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ABSTRACT: 
 
This paper proposes an innovative band selection (BS) method called prototype space band selection (PSBS) based only on class 
spectra. The main novelty of the proposed BS lies in band representation in a new space called prototype space, where bands are 
characterized in terms of class reflectivity to pose reflection properties of classes to bands. Having clustered the bands by K-means 
in the prototype space, highly correlated bands are trapped in a cluster. In each cluster a band that is close to cluster center identified 
as representative of clustered bands. In contrast to the previous BS methods, PSBS substitutes the search strategies with K-means 
clustering to find relevant bands. Moreover, instead of optimizing separability criteria, the accuracy of classification over a subset of 
training data is used to decide which band subset yield maximum accuracy. Experimental results demonstrated higher overall 
accuracy of PSBS compared to its conventional counterparts with limited sample sizes. 
  
 

1. INTRUDUCTION 

Hyperspectral technology, compared to the multi-spectral, is 
capable of reconstructing spectral signatures of phenomena, as 
well as producing a spectral library for earth observation. The 
NASA Jet Propulsion Laboratory (NASA/JPL) airborne 
visible/infrared imaging spectrometer (AVIRIS) and the Naval 
Research Laboratory HYperspectral Digital Imagery Collection 
Experiment (HYDICE) are two types of such sensors that 
collect image data with hundreds of spectral bands. Since the 
signatures of phenomena are sampled systematically in narrow 
band width with fixed sample intervals, not all bands are 
essentially useful for information extraction. Hence, in the 
context of hyperspectral data analysis, determination of 
informative bands needs to be considered for efficient 
representation of phenomena.  
 
Recent Support Vector Machine (SVM) algorithms have 
demonstrated good performance in dealing with high 
dimensional data (Mao, 2004). In the relevant, dimensionality 
reduction, however, is still required (due to the intrinsic 
dimensionality of the studied phenomena) to improve the 
generalization ability of the classification algorithm and to 
reduce the computational overhead (Mao, 2004; Pal, 2006). In 
the relevant literature, different band selection methods for 
dimensionality reduction are reported (Kudo and Sklansky, 
2000; Guan and et al, 2006; Martínez-Usó and et al, 2007).  
 
Band selection (BS) algorithms are categorized into two main 
approaches: supervised and unsupervised BS. In general, 
supervised BS methods, regardless of their search strategy stage, 
can be classified into two approaches based on their predefined 
criteria. The first one, called the filter approach, is based on 
optimising a discrimination measure, such as the Mahalanobis 
distance, Bhattacharyya distance, etc. The filter approach 

operates independently from any classification algorithm, so 
undesirable features are omitted before the classification 
process begins. The second one, called the wrapper approach, 
tries to optimize the classification accuracy of the desired 
classifier by selecting feature subsets. Feature shaving 
(Verzakov and et al, 2004) is an example of this category. 
Recently, also unsupervised feature selection procedures based 
on feature similarity (mitraand et al, 2002) and mutual 
information (Mart´ınez-Us´o et al, 2006) have been proposed.  
In particular, the profit of BS depends on many parameters: an 
effective search strategy for exploring all possible subsets, 
definition of a criterion for evaluation of subsets and a 
classification algorithm for assessment of the accuracy of 
selected bands as the final subspace (feature size). 
Since these methods depend on the search strategy and in filter 
methods the criteria are based on predefined pair-wise class 
discriminant measure (like Mahalanobis and Bhattacharyya 
distances), they result in suboptimal solutions. Sometimes they 
suffer from shortcomings, such as a high correlation of 
neighbour bands for computing a separability measure, and 
classification with limited training samples in high dimensional 
space at the beginning of backward search or at the final steps 
of forward search algorithms.   
 
In this article, we attempt to introduce an innovative method for 
BS that makes use of only classes’ spectra. A natural question 
that motivated us was whether one can perform BS based on 
first order statistic parameters or class spectra obtained from a 
spectral library, while discarding separability criteria based on 
distribution of classes in high dimension. For this study, we 
propose a new space called the prototype space for band 
representation. Feature vectors in this space describe the band 
behaviour in terms of their reflectance in dealing with imaging 
scene phenomena. Conventional BS analyse the bands in terms 
of feature vectors, which are defined based on pixels. In 
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contrast, the prototype space makes it possible to analyse and 
study all bands based on the similarity of their physical 
properties with respect to all phenomena (classes).  Since this 
kind of BS is conducted in prototype space, we call it prototype 
space BS (PSBS). 

