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ABSTRACT: 
 
The study shows that leaf area index (LAI) and canopy chlorophyll content can be mapped in a heterogeneous Mediterranean 
grassland from canopy spectral reflectance measurements. Canopy spectral measurements were made in the field using a GER 3700 
spectroradiometer, along with concomitant in situ measurements of LAI and chlorophyll content. We tested the utility of univariate 
techniques, involving narrow band vegetation indices and the red edge inflection point, as well as multivariate calibration techniques, 
such as partial least squares regression. Among the various investigated models, canopy chlorophyll content was estimated with the 
highest accuracy (R2

cv = 0.74, relative RMSEcv = 0.35) and LAI was estimated with intermediate accuracy (R2
cv = 0.67). Compared 

with narrow band indices and red edge inflection point, partial least squares regression generally improved the estimation accuracies. 
The results of the study highlight the significance of using multivariate techniques such as partial least squares regression rather than 
univariate methods such as vegetation indices for providing enhanced estimates of heterogeneous grass canopy characteristics. To 
date, partial least squares regression has seldom been applied for studying heterogeneous grassland canopies. However, it can 
provide a useful exploratory and predictive tool for mapping and monitoring heterogeneous grasslands. 
 
 

1. INTRODUCTION 

Owing to its fast, non-destructive and relatively cheap 
characterization of land surfaces, remote sensing has been 
recognized as a reliable method for estimating various 
biophysical and biochemical vegetation variables (Curran et al., 
2001; Hansen and Schjoerring, 2003; Weiss and Baret, 1999). 
Hyperspectral remote sensing with narrow and continuous 
spectral bands that provide an almost continuous spectrum is 
considered more sensitive to specific vegetation variables such 
as leaf area index (LAI) (Hansen and Schjoerring, 2003). 
Because of the role of green leaves in controlling many 
biological and physical processes of plant canopies, LAI (the 
total one-sided leaf area per ground surface area) is a key 
structural characteristic of vegetation and thus widely used as 
an indicator of vegetation status. 
 
LAI has been estimated in numerous studies by using remote 
sensing in either statistical approaches or physically based 
(canopy reflectance) models. Many of the previous studies, 
however, are based on simulated data (Atzberger, 2004; Broge 
and Leblanc, 2001; Haboudane et al., 2004), on agricultural 
crops (Atzberger, 1995; Atzberger, 1997; Baret et al., 1987; 
Broge and Mortensen, 2002; Jacquemoud et al., 2000; Walter-
Shea et al., 1997; Weiss et al., 2001) or on forest (Chen et al., 
1997; Fang et al., 2003; Kalacska et al., 2004; Running et al., 
1986; Schlerf and Atzberger, 2006; White et al., 1997), where 

single species was investigated. Therefore, investigation is 
required to assess the capability of remote sensing models when 
it comes to natural heterogeneous canopies with a combination 
of different plant species in varying proportions. Mediterranean 
grasslands are characterized by highly heterogeneous canopies, 
and present a challenge for remote sensing applications because 
the reflectance is often a mixture of different surface materials 
(Fisher, 1997; Roder et al., 2007). 
 
The aim of this study was to examine the utility of 
hyperspectral remote sensing in predicting canopy 
characteristics such as LAI and canopy chlorophyll content in a 
heterogeneous Mediterranean grassland by means of different 
univariate and multivariate methods. We compared narrow 
band vegetation indices, including red edge inflection point 
(REIP), with partial least squares regression. The suitability of 
these different methods will be analyzed in terms of their 
prediction accuracy. Naturally, the significance of the results is 
valid only for Mediterranean grasslands and the biophysical 
variables considered. The study is based on canopy spectral 
reflectance measured in a heterogeneous grassland during a 
field campaign in the summer of 2005 in Majella National Park, 
Italy. 
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2. METHODS 

2.1 Study area and sampling  

The study site is located in Majella National Park, Italy (latitude 
41°52' to 42°14' N, longitude 13°14' to 13° 50'E). The park 
covers an area of 74,095 ha and extends into the southern part 
of Abruzzo, at a distance of 40 km from the Adriatic Sea. The 
region is situated in the massifs of the Apennines. The park is 
characterized by several mountain peaks, the highest being 
Mount Amaro (2794 m). Coordinates (x y) were randomly 
generated in a grassland stratum to select plots. A total of 45 
plots (30 m x 30 m) were generated and a GPS (Global 
Positioning System) was used to locate them in the field. To 
increase the number of samples in the time available, four to 
five randomly selected subplots were clustered within each plot. 
This resulted in a total of 191 subplots being sampled. The 1 m 
x 1 m subplots differed in species composition and relative 
abundance while the within-subplot variability was small. 
 
