). The second one is the (un-
weighted) average of the descendents with the strongest connec-
tions. This ensures, that only descendents which are very likely

to have the same distribution contribute to this value:

v2(n) =
1

Z

∑
n′∈des(n)

v2(n
′) · δ(w(n, n′)) (19)

δ(w(n, n′)) =

{
1, if w(n, n′) > θ
0, else (20)

Z =
∑

n′∈des(n)

δ(w(n, n′)) (21)

3.4 Iterative processing

All calculations, in particular adjustments of link strengths and
recalculations of the values of each node are done iteratively. The
following gives an overview of the algorithm:

0: INIT: Construct pyramid

1: While: levels not converged
1.1: FOR l=1 TO L

1.1.1: Adjust weights w̃(nl, nl−1)
1.1.2: Recalculate area a(nl)
1.1.3: Recalculate values v1(n

l) and v2(n
l)

1.1.4: Recalculate variability var(nl)

2: Construct tree ⇒ Extract segments

After a few iterations the link strengths will stabilise and not
change anymore. At first the level l = 1 of the pyramid con-
verges. At this time each node at this level will have strong links
only to that subset of pixels in the set of descendents, which are
very likely to have the same distribution governed by covariance
matrix Σ of which the node value is an estimation. The sec-
ond value of a node at level l = 1 will now be an (unweighted)
average of Wishart distributed random variables of the same dis-
tribution. That is why its own distribution can be assumed to be
Wishart, too. However, the averaged variables cannot be assumed
to be independent, because of the possible overlap of their areas
in the image. Therefore the number of looks is estimated by the
area the node covers in the original image and not by the number
of looks of its descendents. All levels will converge in ascending
order after a few iterations.

3.5 Tree construction

If the whole pyramid has converged, meaning that link strengths
and, therefore, values of all nodes do not change anymore, there
are two general types of nodes in the pyramid. On the one hand,
nodes that have strong connections to one or more parents and, on
the other hand, nodes which have no strong connection to any par-
ent at all. Latter ones define roots of independent subtrees within
the pyramid and represent homogeneous regions in the image.
All nodes at the top level of the pyramid or nodes whose link
strengths to all their parents are below a certain threshold are con-
sidered as such roots. However, because of the different statistics
at each level, e.g. the mean number of looks decreases with de-
creasing height, one cannot use a global threshold. But there is in
each level an abrupt rise in the number of roots for a certain
value tr . This value is used as threshold to define the roots in
each level. Figure 1 shows an example of the relationship be-
tween the number of roots at a certain level and the threshold to
define them.
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Figure 1: fraction of roots over threshold

Beginning at the top of the pyramid each node is labelled as root
or to which root it belongs. When the label propagation has
reached the bottom of the pyramid, each pixel of the original im-
age data is labelled by a number indicating to which root, i.e. to
which segment it belongs.

4 MERGING

The described approach results in a very fine segmentation, which
is very sensitive to changes in the image. This ensures that all
real-world boundaries are contained in the segmentation, but re-
sults in an image, which is oversegmented to a certain degree.
However, the obtained segments cover only strong homogeneous
regions and have therefore good spectral properties. A simple
merging algorithm is sufficient to reduce the number of segments
and to obtain a good segmentation result. Beginning with the
largest segment each of its neighbours is investigated. If the sim-
ilarity s(R1, R2) between segment R1 and its currently investi-
gated neighbour R2 is greater than a certain threshold both seg-
ments are merged. This is done until all similiar neighbouring
segments are merged. Afterwards the next region is investigated
in the same way.

s(R1, R2) =
1

|R2|
∑

X∈R2

δ(X) (22)

δ(X) =

{
1, if dW (X,Y1) ≤ γdW (X,Y2)
0, else (23)

where Yi is the sample covariance matrix of region Ri and
dW (X,Yi) the distance measure defined by (8). The constant
γ = (1 + ε), where ε is a small number, relaxes this constraint a
little bit. In our experiments γ was set to γ = 1.01.

5 RESULTS

In Figure 2 the segmentation result of a 727×1047 image of fully-
polarimetric SAR data is shown.

Figure 2: left: original; right: segmentation

Figure 3 shows a magnification of a part of Figure 2. The homo-
geneous regions have been extracted successfully. Regions with
different properties have been separated and are considered as in-
dependent segments.

Figure 3: The figure shows the segmentation in more detail.
At the top left side the original image data is shown and at the top
right side the segmentation result.
The bottom line shows the segment borders without (left) and
with (right) merging.

6 CONCLUSIONS

The proposed algorithm has several adavantages with respect to
other segmentation approaches. There is no need for any kind of
handmade initialisation. Furthermore, not only a segmentation is
obtained, but a hierachical structure of the image, which contains
more information than a simple collection of disjoint regions.
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Although the segments obtained will tend to stay compact (con-
trary to regions gained e.g. by spectral clustering where no spatial
information is used) they do not have to be connected. The root of
a subtree at a high level covers a large area within the image and
can thus connect regions, which are neither close to each other
nor connected, but have similiar spectral properties. Another im-
portant feature is that the number of segments is exclusivly based
on the given data. Neither an exact number has to be set, nor a
maximum number, because the number of segments is a direct
result of the algorithm.

As the proposed method was designed to segment homogeneous
areas, one of its limits is shown in Figure 4. It is not able to con-
sider a heterogeneous image area like regions with strong tex-
ture as one segment. Such a region (e.g. cities or forests with
great fluctuations in height and/or changes in backscatter proper-
ties due to different vegetation) will be segmented in many small
regions. Future work will include the analysis of all regions in
a more rigorous way than the above mentioned simple merging
algorithm to overcome this disadvantage.

Figure 4: top: original; middle: segmentation; bottom: segment
borders
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