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ABSTRACT:

Assessing the quality of a hyperspectral image is a difficult task. However, this assessment is required at different levels of the
instrument design: evaluation of the signal to noise ratio necessary for a particular application, determining the acceptable level of
losses from compression algorithms for example. It has been shown previously that a combination of five quality criteria can provide
a good evaluation of the impact of some degradation on applications, such as classification algorithms for example. This paper refines
this concept, providing a representation of the degradation which allows predicting the impact on applications.

1 INTRODUCTION

Quality criteria should be easily applicable to measure the loss of
information caused by compression or by any other forms of pro-
cessing. In the case of ordinary 2D images, a quality criterion has
often to reflect the visual perception of a human observer. This
is not the case for hyperspectral images, which are first aimed
to be used through classification or detection algorithms. There-
fore, quality criteria have to be relevant to these corresponding
applications. For example, some papers ( [Ryan and Arnold,
1997], [Hu et al., 2004], [Qian, 2004]) address the problem of
evaluating compression impact on specific hyperspectral applica-
tions. However, quality evaluations within the context of specific
applications are heavy to conduct as they require in-depth knowl-
edge of these applications.

In a previous work [Christophe et al., 2005], different degrada-
tions were applied to hyperspectral images: additive white noise,
smoothing (spectral and/or spatial) with a lowpass filtering of
the data, Gibbs effect (ringing around sharp changes) and JPEG
2000 compression [Taubman and Marcellin, 2002] using a mul-
ticomponent transform. Different images from the NASA/JPL
AVIRIS hyperspectral airborne sensor were used for the exper-
iments (Fig. 1). Finally, five quality criteria have been selected
to give a valuable representation of the degradations affecting the
hyperspectral data and their impacts on three different classifica-
tion algorithms. These five quality criteria were found to be a
good combination to discriminate between data degradation and
appear to be almost orthogonal to each other. One advantage of
this combination is the mix between local and global criteria for
both spatial and spectral dimensions, thus enabling the detection
of local and global degradations.

However, the way to use these measures was not detailed. The
present paper proposes in the following section a graphic repre-
sentation of the chosen quality criteria. A numerical method is
then derived in section 3 from this representation to provide a
way to identify the degradation nature if unknown and to predict
its impact on a specific application. The interest of the proposed
representation is finally illustrated and compared with traditional
SNR-based measure.

(a) Moffett4 (b) Moffett3 (c) Harvard1

Figure 1: Different hyperspectral images used during the experi-
ments. (a) and (b) are different parts from the f970620t01p02r03
run from AVIRIS sensor on Moffett Field site. (a) presents uni-
form spatial area with strong spectral features. (b) is mixed area
with city (strong spatial frequency features). (c) is from the
f010903t01p01r03 AVIRIS run over Harvard Forest, it contains
mostly vegetation whose spectrum contrasts with man-made ob-
jects.

2 QUALITY REPRESENTATION

2.1 Efficient representation for five criteria

The five quality criteria retained in [Christophe et al., 2005] were
the MAD, MAE, RRMSE,Fλ andQ(x,y). DenotingI(x, y, λ)

the original image,eI(x, y, λ) the degraded image andeeI
= I− eI

(x, y being spatial dimensions andλ the spectral one), these five
quality criteria are defined as

• Maximum Absolute Difference

MAD = L∞(I − eI) = max
(x,y,λ)

˘˛̨
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˛̨¯

. (1)

• Mean Absolute Error

MAE =
L1(I − eI)
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wherenx, ny andnλ are the number of pixels for each di-
mension.
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• Relative RMSE

RRMSE =
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Note that, as the RRMSE enhances the importance of er-
rors on small values, it is important to consider the partic-
ular case of values below the sensor noise. Small values of
I(x, y, λ) can be considered as random and are ignored for
the computation of the RRMSE.

• Spectral Fidelity [Eskicioglu and Fisher, 1995]

Fλ = min
(x,y)

n
F

“
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with
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L
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• Q(x,y) [Wang and Bovik, 2002]

Q(x,y) = min
λ

n
Q

“
I(·, ·, λ), eI(·, ·, λ)

”o
. (6)

with

Q(U,V ) =
4 σUV µU µV

(σ2
U + σ2

V )(µ2
U + µ2

V )
(7)

whereσUV is the covariance betweenU andV .

All these criteria measure a distance between an original image
and a degraded version of this image.

