
ANALYSIS OF THE EFFECTIVENESS OF SPECTRAL MIXTURE ANALYSIS AND 
MARKOV RANDOM FIELD BASED SUPER RESOLUTION MAPPING OVER AN 

URBAN ENVIRONMENT 
 
 

D. R. Welikanna  a *, V.Tolpekin b, Yogesh Kant c 
 

b Dept of Earth System Analysis, ITC The Netherlands – valentyn@itc.nl 
c Indian Institute of Remote Sensing (NRSA), 04 Kalidas Road, Dehradun – yogesh@iirs.gov.in 

a Sabaragmuwa University of Sri Lanka, Faculty of Geomatics - drw@sab.ac.lk 
 

Commission WgS VII/4(1) 
 
 
KEY WORDS:  Hyperspectral Images, Spectral Mixture Analysis, Markov Random Field, Simulated annealing, Super Resolution 

Mapping 
 
 
ABSTRACT: 
 
The information in a pixel of satellite data within the instantaneous Field of View (IFOV) of the sensor is a mixture of different land 
cover types, and the individual land cover components can be estimated using soft classification techniques. However these 
techniques do not account for the spatial distribution of the class proportions, the information itself has a great relevance.  In this 
study Markov Random Field (MRF) based Super Resolution Mapping (SRM) with certain modifications have been analysed for its 
performance with respect to the linear unmixing technique applied on hyperspectral data. This testing was carried out over a 
heterogeneous urban environment which was defined by the Vegetation, Impervious surface and Soil (V-I-S) model that has been 
used as an accepted alternative in characterising the urban land cover components. Linear unmixing technique with a hyperspectral 
remote sensing image (Hyperion) has been used to generate fractions according to the spectral variability of the V-I-S classes. 
Modified MRF based SRM technique was applied on IKONOS, ASTER MSS and Landsat ETM+ images with markedly different 
spatial and spectral resolutions. Reference map for the validation were created from the IKONOS MSS image using hard Maximum 
likelihood classification. The super resolution maps which contain the spatial information were again turned in to fractions 
representing each class (V-I-S). Next the results of MRF based SRM technique and the linear unmixing technique were validated 
using three measures of accuracy with respect to the reference fractions of the IKONOS image, the Area error proportion (AEP), 
Root Mean Square Error (RMSE) and the Correlation Coefficient (CC). The accuracy statistics for the Optimized Super Resolution 
Map (OSRM) fractions and the reference fractions showed a higher CC value in the range of 0.7 with respect to the linear unmixing 
fractions which lies in the range of 0.5. Results were justified by the overall RMSE and AEP values dropping form 0.7 to 0.5 and 1.8 
to 1.4 respectively. In the case of ASTER visible to infrared (VNIR) image the correlation of the OSRM with the reference again 
showed a higher value in the range of 0.7 than the linear unmixing results which showed a correlation in the range of 0.5. Here it has 
been seen the overall RMSE and the AEP values were dropped for the SRM than the linear unmixing results from 0.7 to 0.6 and 1.8 
to 0.6 respectively. In addition the results for the ASTER short wave infrared (SWIR) image and the Landsat image also followed a 
same trend which finally envisaged the improved subpixel representation of these land cover classes with the use of MRF based 
SRM techniques than the linear unmixing technique. The contextual refinement brought in by the MRF based SRM technique can 
produce accurate land cover components at a sub-pixel level even in a heterogeneous urban environment. 
 
 

                                                                 
*  Corresponding author.  Email: drw@sab.ac.lk 

1. INTRODUCTION 

For sustainable urban development and to understand and 
manage the urban environment, accurate information about the 
urban land cover classes are important. But the identification of 
these classes in a heterogeneous urban environment is a very 
difficult task. Under such circumstances remote sensing act as a 
highly productive tool in monitoring and understanding the 
urban morphology and its environment. In remote sensing 
several models and highly advance techniques have been 
developed for the study of urban land cover. One of the models 
developed to understand and to standardise the urban 
environment is described with the Vegetation- Impervious 
surface-soil (V-I-S) model (Ridd 1995). This model is 
becoming an accepted alternative to parameterize biophysical 
composition of urban environments (Wu & Murray, 2002; Wu, 
2004). The spatial composition of a segment of urban landscape 
may be classified by the Vegetation-Impervious Surface-Soil 

(V-I-S) model (for more details see Ridd, 1995). But the 
productivity of the remote sensing techniques depends on the 
ability of the technique to correctly categorize these land cover 
components from remote sensing images for there spatial and 
spectral arrangement. Studying these techniques for their 
accuracies and productivity is also very important for the future 
of urban land cover studies.  
  