2.2 Canopy spectral measurements 

Fifteen replicates of canopy spectral measurements were taken 
from each subplot, using a GER 3700 spectroradiometer 
(Geophysical and Environmental Research Corporation, 
Buffalo, New York).  
 
The fiber optic, with a field view of 25°, was handheld 
approximately 1 m above the ground at nadir position. The 
ground area observed by the sensor of GER had a diameter of 
45 cm and was large enough to cover the center of the subplots 
without being influenced by the surroundings. The 15 replicate 
spectral measurements taken from each subplot enabled to 
suppress much of the measurement noise by averaging the 
replicate measurements. Prior to each reflectance measurement, 
the radiance of a white standard panel coated with BaSO4 and 
of known reflectivity was recorded for normalization of the 
target measurements. The fieldwork was conducted between 
June 15 and July 15 in 2005. To minimize atmospheric 
perturbations and BRDF effects, spectral measurements were 
made on clear sunny days between 11:30 a.m. and 2:00 p.m.  
 
2.3 LAI measurements 

In each subplot, LAI was non-destructively measured using a 
widely used optical instrument, the Plant Canopy Analyzer 
LAI-2000 (LICOR Inc., Lincoln, NE, USA). A detailed 
description of this instrument is given by LI-COR (1992) and 
Welles and Norman (1991). In this study, measurements were 
taken either under clear skies with low solar elevation (i.e., 
within the two hours following sunrise or preceding sunset) or 
under overcast conditions. The LAI measurements were taken 
on the same day that the canopy spectral measurements were 
made. To prevent direct sunlight on the sensor of LAI-2000, 
samples of below- and above-canopy radiation were made in 
the direction facing away from the sun (i.e., with the sun behind 
the operator), using a view restrictor of 45°. For each subplot, 
reference samples of above-canopy radiation were determined 
by measuring incoming radiation above the grass subplot (in an 
open area). Next, five below-canopy samples were collected 
and used to calculate the average LAI (Table 1). 
 
2.4 Chlorophyll measurements  

A SPAD-502 Leaf Chlorophyll Meter (Minolta, Inc.) was used 
to assess the leaf chlorophyll content (LCC) in each 1 m x 1 m 
subplot. A total of 30 leaves representing the dominant species 

were randomly selected in each subplot, and their SPAD 
readings were recorded. From the 30 individual SPAD 
measurements, the average was calculated (Table 1). These 
averaged SPAD readings were converted into leaf chlorophyll 
content (units: µg cm-2) by means of an empirical calibration 
function provided by Markwell et al. (1995). The total canopy 
chlorophyll content (CCC; units: g m-2) for each subplot was 
obtained by multiplying the leaf chlorophyll content by the 
corresponding LAI. 
 

Measured 
variables 

Min Mean  Max  StDev  Range

LAI (m2 m-2) 0.39 2.76 7.34 1.50 6.95 
CCC (g m-2) 0.1 0.87 2.7 0.55 2.56 

 
Table 1.  Summary statistics of the measured biophysical and 
biochemical variables of grassland sample subplots (n=191); 

CCC is the canopy chlorophyll content. 
 
2.5 Data analysis 

We selected the normalized difference vegetation index (NDVI) 
(Rouse et al., 1974) as a representative of ratio indices, and the 
second soil-adjusted vegetation index (SAVI2) (Major et al., 
1990) as a representative of soil-based indices, for the analysis 
in this study. The narrow band NDVI and SAVI2 indices were 
systematically calculated for all possible (584 x 584 = 341,056) 
band combinations between 400 nm and 2400 nm. The soil line 
parameters were calculated from soil spectral measurement of 
bare soils which were acquired from few subplots with no 
vegetation. We assumed that the measured soil optical 
properties were representative for the study area. Consequently, 
the soil line parameters were considered constant for all 191 
subplots. 
 