Representing a combination of five values is a challenge and work-
ing on a five-dimensional plot would not enable efficient assess-
ment. A good way to represent these values is to use a star dia-
gram (Fig 2) which gives a more intuitive vision than a classical
x-y representation in this case. The five axes of the diagram cor-
respond to the five quality criteria. Scale for all the figures in this
paper are the same. For MAD, MAE and RRMSE, origin cor-
responds to 0 (no degradation). The extremity of the axes corre-
sponds to value 5000 for MAD, 40 for MAE and 0.1 for RRMSE.
ForFλ andQ(x,y), origin corresponds to 1 (no degradation), ex-
tremity being 0.9 forFλ and 0.6 forQ(x,y). These values were
found to provide a good differentiation between different degra-
dations. These specific values are important for visualization and
comparison, they are not important by themselves, it is just neces-
sary to use the same scales on the different figures. The shape of
the diagram is characteristic of the degradation as seen in figures
2, 3 and 4.

Parameters for the degradation are presented in [Christophe et al.,
2005]. Basically, this is the variance for the white noise, the filter
size for the smoothing, the scale factor for the Gibbs filter, and
the compression rate for JPEG 2000.

2.2 Shape characterizes the degradation

This representation is robust relatively to the amplitude of the
degradation. The shape is similar for a given degradation; the
degradation pattern is inflated when the degradation level increases
(Figs. 2-4). For example in Fig. 2, the innermost shape (green)
corresponds to a white noise with a low variance. When the noise
variance increases, the quality decreases and the quality diagram
dilates.

Figure 2: Quality for different values of additive white noise on
moffett4image.

Figure 3: Quality for different values of spatial smoothing on
moffett4 image.

Figure 4: Quality for different values of spectral smoothing on
moffett4 image.
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To be valuable, this representation has to report accurately the
quality of the image and the performance that one can expect
from a particular application whatever the image is. However,
most degradation effects are sensitive to the image. It is easy to
understand that a spatial smoothing will have a greater influence
on a city image than on a uniform area (Fig. 7).

Figure 5: Quality for different values of white noise on three dif-
ferent images.

Figure 6: Quality for different rates for JPEG 2000 on three dif-
ferent images.

When considering spectral smoothing, the same conclusion holds.
Moffett3andharvard1images have more high frequency compo-
nents thanmoffett4. The spectral content ofharvard1 is com-
pletely different frommoffett3and moffett4. Thus, the quality
figures differ (Fig. 8). However, as we can expect the influence
of the smoothing on applications to be different also, this is not
surprising.

It is important to notice that the representation is quite robust for
the three different imagesmoffett3, moffett4et harvard1 for the
white noise and JPEG 2000 degradations (Figs. 5 and 6).

3 QUANTITATIVE EVALUATION

3.1 Distance between degradations

The ideal situation to reach, theGrail of the quality criteria would
be to infer precisely the degradation impact on application know-

Figure 7: Quality for different values of spatial smoothing on
three different images.

Figure 8: Quality for different values of spectral smoothing on
three different images.
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ing only the five values of the criteria and a link for one image
between the five values and the impact for a given application.

It is possible to define a validation protocol for the previous rep-
resentation at different levels (each being more difficult). We as-
sume that we know the quality criteria values corresponding to
several degradations for few levels (e.g. Fig. 2-4). We also know
the impact on one application (SAM classification in our case) of
these degradations on the results. We can now try to predict the
impact for

• a known degradation but with a different level on the same
image (first situation);

• an unknown degradation on the same image (second situa-
tion);

• an unknown degradation on a different image (third situa-
tion).

It has to be highlighted that the choice of the SAM classification
is not determinant and is chosen only for demonstration purpose.
Any other hyperspectral application giving a quantifiable result
could have been used.

In the following part, results obtained onmoffett3image are used.
Only one image is used as a reference as it is not easy to obtain
applications results for different images (it is precisely the reason
why quality criteria are important). In the situation where another
image is required,moffett4is used.

When we are confronted to an unknown situation, we will try to
find the nearest known diagram. To be able to find thenearest
diagram, we need to define adistance. A Euclidean distance, in
this five-dimensional space, is the most intuitive solution.

We are still confronted to the problem of the scale between cri-
teria: the MAD variation domain, which can easily reach 2000,
has nothing in common with the variation domain ofFλ, which
is kept between 0.9 and 1. There is no ideal solution to this prob-
lem so we decide to normalize arbitrarily the values using the
same scales as on the previous diagrams. We denote ase. this
normalized value.