Hyperspectral images which correspond hundreds of 
wavelength channels for the same area on the surface of the 
earth have the ability to detect and identify individual materials 
or land cover classes in a highly efficient manner. With its high 
spectral resolution (narrow and continuous bands), 
hyperspectral images have an advantage over multispectral 
images to address the spectral variation of each V-I-S 
components in a heterogeneous urban environment. This is the 
prerequisite of its use in urban composition studies. But the 
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problem is the mixed pixels affecting the images. Mixed pixels 
are the pixels in an image which represents a reflectance value 
corresponding to a combination of reflectances of several 
individual materials with in the IFOV of the sensor. When a 
pixel observed by a sensor covering a large (low spatial 
resolution images) heterogeneous area on earth surface it tend 
to become a heavily mixed pixel.   
 
Modelling V-I-S classes with the use of end-members is very 
difficult due to the complex spectral variations of these classes. 
Conventional classification techniques assign a single pixel into 
one land cover class, in the case of a coarse spatial resolution 
images this will directly effect the information extracted by the 
remote sensing image. Spectral Mixture Analysis (SMA) is 
utilized to calculate the land cover fraction within a pixel and 
model a mixed spectrum as combination of spectra for pure 
land cover types, called endmembers. It does not show the 
spatial distribution of class proportions (spatial contextual 
information) within a pixel. Modelling the contextual 
information in land cover classification can improve the 
accuracy of the classification significantly (Tso & Mather, 
2001). In this regard super resolution mapping (SRM) split the 
pixel into sub pixels and assigned the classes to the sub pixels 
depending on there spatial and spectral information, generating 
an image with higher resolution than the original image. 
Markov random field model is another method (Hailu, 2006; 
Kasetkasem & Arora, 2003) of super resolution mapping and it 
describes the spatial dependencies (spatially closer pixels tend 
to be more alike than the more distant ones) quite accurately. In 
the current research MRF based SRM technique has been 
attempted over heterogeneous urban environment of Dehradun 
city, India defined by V-I-S model and analysed with respect to 
the linear unmixing technique. The study has been developed to 
understand the effectiveness of handling the mixed pixel 
problem in coarse resolution satellite imageries with the 
integration of the contextual information by MRF based SRM 
technique. Hyperion hyperspectral image was used to for the 
linear unmixing technique to identify the V-I-S classes.  
 
 

2. MRF BASED SRM TECHNIQUE 

MRF have been used by statistical physicists to explain various 
phenomena occurring among neighbouring particles because of 
their ability to describe local interaction between them. MRF 
model has also been used to explain why intensity values of 
adjacent pixels of an image are more likely to be same than 
different values. In the interpretation of a scene contextual 
information is very important to classify a pixel in context with 
respect to the other measurements. This will lead to more 
complete information with the minimization of possible 
ambiguities, recovery of missing information and correction of 
errors. Context can be defined in three dimensions; the spectral, 
spatial and temporal dimensions (Anne et al., 1996). The 
spectral dimension can be defined as the different bands of the 
electromagnetic spectra while spatial context refers to the 
correlation between the class labels of neighbouring pixels.  
 
2.1 The Maximum a posterior probability in image 
analysis 

In statistical or Bayesian rules, the decision making is based on 
the concept of the maximum a posterior (MAP) probability 
(Christopher & Bishop 2006). The Bayes theorem which 
converts the prior probability to a posterior probability takes a 
form as below. 