For this study, we used two methods to calculate the red edge 
inflection point (REIP). The linear interpolation method (Guyot 
and Baret, 1988) assumes that the spectral reflectance at the red 
edge can be simplified to a straight line centered around a 
midpoint between (i) the reflectance in the NIR shoulder at 
about 780 nm, and (ii) the reflectance minimum of the 
chlorophyll absorption feature at about 670 nm. First, the 
reflectance value is estimated at the inflection point. Then, a 
linear interpolation procedure for the measurements at 700 nm 
and 740 nm is applied to estimate the wavelength corresponding 
to the estimated reflectance value at the inflection point: 
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where the constants 700 and 40 result from interpolation 
between the 700 nm to 740 nm intervals, and R670, R700, R740 
and R780 are, respectively, the reflectance values at 670 nm, 700 
nm, 740 nm and 780 nm. 
 
The linear extrapolation method (LEM) (Cho and Skidmore, 
2006) is based on the linear extrapolation of two straight lines 
(Eqs. 3 and 4) through two points on the far-red (680 nm to 700 
nm) and two points on the NIR (725 nm to 760 nm) flanks of 
the first derivative reflectance spectrum (D) of the red edge 
region. The REIP is then defined by the wavelength value at the 
intersection of the straight lines (Eq. 5). 
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Far-red line: D= m1.λ+c1    (3) 
NIR line: D= m2.λ+c2   (4) 
 
 
where m and c represent the slope and intercept of the straight 
lines, respectively. At the intersection, the two lines have equal 
wavelengths and D values. Therefore, the REIP, which is the 
wavelength at the intersection, is given by: 
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Partial least squares regression (PLSR) is a technique that 
reduces the large number of measured collinear spectral 
variables to a few non-correlated latent variables or factors 
while maximizing co-variability to the variable(s) of interest 
(Atzberger et al., 2003; Cho et al., 2007; Geladi and Kowalski, 
1986; Hansen and Schjoerring, 2003). The latent variables 
represent the relevant information present in the measured 
reflectance spectra and are used to predict the dependent 
variables (here, biophysical and biochemical grass 
characteristics). As with other linear calibration methods, the 
aim is to build a linear model: 
 
 
Y=Xβ+ε      (6) 
 
where Y is the mean-centred vector of the response variable 
(grass characteristics), X is the mean-centred matrix of the 
predictor (spectral reflectance), β is the matrix of coefficients, 
and ε is the matrix of residuals.  
 
 
The optimum number of factors was estimated by leave-one-out 
cross-validation. A common way of using cross-validation for 
this estimation is to select the number of factors that minimizes 
the RMSE (Geladi and Kowalski, 1986). To prevent collinearity 
and to preserve model parsimony, the condition for adding an 
extra factor to the model was that it had to reduce the root mean 
square error of cross-validation (RMSECV) by >2% (Cho et al., 
2007; Kooistra et al., 2004). In addition, coefficients of 
determination (R2) between measured and predicted values in 
the cross-validation were used to evaluate the relationships 
found. The PLSR analysis was performed using the TOMCAT 
toolbox 1.01 within MATLAB (Daszykowski et al., 2007). 
 

3. RESULTS 

3.1 Hyperspectral vegetation indices 

NDVI and SAVI2 narrow band vegetation indices were 
calculated from the measured canopy reflectance spectra, using 
all possible two-band combinations. The coefficients of 
determination (R2) between these narrow band vegetation 
indices and the grass canopy characteristics were computed. An 
illustration of these results is shown for LAI in the 2-D 
correlation plot in Figure 1. The meeting point of each pair of 
wavelengths in a 2-D plot corresponds to the R2 value of LAI 
and the vegetation index calculated from the reflectance values 
in those two wavelengths. Based on the R2 values in the 2-D 
correlation plots, band combinations that formed the best 
indices were determined for LAI and canopy chlorophyll 

content. The best performing indices and the band positions are 
tabulated in Table 2. 
 
It can be observed from Table 2 that narrow band SAVI2 had 
somewhat higher correlations than narrow band NDVI with the 
studied variables. However, the coefficients of determination 
between the grass characteristics and the indices were relatively 
low. Studying regions where R2≥0.6 for LAI and canopy 
chlorophyll content (CCC) revealed that LAI had a strong 
influence on the selection of suitable bands for estimating 
canopy chlorophyll content. The similarity in the observed 
patterns is obviously due to the high correlation between the 
two variables (not shown). 

