
 

USING A LABORATORIAL HYPERSPECTRAL IMAGE FOR THE EVALUATION OF 
FEATURE REDUCTION METHODS FOR THE CLASSIFICATION OF HIGH 

DIMENSIONAL DATA 
 

 
Yasser Maghsoudi*, Jung-il Shin*, Sun-hwa Kim and Kyu-sung Lee 
ymaghsoudi@yahoo.com , Jungil79@inhaian.net , ksung@inha.ac.kr 

 
Department of Geoinformatic engineering, Inha university, S. Korea 

 
 

Commission VII, WG VII/3 
 

 
KEY WORDS:  Hyperspectral Sensing, Feature Selection, Feature Extraction, Classification  
 
 
ABSTRACT: 
 
Thee rapid advances in hyperspectral sensing technology have made it possible to collect remote sensing data in hundreds of bands. 
However, the data analysis methods which have been successfully applied to multispectral data are often limited to achieve 
satisfactory results for hyperspectral data. The major problem is the high dimensionality, which deteriorates the classification due to 
the Hughes phenomenon. In order to avoid this problem a feature reduction process is inevitable. There are currently many different 
methods for feature reduction process in hyperspectral data. The feature selection methods pick the most informative features and 
discard the redundant features from the total set of features. Feature extraction methods, on the other hand, transform a large amount 
of information into a small number of transformed features. The decision boundary feature extraction (DBFE) and nonparametric 
weighted feature extraction method (NWFE) are two important approaches for feature extraction. Another group of feature reduction 
algorithms are based on the theory of multiple classifiers.  Thus far, many different methods for the feature reduction process have 
been proposed but the validation of these algorithms has not yet been done on an appropriate image dataset. The main goal of this 
study is to have a good evaluation of these different feature reduction algorithms based on a laboratorial hyperspectral data. 
Selection of classes for the simulated target was based on the challenging point of different algorithms which are classifying targets 
with very similar spectral characteristics, targets with different shapes, targets with high different spectral characteristics or targets 
with high spatial variability. In this respect following the aforesaid criteria 22 classes were considered in the final simulated target. 
The feature reduction methods were compared using the test image. The consistency between the various methods is discussed as 
well as the implication of feature reduction on image classification.  
 
 

1. INTRODUCTION 

Recently, advances in hyperspectral remote sensing have 
provided a powerful tool for the monitoring of the earth’s 
surface. The resulting high dimensional data, in one hand, can 
provide a better discrimination of the spectral classes. On the 
other hand, it poses some new challenges to image 
classification. Hence, the data analysis methods which have 
been successfully applied to multispectral data in the past, often 
fail to achieve satisfactory results for hyperspectral data as well. 
The major problem in applying the traditional image 
classification methods into hyperspectral data is the high 
dimensionality, which deteriorates the classification due to the 
Hughes phenomenon (Hughes, 1968). In order to avoid this 
problem the number of training samples must increase as the 
number of spectral bands increases. As the number of training 
samples available is usually limited, the increase in the number 
of features can bring about a significant increase in the 
classification error. An approach to mitigate these problems is 
feature reduction. Feature reduction refers to the process of 
reducing the dimensions of the feature vector while preserving 
the needed information. The feature reduction methods 
generally fall into feature selection and feature extraction. 
 
The main goal of the feature selection methods is to pick the 
most informative features and discard the redundant features 
from the total set of features. Recently, there have been a large 
number of algorithms proposed for the purpose of feature 

selection (Bajcsy and Groves, 2004; Sheffer and Ultchin, 2003, 
Serpico and Bruzzone, 2000). The sequential methods are 
probably the most common group of methods. These methods 
are ranging from sequential forward selection (SFS) and 
sequential backward selection (SBS) methods (Kittler, 1986). 
SFS starts from an empty set. It iteratively generates new 
feature sets by adding one feature which is selected by some 
evaluation function. SBS, on the other hand, starts from a 
complete set and generates new subsets by removing a feature 
selected by some evaluation function. The main problem of 
these two algorithms is that the selected features can not be 
removed (SFS) and the discarded features can’t be reselected 
(SBS). To overcome these problems Pudil et al. (1994) 
proposed the floating versions of SFS and SBS. Sequential 
forward floating search algorithms (SFFS) can backtrack 
unlimitedly as long as it finds a better feature subset. SBFS is 
the backward version. 
 