Thus, the distance between two diagrams is defined as:

d =

r
∆̃2

MAD + ∆̃2
MAE + ∆̃2

RRMSE + g∆2
Fλ

+ ∆̃2
Q(x,y)

. (8)

The lower the distance, the more similar the two degradations.
We now need to check if this distance performs well in the three
situations described above.

3.2 Changing the degradation level (1st situation)

In the case where a white noise with a variance of 150 is applied
to the image, let us compute the distance (8) to known degrada-
tions on the same image. Results are presented in table 1. Small-
est distances are highlighted in bold and correspond to those with
the white noise with a variance of 200 and the white noise with a
variance of 100 (Tab. 1). In this situation, we can accurately pre-
dict the impact of the degradation on the application. We can infer
a number of misclassified pixels between 163 and 255, which is
correct: the real value is 222 (of the 65536 pixels in total).

Table 1: Distances for a white noise of variance 150.
Degradation type Deg. param. Distance # of misclass.

White noise 50 0.169285 112
White noise 100 0.0735083 163
White noise 200 0.0619829 255
White noise 1000 0.634494 634

Spectral smoothing 3 1.57091 262
Spectral smoothing 5 0.917740 166
Spectral smoothing 7 0.627584 123
Spatial smoothing 13 1.40636 4248
Spatial smoothing 15 1.11240 3778
Mixed smoothing 11 1.90406 4881

Gibbs 50 0.195913 698
Gibbs 100 0.258957 425

JPEG 2000 0.5 0.857591 450
JPEG 2000 1.0 0.503311 142

The same accuracy is also observed when using this distance for
other degradations. For example, in the case of spectral smooth-
ing (Tab. 2) with an attenuation parameter of 4, the smallest dis-
tances correspond to the spectral smoothing with the parameters
3 and 5, which gives a number of misclassified pixels between
166 and 262 (the real value is 207).

Table 2: Distances for a spectral smoothing with an attenuation
parameter of 4.

Degradation Deg. Distance # of misclass.
type param. pixels (SAM)

White noise 50 1.31986 112
White noise 100 1.40968 163
White noise 200 1.60283 255
White noise 1000 2.83994 634

Spectral smoothing 3 0.365524 262
Spectral smoothing 5 0.271982 166
Spectral smoothing 7 0.567515 123
Spatial smoothing 13 1.55253 4248
Spatial smoothing 15 1.35135 3778
Mixed smoothing 11 1.76783 4881

Gibbs 50 1.18216 698
Gibbs 100 1.22852 425

JPEG 2000 0.5 1.01159 450
JPEG 2000 1.0 0.931696 142

3.3 Unknown degradation (2nd situation)

In this second situation, let us consider some unknown degrada-
tion onmoffett3image. The above examples (Tab. 1) show that,
when dealing with the same image, the smallest distance is able
to identify the degradation nature. To reinforce this, we remove
the JPEG 2000 degradation from the known situations to be able
to consider it as an unknown situation and find the nearest degra-
dation to infer the number of misclassified pixels.

Distances are presented in table 3. The degradation caused by
JPEG 2000 compression at 1 bit per pixel per band (bpppb) is
identified as a mixture of a white noise with a variance of 100 and
a spectral smoothing with an attenuation of 7. This identification
corresponds to the intuitive one, looking at the diagram shape and
considering the well-known effects of JPEG 2000. The predicted
numbers of misclassified pixels are 163 and 123. The real value is
142. However, given the available possible prediction in the table,
we can notice that the diagram distance managed to select some
the closest values to the right answer to give a rough prediction.

3.4 Different images (3rd situation)

In this case, we use results obtained onmoffett3to infer the likely
degradation onmoffett4. In the case of a white noise with a vari-
ance of 100, the distance between diagrams properly identifies
the degradation as a white noise (Tab. 4). The distance interprets
a white noise with a variance of 100 onmoffett4as having the
same effect than a white noise of variance 100 onmoffett3. The
predicted value of misclassified pixels is 163 whereas the real
number is 91.
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Table 3: Distance for JPEG 2000 at 1 bpppb.
Degradation type Deg. param. Distance # of misclass.