Wavelength nm
W

av
el

en
gt

h

 

 

600 800 1000 1200 1400 1600 1800 2000 2200 2400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

0.1

0.2

0.3

0.4

0.5

0.6

 
Figure 1.  2-D correlation plots illustrating the coefficient of 
determination (R2) between narrow band SAVI2 and LAI.  

 
 

Variables Narrow 
band VI 

λ[nm] R2 

LAI NDVI 1105/1229 0.61 
 SAVI2 1998/1402 0.64 

 
CCC NDVI 1141/1150 0.68 
 SAVI2 1211/1086 0.69 

 
Table 2.  Band positions and R² values between the best narrow 
band NDVI and SAVI2 (derived from 2-D correlation plots of 

different data sets) and grass variables. 
 
For the best performing narrow band index, cross-validated R2 
and relative RMSE (RRMSE = RMSE/mean) were computed 
from linear regression models (Table 3). As can be observed 
from this table, compared with narrow band NDVI, narrow 
band SAVI2 gave slightly higher R2 and lower RMSE values 
for LAI and canopy chlorophyll content. The better 
performance of SAVI2 compared with NDVI is probably due to  
the fact that SAVI2 is less sensitive to external factors such as 
soil background effects. 
 

Variables Narrow 
band VI 

R2
cv RRMSEcv 

LAI NDVI 0.60 0.34 
 SAVI2 0.63 0.33 

 
CCC NDVI 0.67 0.36 
 SAVI2 0.68 0.35 

 
Table 3.  Performance of narrow band vegetation indices for 

predicting grass variables in Majella National Park, Italy. 
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REIP method  R2
cv RRMSEcv

Linear 
interpolation 

LAI 0.49 0.39 

 CCC 0.56 0.41 
 

Linear 
extrapolation

LAI 0.51 0.38 

 CCC 0.57 0.41 
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Table 4.  Performance of red edge inflection point calculated 

using different methods for predicting grass variables in Majella 
National Park, Italy. 

 
3.3 Partial least squares regression 

Figure 2(a) 
The relationships between grass variables and reflectance 
spectra were modeled using PLSR. Cross-validated results 
using the entire reflectance spectra as inputs are shown in 
Figure 3. The optimal number of PLSR factors preventing over-
fitting was selected in two ways: (i) through visual inspection of 
cross-validated RMSE versus the number of factors plots (not 
shown), and (ii) by setting the condition that adding an extra 
factor must reduce the RMSE (RMSECV) by >2%. The number 
of factors in the final model were 4 for LAI and 5 for canopy 
chlorophyll content models. Compared with other methods, 
PLSR using entire reflectance spectra increased all R2 values 
(R2 = 0.69, 0.74 for LAI and canopy chlorophyll content, 
respectively) and decreased the Relative RMSE values 
(RRMSE = 0.32, 0.34 for LAI and canopy chlorophyll content, 
respectively). 
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Figure 2(b) 

  
Figure 2(ab).  Cross-validated prediction of grass variables in 
Majella National Park, Italy, using narrow band NDVI. Left: 

estimated LAI versus measured LAI; rights: canopy chlorophyll 
content. The optimum wavebands are those reported in Table 2. 

 
4. DISCUSSION 

The field experiment led to a large number of sample subplots 
(191) with high variations in LAI. The canopy integrated 
chlorophyll content (LAI x leaf chlorophyll content) strongly 
reflects the variability of LAI and (to a lesser extent) leaf 
chlorophyll content, expressed by the high inter-correlation 
between LAI and canopy chlorophyll content (not shown). 
Among the grass characteristics studied, canopy chlorophyll 
content was most accurately estimated by nearly all of the 
applied methods. The canopy chlorophyll content contains both 
the structure and chlorophyll information of vegetation and can 
be accurately estimated by canopy spectral reflectance. 

 
Figure 2 shows the relationships between the estimated and 
measured LAI and canopy chlorophyll content using narrow 
band NDVI. From the figure, it seems that saturation starts to 
occur for canopy chlorophyll content greater than 2 (g m-2) and 
for LAI greater than 7(m2 m-2). 
 
3.2 Red edge inflection point 

The red edge inflection point (REIP) was calculated using two 
methods. As can be observed from the results reported in Table 
4, the relationships between measured and estimated grass 
variables were not reliable using any of the methods. The R2 
and relative RMSE of the grass variables obtained from the 
three methods were relatively similar. 