CC11  

CC22

CC33  RR  

KK  The rest of this paper is organized as follows: in section 2, the 
components of the proposed BS are introduced. The description 
of data and our experimental results are discussed in section 3, 
and then the conclusions are given.  
 
 

2. PROPOSED METHOD 

2.1 Band Representation 

In general, feature vectors consist of a set of elements that 
describe objects. From a pattern recognition point of view, a 
space should possess some particular properties; so that a finite 
representation of objects can be characterized for the learning 
process (Pekalska, 2006). For hyper spectral images, a feature 
vector is defined in terms of spectral response of pixel 
x=[x1,x2,...,xn]T, where n is the number of bands. Hence, the 
pixels of an image are represented in the feature space (axes of 
this space are made by bands of hyperspectral data) to perform 
different types of analyses, such as clustering and classification. 
This representation is thereby appropriate for image 
classification tasks.  
 
The BS methods try to analyse similar bands for selecting 
effective bands to represent pixels in subspace with low 
dimensions. Intuitively, to study and find relevant bands, it is 
reasonable to express bands in terms of their properties. 
Accordingly, we propose to represent bands for this analysis in 
a new space called the prototype space (see Figure 2). In this 
space, a band is characterized in terms of the spectral response 
of different classes to pose reflect properties of classes to bands. 
Indeed, feature vectors in this space describe the band 
behaviour in terms of their reflectance in dealing with imaging 
scene phenomena. Let us assume that the pixels in an image 
belong to L classes and the spectra are given by n bands and 
that classes can be represented by a single prototype spectrum, 
e.g. the class mean. Figure1 shows the spectra of L classes in 
spectral space. We can then denote the characteristic vector of 
band i   hi=[m1i,m2i,…, mji.,...,mLi]T in prototype space, where mji 
is the mean of class j in band i.   
 
Hence, the prototype space has L dimensions. We will use it to 
study and cluster bands based on the similarity of their 
behaviour.  

 
Figure 1. Example of the 3 prototype spectra for 3 classes 

 

 
Figure 2. Prototype space 

 
In physical perspective, the reflectivity of phenomena in bands 
when situated in a block like 'R' in Figure 1 is the same. Hence, 
it can be argued the bands of this block are highly correlated 
and are redundance. These highly correlated bands are 
represented near each other in prototype space, and constitute a 
cluster. This situation can also occur for blocks 'p' and 'q', 
which are spectrally far away. A cluster analysis in the 
prototype space thereby finds spectrally similar bands.   
 
2.2 PSBS Method 

This method tries to distinguish highly correlated bands by K-
means clustering and proposes optimum band subset as multi-
spectral representatives of hyperspectral data. 
Let hi be an L-dimensional bands with components mji, which 
represents the prototype space. We wish to cluster n bands in 
the prototype space to c clusters by k-means clustering. The 
final goal is to find a subset of bands to reduce the 
dimensionality n of the original spectrum to multispectral 
(Equation 1) in such a way as to maximize classification 
accuracy of data in reduced dimension c.  
 
 

s=W x    (1)
 
 
K-means clustering is an iterative clustering algorithm where 
for each data point hi, we introduce a corresponding set of 
binary indicator variables rik є {0, 1}, where k = 1, . . . , c 
describing which of the c clusters the data point hi is assigned to, 
so that if data point hi is assigned to cluster k then rik = 1, and rij 
= 0 for j  = k. This is known as the 1-of-c coding scheme. 
We can then define an objective function, sometimes called a 
distortion measure, given by  
 
 

2N C

ik i k
i =1 k =1

J r= −∑∑ h μ
 

 
 
which represents the sum of the squares of the distances of each 
data point to its assigned vector μk. Our goal is to find values 
for the { rik } and the {μk} so as to minimize J. We can do this 
through an iterative procedure in which each iteration involves 
two successive steps corresponding to successive optimizations 
with respect to the rik and the μk. First we choose some initial 
values for the μk. Then in the first phase we minimize J with 
respect to the rik, keeping the μk fixed. In the second phase we 
minimize J with respect to the μk, keeping rik fixed. This two-
stage optimization is then repeated until convergence. 

pp&&qq  
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In each cluster nearest band to the cluster center is selected as 
representative of highly correlated bands.  
The PSBS is wrapper method; it runs K-means clustering 
several times and selects a set of bands such that the overall 
accuracy (OA) of classification over the validation data set is 
maximized. Furthermore, an appropriate number of bands are 
obtained by performing K-means using different numbers of 
clusters c.  
 