Genetic feature selectors are a series of feature selection 
methods which use genetic algorithm to guide the selection 
process (Siedlecki and Sklansky, 1989). In genetic feature 
selection each feature subset is represented by a chromosome 
which is binary string including 0’s and 1’s, which corresponds 
to a discarded or selected features respectively. New 
chromosomes are generated using crossover, mutation and 
reproduction operators. Ferri et al. (1994) compared SFS, SFFS, 
and the genetic algorithm methods on data sets with up to 360 
dimensions. Their results showed that SFFS gives good 
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performance even on very high dimensional problems. They 
showed that the performance of genetic algorithm, while 
comparable to SFFS on medium-sized problems, degrades as 
the dimensionality increases. 
 

 

Steepest ascent (SA) search algorithm was proposed for feature 
selection in hyperspectral data (Serpico and Bruzzone, 2000). If 
n is the total number of features and m is the desired number of 
features, SA is based on the representation of the problem 
solution by a discrete binary space, which is initialized with a 
random binary string containing m "1" and (n — m) "0". Next, 
it searches for constrained local maximas of a criterion function 
in such space. A feature subset is a local maximum of the 
criterion function if the value of that feature subset criterion 
function is greater than or equal to the value the criterion 
function takes on any other point of the neighborhood of that 
subspace. They also proposed fast constrained (FC) search 
algorithm which is the computationally reduced version of SA. 
Unlike the SA for which the exact number of steps is unknown 
in advance, FC Search method exhibits a deterministic 
computation time. A comparative study of feature reduction 
techniques showed that FC is always faster than or as fast as SA 
(Serpico et al., 2003). Further, SA and FC methods allowed 
greater improvements than SFFS. 
 
The basic idea of the feature extraction methods, on the other 
hand, is to transform a large amount of information into a small 
number of transformed features. There are many feature 
extraction methods. They fall into two categories, parametric 
and nonparametric feature extractions (Fukunaga, 1990). 
Discriminant analysis feature extraction (DAFE) is probably the 
first method used for feature extraction. Since it uses the mean 
vector and covariance matrix of each class, it is also called the 
parametric feature extraction method (Fukunaga, 1990). The 
purpose of DAFE is to find a transformation matrix such that 
the class separability of transformed data is maximized. Usually 
between-class over within-class scatter matrices (Fisher criteria) 
is used to formulate the criteria of class separability. 
Approximated pairwise accuracy criterion Linear Dimension 
Reduction (aPAC-LDR) uses a weighted fisher criterion which 
is defined as the weighted contributions of individual class pairs 
according to the Euclidian distance of respective class means 
(Duin and Haeb-Umbach, 2001). These two methods, though 
distribution free, works well with normal-like distributions. 
Since the rank of within-class scatter matrix is the number of 
classes (N) - 1, so only N-1 features can be extracted using 
these methods. Nonparametric methods were proposed to solve 
the problems of the parametric approaches. Nonparametric 
Discriminant Analysis (NDA) proposes a nonparametric 
definition of the between class scatter matrix (Fukunaga, 1990). 
To improve the DAFE, this method uses local information. The 
Nonparametric Weighted Feature Extraction method (NWFE) is 
developed to solve limitations of the so-called methods (Kuo 
and Landgrebe, 2004). NWFE takes advantages of desirable 
characteristics of pervious methods, while avoiding their 
shortcomings. The main idea of NWFE is putting different 
weights on each sample to compute the “weighted means” and 
defining new nonparametric between-class and within-class 
scatter matrices to obtain more than N–1 features. 
There also have been many researchers that applied the idea of 
multiple classifiers for the classification of hyperspectral data. 
Multiple “data sources” were also used for the classification of 
hyperspectral data (Benediktsson and Kanellopoulos, 1999). 
Based on the correlation of the input bands, they split the 
hyperspectral data into several smaller data sources. Kumar et 
al. (2001) developed a pairwise feature extraction. They 

decomposed a c-class problem into       two-class problems. For 
each pair they extract features independently, and a Bayesian 
classifier is learned on each feature set. The outputs of all those 
classifiers are then combined to determine the final decision of 
a pixel. 
 
Lack of a good ground truth data has always been a crucial 
problem for the evaluation of the feature reduction methods.  
Considering the challenging points of different algorithms i.e. 
classifying targets with very similar spectral characteristics, 
targets with different shapes, targets with high different spectral 
characteristics and targets with high spatial variability, a 
laboratorial hyperspectral image was taken which contains 22 
classes. In this paper a comparative evaluation of some of 
classical and also recently proposed feature reduction 
algorithms is carried out using hyperspectral data obtained by a 
portable hyperspectral camera. 
 