White noise 50 0.493597 112
White noise 100 0.492287 163
White noise 200 0.520257 255
White noise 1000 0.884674 634

Spectral smoothing 3 1.26847 262
Spectral smoothing 5 0.634936 166
Spectral smoothing 7 0.376314 123
Spatial smoothing 13 1.50541 4248
Spatial smoothing 15 1.22905 3778
Mixed smoothing 11 1.91304 4881

Gibbs 50 0.505195 698
Gibbs 100 0.510643 425

Table 4: Distance for a white noise of variance 100 onmoffett4
image with degradation onmoffett3.

Degradation type Deg. param. Distance # of misclass.

White noise 50 0.107652 112
White noise 100 0.0435569 163
White noise 200 0.139344 255
White noise 1000 0.705412 634

Spectral smoothing 3 1.56918 262
Spectral smoothing 5 0.908723 166
Spectral smoothing 7 0.608943 123
Spatial smoothing 13 1.42293 4248
Spatial smoothing 15 1.12790 3778
Mixed smoothing 11 1.91772 4881

Gibbs 50 0.159746 698
Gibbs 100 0.198265 425

JPEG 2000 0.5 0.830507 450
JPEG 2000 1.0 0.449398 142

We also apply the method for a JPEG 2000 compression onmof-
fett4 at a bitrate of 0.5 bpppb. Distances are presented on ta-
ble 5. The distance successfully identifies the degradation as be-
ing JPEG 2000. Themoffett4image is more uniform, thus easier
to compress. This property explains that degradations onmof-
fett4 for a bitrate of 0.5 bpppb are similar to those onmoffett3
at 1.0 bpppb. The number of misclassified pixels estimated by
this method is 142, the real value being 82. There is a lack of
reliability in this situation.

In the situation where the method is applied to a different image,
it is difficult to evaluate precisely the impact of the degradation
on the application. However, this method successfully identifies
the nature of the degradation caused to the image. It would be
worthwhile to detail these results on a greater number of images
and applications.

3.5 Interest compared to traditional SNR

SNR, as well as MSE or PSNR, which are derived measures, do
not reveal the nature of the degradation and do not allow inferring
the impact on applications. This fact is illustrated on figure 9. Di-
agrams are plotted for different degradations leading to the same
SNR. The five degradations are applied to themoffett3image to
provide a SNR equal to 30 dB. We can clearly see from the dia-
gram that even if these degradations led to the same SNR, their
characteristics are completely different.

For the same image using only the SNR to measure the quality
(here for a SNR of 30 dB), we cannot make the difference be-
tween

• a white noise with a variance of 2000: 1054 misclassified
pixels;

• a spectral smoothing with an attenuation parameter of 4: 207
misclassified pixels;

• a spatial smoothing with an attenuation parameter of 15:
3778 misclassified pixels;

Table 5: Distance for JPEG 2000 at 0.5 bpppb onmoffett4image
with degradation onmoffett3.

Degradation type Deg. param. Distance # of misclass.

White noise 50 0.400136 112
White noise 100 0.419496 163
White noise 200 0.478324 255
White noise 1000 0.920144 634

Spectral smoothing 3 1.38425 262
Spectral smoothing 5 0.738476 166
Spectral smoothing 7 0.455491 123
Spatial smoothing 13 1.50678 4248
Spatial smoothing 15 1.22396 3778
Mixed smoothing 11 1.93958 4881

Gibbs 50 0.424221 698
Gibbs 100 0.407225 425

JPEG 2000 0.5 0.565506 450
JPEG 2000 1.0 0.129164 142

Figure 9: Quality for the 5 types of degradation giving the same
SNRonmoffett3image (30 dB).
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• a Gibbs phenomenon with a parameter 20: 2029 misclassi-
fiedpixels;

• a JPEG 2000 compression at the rate of 0.2 bpppb: 1772
misclassified pixels.

These degradations, all giving a SNR of about 30 dB, have an
impact on the application varying from 207 to 3778 misclassified
pixels. The SNR fails to give an estimation of the degradation
impact on the hyperspectral image quality for the user, whereas
the proposed use of the five criteria would allow to obtain it.

4 PERSPECTIVES

Results presented here are promising, given the possibility of
degradation identification and impact evaluation on future appli-
cations. However, these results need to be confirmed on a bigger
test basis with more images and especially more applications.

The five quality criteria are used here simply to define a distance
relation. This simple method already gives promising results. It
would be worthwhile to refine this using different method: e.g.,
using these five criteria as an entry for a neural network with the
number of misclassified pixels as an output.Support Vector Ma-
chine(SVM) could also be a good candidate.
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