 
 
  p ( c ) p ( y |M )wp ( c |y ,M ) =w p ( y )

                   (1) 

 
 
Where p(c) is the prior probability that the given pattern belong 
to class c ,y={y1,y2,….yI} is a set of observations, I is the 
number of observations, p(y|Mw) is the conditional probability 
of the observation set y  for a given model Mw, p(y) is the 
probability of the observation set y and p(c|y,Mw) is the 
probability that the pattern belongs to class c, for the 
observation set and the model which is the posterior probability. 
Since p(y) is not related to any class, we can use the eq (1)  for 
making the classification decisions. 
 
 
 c = a r g m a x { p ( c ) p ( y |M ) }wc

′               (2) 

 
 
Where c′ is the estimated pattern class. If p(c) is unknown, it is 
set to constant and the MAP estimation becomes maximum 
likelihood (ML) estimation. 
. 
2.2 Mathematical concepts in MRF based SRM technique 

Let y be a coarse resolution multispectral remote sensing image 
containing k spectral bands. The pixel locations are denoted as 
bi ЄB, where B is the set of pixels with size MxN. Spatial 
resolution of the image is denoted with the pixel size R. The 
resulting super resolution map is a classified map which is 
denoted by c and defined on a set of pixels A. The area the 
pixels in A covers is as the same as B, but bears a high spatial 
resolution which is denoted by a lower pixel size of r. The 
original image with the pixel size of R will be referred to as 
coarse resolution image and the super resolution map with pixel 
size r will be referred as the fine resolution image. The scale 
factor of the super resolution map is denoted as S which is the 
ratio between the coarse and fine resolution pixel sizes. This 
means each pixel bi will contain fine resolution pixels of aj/i 
or aj  of a fine resolution multispectral image x. Furthermore it 
is assumed that every pixel in image x can be assigned to a 
unique class c (aj) =α, where αЄ {1,2,…L}. For convenience 
the class of pixel aj will be referred to as cj. The relation 
established between images y and x can be described by: 

2S
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For each pixel aj in A, a symmetric neighbourhood Nj=N (aj) 
can be defined. Where Nj a set of pixels neighbouring pixel aj . 
A set of pixels inside a square window, excluding the pixel aj at 
the centre of the window and with the window size W being the 
length of one side, defines the complete neighbourhood. Here 
neighbourhoods are defined with there order, and first and 
second order neighbourhood systems are used commonly. A 
clique is defined as a subset of this in which all pair of pixels 
are mutual neighbours. The size of the window also determines 
the amount of cliques which can fit inside as neighbourhood. 
The contextual constraints introduced from the neighbouring 
pixels will be modelled by the means of prior energy. In this 
study the minimum neighbourhood order considered is second 
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order with respect to the scale factors used. To implement this 
growth of the neighbourhood size in relation to the scale factor 
a relationship between S and the window size W has been 
developed as W=S-1. Under the given window size the number 
of maximal pixel neighbours Nn to be considered is also 
realized by .  2(( 2) 1) 1Nn W= × + −
 
2.3 Initial SRM Generation and the optimization 

In the first step the fraction image produced by Singular Value 
Decompositioning (SVD) is the input for the initial SRM 
generation (Geladi & Hans 1996). Each pixel was divided by S 
to get the sub-pixels, and then each pixel was randomly labelled 
with the corresponding classes from the coarse fraction image. 
The classes were defined by there mean vectors and covariance 
matrices. Prior to that the separability of these classes defined 
on the course spatial resolution image was assessed using the 
Transform Divergence (TD) and Jeffries-Matusita distance (JM). 
The parameters related to Gibbs potential function were also 
estimated. The Gibbs potential function will have low values in 
the case of high spatial resolution images, due to more number 
of pure pixels leading to neighbouring pixels occupying the 
same class. The number of subpixels allocated to the given class 
for the initial SRM can be expressed as n=θbi x , where θbi is 
the proportion of a given class in pixel bi of the coarse 
resolution image. Thus; n number of sub-pixels will be 
randomly labelled within the original pixel yi with respect to 
this class proportions. The mean and covariance matrices were 
defined by carefully selecting pure training pixels for the 
desired land cover classes from the coarse resolution image. 
And fractions for each land cover class in pixel bi is defined by 
SVD. The output of this initial step is an initial SRM with many 
isolated pixels. This should be optimized considering the spatial 
dependence between the pixels, to get the optimized SRM with 
more contextually smoothed classes.  The optimization process 
is based on the Simulated Annealing (SA) algorithm.  