2.3 Dimensionality Reduction Approaches Via PSBS 

There are two ways to create the prototype space. As a result, 
there are also two approaches to use PSFE for dimensionality 
reduction according to how class spectra are obtained.    
 
2.3.1 Approach i-Knowledge based 
In this approach the classes’ spectra are obtained by a spectral 
library or by a spectrometer in field work.   
 
2.3.2 Approach ii-Supervised 
In the supervised approach, the classes’ spectra are computed 
from the class means of the training data. In this approach, 40 
percent of the training data is randomly selected and employed 
to compute class means. Hence the prototype space is 
constructed by these class means. The remaining subset (60 
percent) of the training data is used as a validation data set. 
To find optimum band subset and to overcome the effect of 
random initialization of K-means, a variety of subspaces is 
searched by exploring the prototype space through running the 
K-means algorithm ten times. To choose a proper multi-spectral 
representative for the hyperspectral data among the ten choices 
provided by K-means, validation data sets are used. Indeed, K-
means is performed ten times for a fixed number of clusters and 
the quadratic discriminant classifier (QDC) is trained in the 
resulting multi spectral bands based on the 40 percent of 
training data set. The proper band subsets among ten (ten 
choices) is distinguished in terms of maximum OA over 
validation data set.  
 
 

3. EVALUATION AND EXPERIMENTS  

3.1 Dataset 

In order to evaluate the PSFE method, a sub-image of AVIRIS 
data ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/ with the size of 
145×145 pixels was used. In addition, PRTools (Varshney and 
Arora, 2004) was used for implementing and evaluating the 
algorithm. 
 
This image was taken over the northwest Indiana's Indian Pine 
test site in June 1992 and has sixteen classes. The data has 220 
spectral bands, about 10 nm apart between 0.4 to 2.45 μm with 
a spatial resolution of 20 m. The twenty water absorption bands 
(numbered 104-108, 150-163, and 220) were removed from the 
original image. In addition, fifteen noisy bands 1-3, 103, 109-
112, 148-149, 164-165, and 217-219 as observed from visual 
inspection , were also removed, resulting in a total of 185 bands. 
The number of labelled samples per class is given in Table I. 
The ground truth map is shown in Figure 4. Since some classes 
are too small to retain enough disjoint samples for training and 
testing, seven classes were neglected, leaving nine classes for 
the experiments.   
 

 
Figure 3. Colour composite of the image subset 
 

 
Figure 4. Ground truth of  the area with 16 
classes 

 

 

Class Name No. of 
Training 

No. of 
Test 

Corn-no till 80 297 
Corn-min 88 99 
Grass/Pasture 60 99 
Grass/Trees 180 230 
Hay-windrowed 189 242 
Soybeans-no till 48 432 
Soybeans-min 126 615 
Soybeans-clean 91 135 
Woods 176 684 

 
Table I Training and disjoint sample size 

 
3.2 Experiment 1 

The goal of this experiment is the accuracy assessment of PSBS. 
Since the spectral library of the phenomena does not exist, the 
knowledge based approach could not be tested using this dataset. 
Supervised approach was conducted as pointed out. The 
classification results are shown in Figure 5 in terms of OA for 
60 percent of validation data set. The corresponding class 
accuracies of peak OAs given by proposed method (Figure 5) is 
shown in Table II. The OA and average accuracies (AA) 
demonstrate that PSBS and QDC as a pattern recognition model 
were able to model the validation data set properly. Moreover, 
as the OA curve of the seven to fourteen features is almost high, 
it is expected that the optimal feature size (number of bands) is 
in this range. As shown in Figure 5, each feature set 
corresponds to its own clustering result.  
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Figure 5 OA of experiment 1 for validation data 
 

3.2.1 Accuracy assessment 
To test the accuracy of the proposed method, the disjoint test 
data set were used. We note that in the PSBS method only 40 
percent of the training data set was used to train QDC, but once 
the features were defined, we used the whole training data set to 
train QDC. The classification results are shown in Figure 6 in 
terms of OA for the independent test data set. PSBS was 
conducted independently by K-means for each feature size. It 
can be observed two consecutive feature sizes (number of bands) 
will not necessarily result in similar classification accuracies. 
However, the trend of OA curves shows the curse of 
dimensionality: lower performances for larger feature sizes. 
 
