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ABSTRACT: 
 
Information extraction from Hyperspectral imagery is highly affected by difficulties in accounting for flux density variation and 
Bidirectional reflectance effects. Calculation of flux density requires digital description of the surface structure at the pixel level, 
which is frequently not available at the accuracy required (if exists). The result of these shortcomings in achieving accurate radio-
metric image calibration is reduced separability of surface types: limiting the performance of spectral classification schemes. In this 
study an alternative approach is presented: application of features of the spectral signature which mainly represent the shape of the 
spectral curve. This is achieved by applying features calculated based on Wavelet decomposition. 
 
 

1. INTRODUCTION 

Hyperspectral remote sensing involves image acquisition and 
analysis of spectral cubes, which are composed of tens and hun-
dreds of narrow spectral bands. This process is used for extract-
ing, identifying and classifying materials and environmental 
phenomena. The main assumption is that there are relations be-
tween the chemical, biological and physical properties of those 
materials and phenomena and the characteristics of their re-
flected radiation distribution. Those relations are the basis of re-
mote sensing analysis (Landgrebe, 2002; Penn, 2002). The use of 
large number of narrow bands is supposed to increase classifica-
tion accuracies. However, it seems that there are some obstacles 
in achieving these analysis improvements like: (1) various ac-
quiring conditions such as: atmospheric conditions, illumination 
and relative sensor position; (2) various materials characteristics; 
(3) Lack of adequate information regarding the surface topogra-
phy and micro-topography ; and (4) high dimensionality of in-
formation including noise added during the acquisition process. 

In this study it is suggested to improve the spectral separation be-
tween surface objects under these conditions by applying fea-
tures of the spectral signature which mainly represent the shape 
of the spectral curve. This is achieved by applying features cal-
culated based on Wavelet decomposition.  

Wavelet analysis is a space localized periodic analysis tool, 
which enables analysis of a signal in both time and frequency 
domains (Bruce et al, 2002; Kaewpijit et al, 2003; Kempeneers 
et al, 2005; Li, 2004). The reflectance signature is decomposed 
into different scale components; each scale component repre-
sents periodical behavior of the reflectance signature at that spe-
cific scale. The periodical behavior preserves the shape of the 
original reflectance signature. In an earlier study, Almog et al, 
(2006) presented that a selection of such scale components by it-
self may improve classification robustness. Here it is hypothe-
sized that applying several relationships between wavelet coeffi-
cients and the original reflectance curve would be less affected 
by illumination intensity while preserving the unique features of 
each of the signatures. For applying those relationships, we 
transformed the reflectance signal into a new domain combined 
both radiometric and geometric information of the reflectance 
signal. 

 
2. WAVELET TRANSFORME 

Wavelet transform is a signal periodic analysis tool, which en-
ables analyzing a signal in both time and frequency domains and 
consider it as a multi resolution process. The signal is analyzed 
by a mother wavelet function, which is translated relative to the 
signal in various extended scaling factors.  

Wavelet transform output is a pyramidal form of coefficients; 
each of them describes the correlation between the mother wave-
let function and a specific signal segment. The size and location 
are then derived from a corresponding scale and translation fac-
tors. Scaling process is achieved by stretching the mother wave-
let among its spectral axis. Each of this stretching procedure re-
duces the mother wavelet frequency, and hence reduces the 
number of translations among the signal as well. 

Initially at level 1, the mother wavelet scale is set to 1 and 
translated relative to the signal, such that each translation pro-
duces a correlation coefficient. All the coefficients calculated in 
the first step represent high frequencies hidden among the sig-
nal and called Detailed Coefficients at level 1. In the following 
step the mother wavelet is stretched, usually by a power of two, 
the level is ascended and the translation process relative to the 
signal is repeated. Figure 1 describes different mother wavelet 
scales. (1a) scale = 1, the mother wavelet is detailed and en-
ables analysis of high frequencies along the signal. (1b) scale = 
2, the mother wavelet is less detailed hence it enables analysis 
of lower frequencies along the signal. The number of points that 
define the mother wavelet at scale = 2 is halved compared to the 
number of points at scale = 1, hence, the number of translation 
is halved accordingly.  Finally the coefficient pyramid consists 
of the maximum number of coefficients at first level, depending 
on chosen mother wavelet. Assuming scaling factor of 2, each 
ascending level consists of half the number of coefficients of 
the level above. 
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Figure 1. Correlation between mother wavelet to a specific 
signal segment (Matlab© documentation). 