2S

 
2.4 MRF, Gibbs distribution and SA algorithm  

The observed coarse spatial resolution multi spectral image y, is 
represented in vector form as y(bj) R for a pixel bj where R 
denotes the set of real numbers representing the intensity values 
and K for the number of spectral bands. Let 

k∈

21{ , ......., }j j
s

A a a= j represent a set of pixels in the set A, which 
corresponds to the same area as the pixel bj in set B. As a 
resulting SRM pixel is pure and can represent only by one land 
cover class its value cj can only take an integer value that 
corresponds to a particular land cover class at pixel aj in the 
actual scene.  The properties inherent to MRF as a random field 
with respect to its neighbourhood are as follows 
 
Positivity where p(cj)>0, this states that the joint probability p(cj) 
of any random field is uniquely determined by its local 
conditional probabilities. Homogeneity, this specifies the 
conditional probability for the label of a pixel, given the label 
of the neighbourhood pixel, regardless of the relative location 
of the pixel. Markovianity, this shows that labelling of the pixel 
is only dependent on its neighbouring pixels. That is, the 
conditional probability of the value of a pixel given pixel values 
of the entire image excluding the pixel of interest is equal to the 
conditional probability of a value of a pixel given values of its 
neighbouring pixels. This can be expressed in mathematical 
terms as below. 
 
 

         (4) ( | ) ( | )
jj C j j Np c c p c c− =

 
 
Where cc-j refers to all the classes except the class at j, and cNj 
refers to the classes neighbouring the class at j. In the context of 
land cover classification this property implies that same land 
cover class is more likely to occur in connected regions than 
isolated pixels (Cutler et al., 1997).The MRF model 
characterizes the spatial dependence among neighbouring sites; 
however a direct implementation of equation (4) is not simple 
because the probabilities can take up any values. As a result we 
introduce GRF. With the above properties we equalize the MRF 
with the Gibbs Random Field (GRF). Therefore the posterior 
probability for each class given the observed image y can be 
specified by the means of a posterior energy function. 

c
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Where Z is the normalizing constant and T is a constant termed 
temperature. Here we can define an energy function U (c).  
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Hence V2(cj,cl), is the Gibbs potential function with respect to 
pairwise clique. And the prior probability can be expressed as: 
 
 

 1 (( ) e x p U cp c
Z T

⎛= −⎜
⎝ ⎠

) ⎞
⎟              (8) 

 
 
In the study  to maximize the posterior energy function, when a 
pixel belong to the same class as the class of the pixel in focus  
it was given a value 0 and 1 otherwise, and they were weighted 
with respect to the Euclidian distance (Kasetkasem et al., 2005). 
According to the equation (5) to allocate pixel aj to class α, the 
posterior probability has to be maximized. As described in 
equation (2) a MAP solution can be incorporated for this. 
 
 
                           (9) jc = a r g m a x { p ( c |y ) }

 
 
Using the Bayes rule, the likelihood probability, which is the 
conditional distribution of the observed data y given the class c 
assumed as a Gaussian distribution and can be defined as: 
 
 

 
ρ

α

1p(y|c)= exp(-U(y|c))
2π | |∑

         (10) 

 
643



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 2008 

 
 
Where ρ is the number of bands, Σα is the class-conditional 
covariance matrix for class α. The likelihood energy can be 
defined by using the mean vector μα of class α and the 
covariance matrix, by the following equation: 
 
 

              T -1
i α α i α α

i

1U(c|y)= (y(b )-μ ) (y(b )-μ )+ lndet
2∑ ∑ 1

2 ∑       (11) 

 
 
The mean vector and covariance matrices were given by, 
 
 
            (12) L

i i α i α
α = 1

= ( y ( b ) ) = θ ( b )∑ ∑ ∑ ∑
 
 