3.3 Comparison of PSBS with other BS methods 

The performance of the PSBS approaches have been 
compared with Sequential Floating Forward Selection 
(SFFS), Sequential Floating Backward Selection (SFBS) 
as feature selection methods. SFFS and SFBS were 
performed based on the entire training data. OA, AA, and 
the classification accuracies of classes corresponding to 
maximum OA of three FS methods are shown in Table II. 
 

Class Name 
PSBS- 
Validation 
Data 

SFFS 
 

PSBS 
 

SFBS
  

Hay-windrowed 100 100 99.59 99.59
Corn-min 100 80.81 80.81 80.81
 Soybean-clean 100 45.18 45.19 40 
 Grass/Trees 100 100 100 100 
Corn-min 100 96.97 95.96 97.98
 Soybeans-no 
till 100 91.66 

96.06 93.294

Woods 100 100 97.66 97.51
Corn-no till 83.33 48.15 59. 6 55.55
 Soybeans-min 97.29 76.26 70.737 64.55
OA 98.38 84.75 84.79 82.38
AA 97.85 82.12 82.84 81.031
Table II  Classification accuracy of Three BS methods for 

disjoint test data. 
 
OA of the supervised PSBS approach with OA of the SFFS and 
SFBS methods are shown in Figure 8. As illustrated, supervised 
PSBS achieved higher OAs with respect to SFBS and SFFS for 
almost all feature sizes, thus suggesting improved class 

accuracies. The best result in terms of OA was provided by the 
PSBS; however, the maximum overall accuracies given by 
SFFS and the PSBS approach are very close together (i.e., 
84.75% for SFFS with 4 bands; 84.79% for supervised PSBS 
with ten bands). Moreover, the maximum OA of PSBS for 
small training sample size in comparison to SFFS is remarkable. 
As expected, in the three BS methods the classification 
accuracy tends to increase with increasing feature size until 
maximum value is reached, but almost monotonically decreases 
for larger feature values due to the curse of dimensionality. 
Different classification accuracies can be observed by 
comparing class to class in Table II. Particularly, the corn-no 
till, soybeans-no till, and soybeans-min classes yielded different 
accuracies for the PSBS, SFFS, and SFBS. This result may be 
due to the use of different search strategies and PSBS as they 
explore the bans subsets and prototype space in different ways. 
Furthermore, as we pointed out in the supervised PSBS, the 
training data set was split into two parts: one for the prototype 
space generation and one for the resulting band subset 
validation. However, the experimental results show that limited 
training data for generating the prototype space is adequate to 
achieve comparable results with SFFS. In contrast to the SFFS 
and SFBS methods, which are based on the estimation of 
scattering matrices in high dimension, the PSBS methods are 
based only on the first statistic parameters. As a result, and as 
expected, PSBS shows comparable performance with limited 
training data set size. 

    
Figure 6. OA of three BS methods for disjoint test data 

 
 

4. CONCLUSION 

In this paper, an innovative band selection method called PSBS 
is proposed with two approaches for dimensionality reduction 
of hyperspectral data based only on class spectra.  
 
Compared to the traditional BS methods, in PSBS, search 
strategies are substituted by K-means clustering to find relevant 
bands in order to determine representative band of each cluster. 
Moreover, instead of optimising separability criteria, overall 
classification accuracy of a validation data set is used to decide 
which disjoint optical regions yield maximum accuracy. From 
the pattern recognition viewpoint, compared to conventional BS 
which possibly examine all set of bands even neighbour bands, 
in PSBS the relevant bands are distinguished as a group of 
highly correlated bands and the highly correlated bands are 
ignore to contribute in the BS process.  
 
Supervised PSBS is assessed and compared with SFFS and 
SFBS in terms of classification accuracy. Compared to the 
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SFFS method, supervised PSBS yielded 0.04 percent and 0.72 
percent improvement on OA and AA, respectively. In the 
conventional BS methods, the feature size increases by adding a 
new feature to the last feature set based on maximizing 
discriminant criteria or accuracy measures. In contrast, in the 
PSBS method the K-means is computed individually for the 
new feature size. As a result, each new feature size is 
independent from last feature set and has its own discrimination 
potential. 
 