 

2. METHODOLOGIES 

2.1 Feature Selection Algorithms 

Feature selection algorithms involve both a search strategy and 
an evaluation function (Jain and Zongker, 1997). The aim of the 
search algorithm is to generate subsets of features from the 
original feature space X and the evaluation function compares 
these feature subsets in terms of discrimination. We assume that 
the original feature space has n features and the aim of feature 
selection is to select a good subset of m features. 
In this study all considered feature selection methods employed 
Jeffries-Matusita (JM) distance, which is an inter-class measure, 
as a criterion for the evaluation of feature subsets. The JM 
distance is as follows: 
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where N is the number of classes, bij is the Bhattacharyya 
distance between class i and j and Mi and Ci are the mean 
vector and covariance matrix of the class i respectively. 
 
2.1.1 Genetic Feature Selector (GFS):  In a genetic 
algorithm a possible solution of the problem under 
consideration is represented by a chromosome which is binary 
string including 0’s and 1’s, which corresponds to a discarded 
or selected features respectively. In the initialization step of the 
algorithm a set of chromosomes are created randomly. The 
actual set of chromosomes is called the population. A 
population with the size of 100 is used in this study. The fitness 
function, which is JM distance in our study, is defined to 
represent the quality of the solution given by a chromosome.  
The tournament selection was adopted in this study. Pairs of 
individuals are picked at random from the population (Goldberg 
and Deb, 1991). Whichever has the higher fitness is copied into 
a mating pool (and then both are replaced in the original 
population). This is repeated until the mating pool is full. In the 
selection process the two chromosomes with the highest value 
of fitness are copied to the mating pool without any tournament. 
When the mating pool in full, the crossover and mutation 
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operators are applied to the chromosomes in the mating pool. A 
single point crossover is used in this study: one crossover point 
is considered, the offspring gene from beginning of 
chromosome to the crossover point is copied from one parent, 
and the rest is copied from the second parent. The probability of 
the crossover was set to 90 %. The mutation operator is applied 
to all new chromosomes produced by the crossover operator. It 
randomly alters each gene with a small probability (In this 
study 0.002). Mutation provides a small amount of random 
search, and helps ensure that no point in the search space has a 
zero probability of being examined. 
 

 

The crossover and mutation operators are applied to the selected 
parents until there are enough offspring for the generation of a 
new population.  At this time the old population is replaced by 
the new one (Figure 1). If the value of the maximum fitness in 
the population is the same in 50 generations in a row the 
algorithm is terminated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The genetic approach, here, incorporates an appropriate penalty 
function to force the algorithm finish with the prespecified 
number of features. Without using this penalty function the 
algorithm would tend to select the highest number of features. 
Adopting this penalty function, the following fitness function 
has been defined. 
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In which is the required number of features andd d ′ is the 
number of features selected in each iteration. 
 
If the value of the maximum fitness in the population is the 
same in 50 generations in a row the algorithm is terminated. 
The features of the chromosome with the highest fitness value 
are the final result and are used for the classification.  
 
2.1.2 Fast Constrained Search (FCS) Algorithm:  Fast 
constrained (FC) search algorithm is the computationally 
reduced version of SA. Unlike the SA for which the exact 
number of steps is unknown in advance, FC Search method 
exhibits a deterministic computation time. The method is 
described algorithmically as follows (Serpico and Bruzzone, 
2000):  
 
START from an initial feature subset S0 composed of m features 
    selected from X 
Set the current feature subset Sk  to S0 
Compute the complementary subset Dk of Sk 

FOR each element si∈S0 

    FOR each element Sj∈Dk 

     Generate Sij by exchanging si for sj  in Sk 
    Compute the value J(Sij) of the criterion function 
CONTINUE 
Set Ji,max to the maximum of J(Sij) obtained by exchanging si for 
    any possible sj 
IF Ji,max > J(Sk), THEN update Sk by the exchange sj to si that  
    provided Ji,max 
     Compute the complementary subset Dk of Sk 
     ELSE leave Sk  unchanged 
CONTINUE 
 
2.2 Feature Extraction Algorithms 

2.2.1 Discriminant Analysis Feature Extraction (DAFE):  
This method find a transformation matrix A such that the class 
separability of transformed data Y=ATX is maximized. The 
fisher criterion is used as the optimization function. In doing so, 
the within-class and between-class scatter matrices are defined 
as follows (Fukunaga, 1990): 
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where N is the number of classes, m0 represents the expected 
vector of the mixture distribution and Pi and mi are the prior 
probability and mean vector of the class i, respectively. 
Upon computation of these matrices, the fisher ration can be 
calculated. Finally, the optimal features will be toward the 
eigenvectors of the fisher ratio.  
 