 
The wavelet mathematical description is given by: 
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Where: Cψ,x(τ,s) the correlation coefficient; τ is the translation 
location; s is the scaling factor for the specific iteration; x(t) is a 
signal in time domain with discretized length t and ψ is the 
wavelet mother function.     

                    
 

3. METHODOLOGY 

3.1 Incident angle effects reduction 

In this work we first assessed the reduction of the effects from 
differences in illumination angles by using wavelet first level de-
tailed coefficients, extracted from the above described hyper-
spectral cubes data. In order to evaluate the efficiency of such 
reduction we calculated a normalized difference value between 
two curves representing two differential hyperspectral signatures 
of the same material acquired under different sun incident angles. 
For each band we calculated the differences between the inten-
sity values divided by the difference between maximum and 
minimum values among both curves. The result of this calcula-
tion for each band was named Normalized Band Difference In-
dex (NBDI) and is described as: 
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where  hri is the highest signals value in the ith  band, lri is the  
lowest signals value in ith band, hr is the absolute highest value 
among the signal, and lr is the absolute lowest value among the 
signal. 

After calculating NBDI index for each band, we calculated the 
area below the NBDI graph to normalize the total amount of 
difference between two spectral signatures. This process was 
repeated for both spectral reflectance signatures and wavelet first 
coefficients. For the comparison of the dissimilarities we 
examined the area below each NBDI graph: the lower the area is, 
the higher the similarity. Fig. 2 illustrates vegetation spectral 
reflectance signature of one pixel, acquired under two different 
incident angles; a) spectral reflectance intensity; b) wavelet first 
detailed coefficients; c) normalized ratio at each band. The 
simulative incident angles were 0 and 45 degrees. We can 
observe that the dissimilarity in reflectance intensity values is 
greater in comparison to the dissimilarity in wavelet 
coefficients. 
 
The areas under the NBDI curves shown in Fig. 2 which repre-
sent the relative dissimilarities in both spectral reflectance signa-
tures and wavelet first coefficients, are 310 and 30 respectively. 

The results show that the relative dissimilarities occurred in the 
spectral reflectance signatures was reduced by a factor of 10 
when using the wavelet first coefficients.  In previous work [XX] 
we showed that by using wavelet first coefficients, the total dis-
similarity is approximately five times lower than the one among 
the reflectance intensity signature. We assume that this differ-
ence occurred due to additional factors affecting the spectral re-
flectance signature such as atmospheric behavior, backscattering 
and more.  

Different illumination conditions affect spectral reflectance in-
tensity, but yet maintain the signature's geometric shape. Using 
wavelet transform, this shape is analyzed with relatively low in-
fluence by the intensity component, thus potentially reducing the 
illumination reflectance intensity effects.  

 
 

 
Figure 2. Two types of vegetation curves; a) spectral signature; 

b) wavelet first detailed coefficients; c) the NBDI  curves. 
 
3.2 Relations between wavelet coefficients and reflectance 

Empirical assessment of material classification based on full 
wavelet coefficients had yielded moderate and low accuracies 
very similar to those obtained by classifying based on the spec-
tral reflectance data itself.  Thus we propose a new approach of 
using features that are based on ratios between reflectance inten-
sity values and wavelet coefficients. 

 
 

4. EXPERIMENTAL SETUP  

The experimental setup included simulative and field data. The 
simulative data represented only illumination angle effects.   

Some vegetation hyperspectral signatures were taken from 
known spectral libraries such as: USGS / JPL libraries. For simu-
lating change in illumination angles we assumed that the library 
signatures were taken with a spectro-radiometer in ideal condi-
tions in order to ensure analogue zero degrees incident angle. 
Radiation beam flux density, which hit an object, is depended 
mainly on incident angle; the lower the incident angle is, the 
higher the flux density. In order to simulate the incident angle ef-
fect we calculated reflectance intensity for each incident angle θ, 
thus simulating the intensity decrease via the cosine angle, which 
can be written as: 

 

 
I IIa b
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0 cos (3)R Rθ θ= ⋅  
 
 

Where Rθ is the relative reflectance intensity achieved under in-
cident angleθ, and R0 is the reflectance intensity achieved under 
zero incident angle. 