               (13) 
L

i i α i α
α = 1

μ = μ ( y ( b ) ) = θ ( b ) μ∑
 
 
Where θα is the proportion of land cover class α in pixel y(bi). 
And a class can be assigned to a pixel when prior p(c) and 
posterior P(c|y) probabilities are maximized. This is equivalent 
to minimizing the energy functions: 
 
 
               (14) jc = a rg  m in { U (c )+ U (c |y )}
 
 
The likelihood energy in equation (11) depends on the 
Mahalanobis distance of the pixels and the prior energy in 
equation (7) depends on the pairwise clique’s V2. For the 
pairwise clique potential function  following equation has been 
used 
 
 
             

2
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Where ω(al) is the weight function. The weight function is 
made to stay inversely proportional to the square of the distance 
d(aj,al) between pixel aj and al and described in mathematical 
form as: 
 
 

 
2
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ω =               (16)  

 
 
Where Nnj is the amount of pixels in the neighbourhood for the 
pixel j. For the equation (14) a special parameter λ, the 
smoothness parameter has been used. This controls the balance 
between the two energy functions. In previous studies this 
parameter was only used to control the prior energy, which 
result in optimal λ in between 0 and ∞. Here we normalize this 
parameter between 0 and 1: 
 
 
                        (17)                                                            jc = a r g  m i n { λ U ( c ) + ( 1 -λ ) U ( c |y ) }

 
 
This equation should be minimized to find the most reasonable 
class for the pixel aj. Once the global energy is constructed and 
the smoothness parameters have been determined, as the next 
step we start the pixel labelling. We use the MAP estimation for 
this. To find the MAP solution we adopt the SA algorithm in 
this study. SA algorithm allows the randomness (T), to decrease 
in an iterative way that the best solution for equation (17) can 
be made. The temperature will be decreased according to the 
criterion called cooling schedule. The process is repeated until 
the system becomes frozen (T→0), which means pixels stop 
updating. The cooling schedule associated with this study can 
be expressed as: 
 
                  T(t) = T0 × Tupd                                (18) 
 
 
Where T(t) is any next temperature value depending on the  
iterations. According to Hailu (Hailu, 2006), the value for the 
updating schedule Tupd typically lies in the range of 0.8 to 0.99. 
So for this research we have incorporated a value of 0.9 for Tupd. 
The initial temperature T0 use to control the randomness of the 
optimization algorithm (T0 Randomness). So a high 
temperature can increase the probability of a pixel being 
replaced by a new class label though the energy of a new class 
is higher. Here we incorporate a value of 3.0 for the initial 
temperature. This finding justified the findings of the earlier 
studies of Kasetkasem (Kasetkasem & Arora, 2005). The 
updating process for the new temperature value is controlled by 
two constraints, if the number of pixels that have a different 
value after one updating is less than a predefined value, 
minimum activation threshold (min_acc_thr) or by keeping the 
counter with in a limit defined by the variable called, number of 
iterations (Niter). The pixel updating was performed by a row 
wise visiting scheme, which determines the order of the pixels 
in the SRM for the updating. The SRM will gradually change 
reducing the number of isolated pixels. The Gibbs potential 
function will force the SA algorithm to iteratively generate a 
SRM which is close to the solution of the MAP criterion in 
equation (2).  

∝

 
2.5 Measures of Accuracy 

First the generated SRM was tested for the fitness of use with 
respect to the reference image with the use of a confusion 
matrix. Two measures of accuracy the overall accuracy (OA) 
and the Kappa coefficient (K) derived by the confusion matrix 
has been used for the assessment of the SRM in this study. 
Three other measures of accuracy the CC, RMSE and AEP, has 
been incorporated to evaluate the agreement between the 
fraction Images generated from the linear unmixing and SRM 
technique, with the reference fraction image. Take a set of 
known proportions as Y and the set of estimated proportions as 
A, let n be the total number of pixels. 
 
 

 Y j . A j

Y j A j

C
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∑                  (21) 

 
 
Where CyjAj is the covariance between Y and A for class j and 
Syj  and SAj are the standard deviations of Y and A for class 
j.These measures play a major role in this study.  
 