 
The relationship between measured and estimated LAI was 
better explained by multivariate calibration methods (PLSR) 
than by univariate methods such as narrow band vegetation 
indices and REIP. This is because a two-wavelength index 
utilizes only a limited amount of the total spectral information 
available in hyperspectral data (Lee et al., 2004). 

 
Among the studied variables, estimation of canopy chlorophyll 
content again yielded the highest R2 values and the lowest 
relative RMSE. Compared with regression models developed 
using the optimum narrow band indices, the REIP methods 
produced somewhat lower accuracies. 

 
The bands selected as the best combination of the vegetation 
indices for LAI were found in the NIR to SWIR regions. This 

 
confirmed previous studies by researchers who suggested a 
strong contribution by SWIR bands to the strength of 
relationships between spectral reflectance and LAI (Cohen and 
Goward, 2004; Darvishzadeh et al., 2008; Lee et al., 2004; 
Nemani et al., 1993; Schlerf et al., 2005). Compared with the 
narrow band NDVI, the narrow band SAVI2 gave somewhat 
higher R2 and lower relative RMSE values for LAI. This result 
is in agreement with that of Broge and Leblanc (2001), who 
used simulated data and found SAVI2 to be the best vegetation 

index for LAI estimation. Moreover, the narrow band SAVI2 
performed relatively well for canopy chlorophyll content. This 
is due to the major influence of LAI in canopy chlorophyll 
content and also to the fact that SAVI2 is relatively insensitive 
to external factors such as soil background effects. 
 
Although red edge has proved to respond more linearly to LAI 
and chlorophyll when compared with the classical NDVI, which 
often suffers from saturation problems (Danson and Plummer, 
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1995), in our study wavelengths within the red edge region 
were almost absent. 
 
The PLSR model appears to be a powerful alternative to 
univariate statistical methods (Darvishzadeh et al., 2008). 
Compared to the other investigated methods, it achieved 
relatively better results. It seems that important information will 
be lost by selecting only two wavelengths for narrow band 
vegetation indices.  
 

LAI 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Measured LAI    (m2 m-2)

P
re

di
ct

ed
 L

A
I  

 (m
2
 m

-2
)

R2=0.69              
nRMSE=0.32      

 
 

CCC 

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

Measured canopy chlorophyll content   (g m-2)

P
re

di
ct

ed
 c

an
op

y 
ch

lo
ro

py
ll 

co
nt

en
t  

 (g
 m-2

)

R2=0.74      
nRMSE=0.34

 
 

Figure 3.  Cross-validated prediction of grass variables in 
Majella National Park, Italy, using the entire reflectance spectra 
in partial least squares regression models. Left: estimated LAI 
versus measured LAI; right: for canopy chlorophyll content. 

 
 
 
Estimation of biochemical and biophysical characteristics of 
heterogonous grassland with mixtures of different grass species 
is challenging in remote sensing (Roder et al., 2007), as the 
measured signal correspond to different grass species. In our 
study, an indicator of this was the observed high variations in 
the SPAD readings within a given subplot (not shown). 
Nevertheless, by using hyperspectral remote sensing with a 
large number of narrow spectral bands and powerful 
multivariate regression techniques, the biophysical grass 
characteristics could be retrieved with acceptable accuracy. 
 
 

5. CONCLUSION 

The most important conclusions that can be drawn from this 
study are as follows: 
 

− Compared with LAI, canopy chlorophyll content was 
estimated with higher accuracy in all models. 

− LAI was best estimated by partial least square regression 
which utilize more than two wavelengths from the entire 
spectral region (400 nm to 2500 nm) to estimate the 
variable of interest. 

− SAVI2 is a potentially useful vegetation index for 
extracting canopy variables such as LAI. However, the 
selection of appropriate wavelengths and bandwidths is 
important. 

− Partial least squares regression provided the most useful 
explorative tool for unraveling the relationship between canopy 
spectral reflectance and grass characteristics at canopy scale. 
 
In summary, multivariate calibration methods, which until now 
have only been used in a few cases concerning the remote 
sensing of grasslands, can enhance estimates of different grass 
variables, and thus present new prospects for mapping and 
monitoring heterogeneous grass canopies from air- and space-
borne platforms. 
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