Another merit of this method lies in the knowledge based 
dimensionality reduction based on the spectral library. As a 
result, this method allows users to employ limited sample size 
and to treat hyperspectral data like multi-spectral data in 
information extraction tasks.  
 
 

REFERENCES 
 
References from Journals:  
Kudo, M. and Sklansky, J., “Comparison of algorithms that 
select features for pattern classifiers,” Pattern Recognition, vol. 
33, no. 1, pp. 25–41, Jan. 2000. 
 
Mao, K.Z, “Feature subset selection for support vector 
machines through discriminative function pruning analysis” 
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND 
CYBERNETICS—PART B: CYBERNETICS, vol.34, no.1, 
pp.60-67, Feb. 2004. 
 
Martínez-Usó,A., Pla , F., Sotoca, J. and García-
Sevilla,  P.  “Comparison of Unsupervised Band Selection 
Methods for Hyperspectral Imaging," Proc. Iberian Conference 
on Pattern Recognition and Image Analysis (IbPRIA07), vol. I 
(Springer LNCS 4477), pp. 30-38, Girona, Spain, June 2007. 
 
Mart´ınez-Us´o,A., Pla,F., Sotoca,J.M. P., ”Clustering-based 
multispectral band selection using Garc´ıa-Sevilla,mutual 
information”The 18th International Conference on Pattern 
Recognition (ICPR'06) IEEE computer society 2006. 
 
Mitra, P., murthy, C.A. pal,s.k “Unsupervised feature selection 
using feature similarity” IEEE transactions on pattern analysis 
and machine intelligence , vol.24, No.3, march 2002. 
 
Pal, M. “Support vector machine based feature selection for 
land cover classification: a case study with DAIS hyperspectral 
data”, International Journal of Remote Sensing, Volume 27, pp. 
2877-2894 Number 14, 20 July 2006 . 
 
Verzakov, S., Paclik,P., Duin,R.P.W, “Feature Shaving for 
Spectroscopic Data”. Lecture Notes in Computer Science, 
Springer-Verlag, Vol. 3138 Berlin Heidelberg New York ,pp. 
1026-1033. .2004. 
 
References from Books: 
Guyon,I.,  Gunn, S. , Nikravesh, M. ,  Zadeh, A.,   Feature 
Extraction : Foundations and Applications , ISBN 
3540354875,Springer; 1 edition ,2006. 
Varshney,P.K., Arora,M.K. ”Advanced Image Processing 
Techniques for Remotely Sensed Hyperspectral Data” Springer, 
Berlin, 2004.  
 
References from Other Literature: 
Pekalska,E.,”dissimilarity representations in pattern 
recognition” Phd thesis, Deleft University,2005. 

 
References from websites:   
Landgrebe, D. ,    
 
ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/ 
 (accessed 28 Apr. 2008) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

451

http://www.visionbib.com/bibliography/journal/ibp.html#IbPRIA07
http://www.amazon.ca/exec/obidos/search-handle-url/701-7669046-6621138?%5Fencoding=UTF8&search-type=ss&index=books-ca&field-author=Isabelle%20Guyon
http://www.amazon.ca/exec/obidos/search-handle-url/701-7669046-6621138?%5Fencoding=UTF8&search-type=ss&index=books-ca&field-author=Steve%20Gunn
http://www.amazon.ca/exec/obidos/search-handle-url/701-7669046-6621138?%5Fencoding=UTF8&search-type=ss&index=books-ca&field-author=Masoud%20Nikravesh
http://www.amazon.ca/exec/obidos/search-handle-url/701-7669046-6621138?%5Fencoding=UTF8&search-type=ss&index=books-ca&field-author=Lotfi%20A.%20Zadeh
ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/


The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 2008 
 

 
 
 
 
 
 
 
 
 
 
 
 

452


	1. INTRUDUCTION
	2. PROPOSED METHOD
	2.1 Band Representation
	2.2 PSBS Method
	2.3 Dimensionality Reduction Approaches Via PSBS

	3. EVALUATION AND EXPERIMENTS 
	3.1 Dataset
	3.2 Experiment 1
	3.3 Comparison of PSBS with other BS methods

	4. CONCLUSION