In this experiment we have chosen seven different vegetation 
types: (1) black-brush; (2) fir tree; (3) maple leaves; (4) pinon 
pine; (5) Russian olive; (6) sage brush and (7) walnut leaf. 

For each vegetation type we randomly simulated about 700 
simulative spectral curves affected by incidence angles (using 
equation 3) between 0 and 55 degrees. Eventually, there were 
5,000 of such hyperspectral signatures taken under various inci-
dent angles divided into seven sets. The next stage was to choose 
some training and testing population. Classification was then 
performed once on the simulative spectral data itself and once on 
the data representing the parametric relations between the wave-
let coefficients and the reflectance data.  

The classification process was based on Linear Discrimi-
nate Analysis (LDA); the maximum-likelihood criterion 
was used to assign an inquired signature to its class. We 
used supervised classification, where it is possible to ex-
amine the quality of assigning a signature to its true class. 
The classifier was first trained using a training set of pix-
els with their known corresponding classes. Then, classi-
fication performance was evaluated using a test set, con-
sisting of pixels that were not used for the training process. 
The success of classification assignments of the test set 
were summarized for assessing the classification success 
rates. 

 
5. RESULTS  

Applying the supervised classification method described above, 
we used 1% of the total 5,000 simulative hyperspectral signa-
tures as training set. In order to avoid a bias in the training or test 
procedure, we repeated 5 times the classification process, where 
the training sets were chosen randomly. The following results 
represent the average rate of classification success:  

The average success rates based on spectral reflectance signature 
were 76%, 77% and 72% respectively. 

The success rates based on relations between reflectance and 
wavelet coefficients were 100% for consistently.  

Table 1 describes the confusion matrix using the spectral reflec-
tance values. The number of pixels in each class is depicted in 
the second line of the table. The total number of misclassified 
pixels was 1345, which corresponds to a 27% error rate (and 
hence 73% success rates). It can be seen that for three groups the 
success rates are 100%. This is due to well separated signatures 
between the vegetation types. 

 

The training set size was again 1% of the total sample size. The 
results show a 100% of success rate. Using those relations re-
duced the misclassified pixels from 1,345 signatures in reflec-
tance domain to zero. These results indicate that using the pro-
posed relations enabled us to isolate the effect of incident angle 
out of the total acquisition process effects. The significant im-
provement of the success rate, up to 100%, illustrates the strong 
correlation between geometric and radiometric characteristics of 
the signatures. The former is embodied through wavelet coeffi-
cients, while the later through intensity values. 

Table 1 : confusion matrix 
for classification based on spectral reflectance 

1192615644 608 615 647 629
Number of pixels 

in each class 
123 4 5 6 7Misclassified pixels

163300 559 0 0 0559 
2804120 123 0 0 0203 
300644 0 0 0 00 
41322570 219 0 0 0389 
5000 0 421 0 194194 
6000 0 0 647 00 
7000 0 0 0 6290 

53.167100 36 68 100 100Group success rates
 

Table 2 : confusion matrix for classification based 
on relation between reflectance and wavelet coefficients 

1192615644 608 615 647 629
Number of pixels 

in each class 
123 4 5 6 7Misclassified pixels

1119200 0 0 0 00 
206150 0 0 0 00 
300644 0 0 0 00 
4000 608 0 0 00 
5000 0 615 0 00 
6000 0 0 647 00 
7000 0 0 0 6290 

100100100 100 100 100 100Group success rates
 

Table 2 describes the confusion matrix using the relations be-
tween reflectance and wavelet coefficients. 

Note that the classified entities are all associated with different 
species of vegetation, which are characterized by similar spectral 
reflectance signature. 

 
6. CONCLUSION 

Remote sensing based on spectral reflectance intensity is sensi-
tive to acquisition process effects. These effects remain although 
some calibration processes are carried out. This is due to limita-
tions in assessing several of the external parameters that affect 
the intensity value in hyper-cubes while being acquired.  How-
ever, the shape of these signatures is much less influenced by 
those conditions. Linking both radiometry and shape parameters, 
which are derived from an acquired hyper-cube, leads to a reduc-
tion in dissimilarities that exist in the same materials' signature. 
We introduced that linkage by using the RG ratio, where we 
shown that it is possible to improve classification success rates, 
and hence a  
better understanding of the acquisition conditions that affect the 
hyperspectral reflectance intensity analysis. 
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