 

3. THE RESULTS AND DISCUSSION 

3.1 Linear unmixing results from Hyperion image 

Figure 1 shows the linear unmixing results on Hyperion data. 
Due to the broader class definitions involved in this study, the 
representative endmembers for these classes (V-I-S) may not be 
the most pure pixels in the image. Highly positive and negative 
values correspond to the areas having high RMSE values 
(Figure 1(d)). Table 1 gives; the mean abundance of the 
endmembers derived from the Hyperion data shows a positive 
value. And the low standard deviation shows the acceptable 
deviation from the mean. The minimum and maximum 
abundances for vegetation and soil are more likely to be the 
same.  
 

 
 
        (a)                        (b)                      (c)                   (d) 

 
Figure 1. Endmember abundance images (a) Vegetation (b) Soil 

(c) Impervious (d) Error image showing RMSE 
 
 

lass min Mean  Max <0% >1% Stdv
V -0.913 0.500 1.362 38.190 0.305 0.283

I -0.990 0.176 1.365 12.020 0.532 0.193
S -0.524 0.466 2.200 13.540 3.093 0.346
RMSE 0.000 0.141 1.000 0.045 0.007 0.071

 
Table 1. Statistics of the linear unmixing results 

 
3.2 Test experimental results on IKONOS degraded image 

To understand the efficiency of the MRF based SRM technique 
first it was applied on a degraded IKONOS image. Here the 
degraded IKONOS image pixel is made to have a value, which 
is the mean of 4x4 pixels in the fine resolution image (IKONOS 
4m multispectral image). This makes the degraded image high 
in mixed pixels making it one of the best inputs for the MRF 
based SRM technique. The scale factor was set to S=4. This S 
value defines a neighbourhood by a 7x7 square window. Good 
class separability leads to a higher spectral distance between the 
class means which can make the prior constraint provide more 

information for the pixels to be classified correctly. The λ value 
controls the smoothness and it assures the pixels to be labelled 
according to the majority of the pixels in the neighbourhood. 
These effects were tested by comparing the SRM results with a 
maximum likelihood classification results on a IKONOS image. 
The respective kappa accuracies and the OSRM for each of the 
optimum λ values are shown below in table 2. 

 

 
Table 2. Kappa agreement for different λ values and the 

resulting plot for IKONOS degraded image 
 
 
 

 
 
Figure 2. Effect of smoothening parameter on SRM, λ= (a) 0.3, 

(b) 0.35, (c) 0.40 and (d) Reference image 
 
The graph shows the effect of λ(Λ) on the quality of the SRM. 
Resulting K values increases with the increase of the λ values 
and it reach a unique optimal value of 0.35 where K=0.5114. 
An abrupt drop in the K values can be seen for the value of λ 
from 0.4 to 0.45. Beyond this the K values started dropping 
steadily. This drop shows that at the range starting from 0.45 to 
1 for the λ values it starts giving lower weight to the likelihood 
energy than the prior energy. Therefore 0.35 value was 
considered as the optimal smoothening parameter. 
 
The visual interpretation of figure 2 shows that the vegetation 
and impervious classes are more closely classified to the 
reference image. But the soil class, especially in the upper left 
corner of the image has been misclassified for the vegetation 
class. The soil class in most of the parts of the image represents 
a very small distribution. As a result it represents a very small 
number of pixels with respect to the other two classes. So the 
contextual information provided by this class will not be 
enough to satisfy the Markovian property. The OSRM were 
turned in to fractions to compare it with the linear unmixing 
results on Hyperion image. Initially the OSRM with 4m spatial 
resolution has to be turned into fractions of 30m spatial 
resolution to compare with Hyperion fractions of 30m. This 
aggregation was possible mainly because the OSRM represent 
only the pure pixels. By analyzing the two images in a pixel by 

λ Initial 
Kappa

Kappa

0.1 0.4610
0.25 0.5041
0.3 0.5075
0.35 0.5114
0.4 0.5084
0.45 0.3491
0.85

 
 
 
0.2813

0.0002
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pixel basis, it has been found out that 7x7 pixels of the OSRM 
corresponds to a 1 pixel of the Hyperion image. Therefore 49 
pixels from OSRM were used to generate a class proportion 
measure in a single 30m pixel. The same procedure was carried 
out to convert the reference image of 4m spatial resolution in to 
30m fractions. The results of these comparisons are shown in 
the below tables. 
 