2.2.2 Nonparametric Weighted Feature Extraction 
(NWFE):  The main idea of NWFE is putting different weights 
on each sample to compute the “weighted means” and defining 
new nonparametric between-class and within-class scatter 
matrices to obtain more than N–1 features. In NWFE, the 
nonparametric between-class scatter matrix for L classes is 
defined as: 
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where  refers to the kth sample from class i, N is the 

number of classes,  is training sample size of class i, 

denotes the prior probability of class i. The scatter matrix 

weight  is a function of and , and defined 
as: 
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Figure 1. The scheme of the genetic algorithm 
used in the study 
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where denotes the Euclidean distance from a to b. 

denotes the weighted mean in class j and defined 
as: 

),( badist

))(i
kx(jM )(i

kx

 
 

)8()(
1

)()(),()( ∑
=

=
iN

l

j
l

i
l

ji
l

i
kj xxWxM  

 
 
Where 
 
 
 

)9(
),(

),(

1

1)()(

1)()(
),(

∑
=

−

−

=
iN

l

j
l

i
k

j
l

i
kji

l

xxdist

xxdist
W

 

 
 
The nonparametric within-class scatter matrix is defined as: 
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Similarly, the optimal features will be toward the eigenvectors 
of the fisher ratio. 
 
2.3 Multiple Classifiers 

Most of the feature selection algorithms mentioned in the 
literature seek only one set of features that distinguish among 
all the classes simultaneously. This, in one hand, can increase 
the complexity of the decision boundary between classes. On 
the other hand, considering one set of features for all the classes 
requires a large number of features. As stated in section 1, in 
the literature there are several approaches make use of the idea 
of multiple classifiers for the classification of hyperspectral data.  
 
In this study we examined a new method to create multiple 
classifiers. The main idea of the method is that from the huge 
number of spectral bands in hyperspectral data there are some 
bands which can discriminate each class better than the others. 
In order to find the best features for each of the classes we 
applied a feature selection process.   
 
The method is explained as follows: first of all, the feature 
selection process is applied for the first class; hence, the most 
appropriate features for discriminating the first class from the 
others is selected. Next, the most discriminative features for the 
second class are selected by using the same procedure for the 
second class. This process is repeated until all the feature 
subsets for all classes are selected. 
 
Finally a combination schema is used to combine the outputs of 
the individual classifiers. Since the outputs of classifiers, here, 
is a list of probabilities for each class, measurement level 
methods can be used to combine the classifiers outputs (Kittler 

et al., 1998). The most commonly used measurement level 
methods are mean and product combination rules which 
perform the same classification in most cases. In the case of 
independent feature spaces, however, the product combination 
rule outperforms the mean rule (Tax et al., 2000) and hence it 
was applied as the combination method in this study. According 
to product combination rule the pixel x is assigned to the 
class if:  ic
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in which is the number of classes and N M is the number of 
classifiers. In our case MN = . 
 
 

3. EXPERIMENTS AND RESULTS 

3.1 Dataset Description 

The laboratorial hyperspectral image was taken by a ground-
based hyperspectral camera (SOC700). This hyperspectral 
camera acquires data in 120 spectral bands from 400nm to 
900nm with 12bit radiometric resolution. 
 
We made a ground truth consists of 22 surface materials 
(classes). 
 
In the selection of different targets we considered the 
challenging points of different algorithms i.e. classifying targets 
with very similar spectral characteristics, targets with different 
shapes, targets with high different spectral characteristics and 
targets with high spatial variability (table 1). 
 
 
 

Class number Material 
1~6 Similar green colored paper 

from same producer 
7~8, (2) Green colored paper from 

different producer 
9 Clay (dry soil) 

10 Sand paper (black) 
11~16 Various colored paper from 

same producer 
17 Broad green leaf 
18 Fabric (green) 
19 Gypsum 
20 Wood board 
21 Plastic (green) 
22 Black colored paper 

 
Table 1. 22 materials (classes) and criteria 

of pseudo ground truth target. 
 
Most of the classes in this laboratorial image are quite 
homogeneous. However, in real cases the targets have a fair 
amount of spatial variability. To mitigate this problem, a 
Gaussian noise model ),0( σN  was employed to add an 
appropriate level of noise to the generated image. The standard 
deviationσ is obtained by 
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in which ρ and β are between class and between band 
variability coefficients respectively. Max and Min are the 
maximum and minimum gray level value in each class 
respectively. Using this formulation, it is guaranteed that, on 
one hand, the classes have different levels of variability in each 
band. On the other hand, the level of variability is varied among 
different bands. You can see the ground targets in figure 2(a) 
Figure 2.a and 2.b show band 110 of the data before and after 
adding variability. 
 

Figure. 2. Pseudo target (left), band 118 of original image 
(middle), and band 118 after adding variability (right). 

The training and test samples were selected by stratified 
random sampling method. The number of selected samples is 
proportional to the area of each class. The larger the area of 
each class the higher the number of the samples. Table 2 shows 
number of training and test sample for each class. 
 

Class Training Test Class Training Test 
C01 32 1239 C12 33 670 
C02 38 1936 C13 33 423 
C03 33 899 C14 33 577 
C04 33 1013 C15 32 1000 
C05 33 861 C16 31 414 
C06 32 542 C17 63 2967 
C07 31 827 C18 32 940 
C08 33 842 C19 38 1926 

C09 33 1166 C20 32 599 
C10 86 3666 C21 34 365 
C11 32 1025 C22 30 668 
Total training sample : 807 Total test sample : 24564 

 
Table 2. List of classes training and testing sample sizes used in 

the experiments. 
3.2 Experimental Results 

Experiments are carried out to assess the performance of the 
two feature selection algorithms i.e. GFS and FCS feature 
selector, two feature extraction algorithms i.e. DAFE and 
NWFE and our class-based feature selection methodology using 
the Maximum likelihood classifier. 
 
3.2.1 First experiment: finding the best number of 
features:  As the first experiment, the two feature selection 
techniques as well as the two feature extraction methods were 
applied to the dataset.  The difference in algorithms 
performance, in terms of classification accuracy, as a function 
of the number of features used, is visualized in figure 3. 

 

 
 

 
 
Figure. 3. Comparison of classification accuracy of two feature 

selection method and two feature extraction methods using 
different number of features 

 
Figure 3 presents the comparison of classification accuracies of 
two feature selection and two feature extraction methods 
respectively when using different number of features (from 2 to 
14). The total accuracies first improve as more features are 
 

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 overall
NWFE 53.8 68.4 95.1 95.6 80.6 95.9 94.2 74.2 97.8 96.0 96.0 94.8 87.5 95.8 91.5 92.8 90.1 72.3 97.8 94.3 91.2 87.1 86.9
DAFE 43.7 62.7 93.9 95.6 78.0 96.3 94.8 63.2 98.4 96.6 86.1 94.6 90.3 95.7 92.4 93.0 82.4 74.9 97.7 94.2 89.9 78.7 85.4
FCS 68.9 68.0 84.0 92.2 71.8 90.2 87.7 78.7 95.6 91.5 95.8 93.6 75.4 93.4 86.6 86.7 84.9 81.6 95.1 94.3 77.0 82.8 85.6
GFS 48.3 52.6 83.1 93.0 77.4 87.3 84.5 74.6 95.1 89.2 95.2 92.7 71.4 82.3 83.8 86.2 83.7 73.2 95.8 94.8 74.2 83.8 82.0

CBFS 68.5  70.4  89.4  93.0  73.8  91.7  89.7  80.6  96.0  91.8  96.7  93.1  77.9  93.4  91.3  87.7  88.3  85.8  95.3  94.5  91.0  81.9  87.4
 

Table 3. Maximum likelihood classification accuracy (%) with 8 extracted and selected features for each class. 
 

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 overall
NWFE 62.5 67.4 95.9 95.5 86.6 95.6 94.4 72.1 97.8 95.7 95.8 95.1 87.0 96.2 93.2 92.8 78.8 85.6 97.7 94.3 90.7 89.4 87.9
DAFE 51.3 63.1 93.1 95.2 86.2 96.3 95.0 66.6 98.2 96.4 86.0 94.6 90.3 96.4 92.5 92.5 82.6 80.2 97.7 92.5 90.1 79.3 86.3
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FCS 70.6 68.3 82.8 91.5 71.2 90.2 84.8 78.7 95.1 89.9 89.3 93.4 74.0 89.6 87.7 82.9 85.7 80.7 94.5 94.5 80.0 85.0 85.0
GFS 62.8 68.4 80.3 82.0 72.8 88.4 83.2 75.7 94.2 90.0 90.2 93.3 72.6 87.9 87.2 81.6 79.2 79.5 94.5 94.5 78.4 79.0 83.3

CBFS 69.70 65.84 90.24 91.91 81.09 91.16 86.78 80.97 95.64 90.42 96.79 93.43 76.00 91.18 90.72 85.75 85.73 87.49 94.82 94.32 84.93 83.08 86.5
 

Table 4. Maximum likelihood classification accuracy (%) with 6 extracted and selected features for each class. 
 

added into feature subsets but it then deteriorates (Hughes 
phenomenon). The highest accuracies are obtained when using 
8 features in FCS, 6 features in genetic algorithm and 6 features 
in DAFE and NWFE.  
  
3.2.2 Second experiment: classification accuracy 
comparison among the considered methods: upon finding the 
best number of features for each feature reduction method, the 
Maximum likelihood classifier is employed to the best selected 
features in each method. Here, we used 6 and 8 features in 
classification accuracy comparisons. Table 3 and 4 show the 
classification accuracy for each class in different methods using 
8 and 6 features respectively. 
 
As can be inferred from figure 3 and also table 3 and 4 the 
feature extraction methods provide better accuracy than feature 
selection methods. This can arise from the influence of adding 
noise to the original image for the purpose of variability. The 
feature extraction methods try to get rid of this noise by 
transforming the original bands to the new transformed space 
whilst the selection methods do not tackle with this added noise 
and they only select the good bands from the available spectral 
bands.  
 
In feature extraction methods, the NWFE performed better than 
the DAFE. It is an effective method both in terms of accuracy 
and time complexity. 
 
In the feature selection methods the FCS method performed 
better than genetic feature selector. On the other hand, the time 
complexity of the genetic method is also higher than FCS 
method. As can be seen from figure 3 the classification results 
provided by genetic method have fluctuating behaviour. This 
can be interpreted as a consequence of the random nature of this 
method in forming the population as well as the production of 
offspring in each generation. The FCS method is a 
straightforward method for feature selection. It is both accurate 
and fairly fast and thus was selected as the basis in our 
proposed class-based method for feature selection. The results 
provided by our proposed CBFS method are better than other 
feature selection methods. As can be seen from table 4 our 
proposed method provides more than 5 percent higher accuracy 
than genetic method and about 2 percent better accuracy than 
FCS method using 8 features. Using 6 features (table 5), the 
CBFS method has again provided better accuracies than other 
feature selection methods.  The results of the CBFS method is 
quite comparable with feature extraction method. Comparison 
of accuracies in each class in table 4 and 5 demonstrates that the 
CBFS method provides better accuracy in almost all the classes 
than other methods. This can be interpreted as a consequence of 
local nature of the CBFS method. Different regions in the image 
are classified with different sets of features and this can 
increase the accuracy in almost all the classes, though at the 
cost of an increase in execution time. 
 
 

4. CONCLUSIONS 

In the present paper we made an evaluation of some of the 
feature reduction algorithms based on a laboratorial 

hyperspectral data. A ground truth data based on the 
challenging points of different methodologies was generated. At 
the first experiment the best number of features for each feature 
reduction method was found. The highest accuracies are 
obtained when using 8 features in FCS, 6 features in genetic 
algorithm and 6 features in DAFE and NWFE. In the second 
experiment we made a class by class comparison by applying 
the Maximum Likelihood to the best number of features 
obtained in the first experiment. 
 
The feature extraction methods, first, try to get rid of the noise, 
added to the original image as variability, by transforming the 
original bands to a new transformed space and hence 
outperformed the feature selection methods. In feature 
extraction algorithms the NWFE method performed better than 
DAFE. In feature selection methods the FCS method was 
proved to be an effective feature selection method and hence 
was employed as the basis for our proposed class-based feature 
selection. The results of the proposed CBFS method was 
superior to other feature selection methods i.e. the genetic 
algorithm and FCS method. The results were also quite 
comparable to feature extraction methods.  
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