 

Class CC RMSE AEP 
V 0.6432 0.2749 1.6385 
S 0.2460 0.1870 -0.0823 
I 0.7196 0.2688 0.2910 
Total  0.7307 1.8472 

(a) 
Class CC RMSE AEP 

V 0.8521 0.2271 -0.3296 
S 0.6846 0.1692 1.7299 
I 0.9200 0.1584 0.0579 
Total  0.5547 1.4582 

(b) 
 

Table 3. Accuracy statistics for IKONOS degraded image by 
CC, RMSE and AEP (a) between fractions of Hyperion linear 
unmixing & Reference fractions (b) between OSRM fractions 

and the reference fractions 
 
The CC and the RMSE in tables 3 (a) and (b), respectively 
shows the significant improvement in the classification 
accuracy with respect to the maximum likelihood results. The 
soil class which initially shows a less correlation with 0.2460 
values, has been improved up to 0.6846 with the SRM, this is 
confirmed by the RMSE values improving from 0.1870 to 
0.1692. The AEP also follows the same trend and overall values 
for RMSE and AEP shows the improvement in the accuracy 
with the values dropping from 0.7307 to 0.5547 and 1.8472 to 
1.4582 respectively. This drop in overall RMSE shows the 
improvement in the prediction (the biasness and variance), 
while the AEP shows the success rate in maintaining the known 
proportions during prediction (Tatem et al. 2001) 
 
3.3 The experimental results on ASTER (VNIR) image 

The ASTER image was processed in way that it prevents 
original pixels getting resampled. In other words the three 
bands of the ASTER (VNIR) region were kept to the original 
grid size of 16m. This leaves the pixels getting resample by any 
interpolation method. The classes defined possessed a high 
separability with the TD values ranging from 1.9 to 2.0. A scale 
factor of 4 which generates SRM with spatial resolution of 4m 
was experimented here and the optimal smoothness parameter 
for the best SRM was tested. The experiments show that for the 
optimum results λ can take a value in the range of 0.4 to 0.5. 
Here the highest value of K= 0.4018 is reached for a λ value of 
0.45, with a slightly higher accuracy than the values of   0.5 and 
0.4 respectively. The results are shown below in table 4 and 
figure 3 shows the resulting OSRM. 
 
 
 
 
 
 

 

 
 

Table 4. Kappa agreement for different λ values and the 
resulting plot for ASTER (VNIR) image 

 
 

 
 

Figure 3. Effect of smoothening parameter on SRM, λ= (a) 0.4, 
(b) 0.45, (c) 0.5 and (d) Reference image 

 
These results were analysed with respect to the fractions 
generated from the MLC results on the IKONOS image. Below 
table 5 shows the comparative results. 
 
 

Class CC RMSE AEP 
V 0.6432 0.2749 1.6358 
S 0.2460 0.1870 -0.0823 
I 0.7196 0.2688 0.2910 
Total  0.7307 1.8472 

(a) 
Class CC RMSE AEP 

V 0.8208 0.2199 -0.2875 
S 0.6267 0.1868 0.9729 
I 0.8453 0.2024 -0.0539 
Total  0.6091 0.6315 

(b) 
 

Table 5. Accuracy statistics for ASTER (VNIR) image by CC, 
RMSE and AEP (a) between fractions of Hyperion linear 

unmixing & Reference fractions (b) between OSRM fractions 
and the reference fractions 

 
The correlation between the OSRM fractions and the reference 
fractions have been improved to an average in the range of 0.7, 
which is a good correlation between the known and the 
prediction. The total RMSE shows the biasness in the prediction 
with a high value of 0.6091 and AEP shows the over estimation 
of the area with a value of 0.6315.This may be explained by the 
errors inherited from the co-registration between the ASTER 
image and the reference IKONOS image, which leads to certain 
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Kappa

Kappa

0.3 0.3754
0.4 0.3962
0.45 0.4018
0.5 0.4016
0.55 0.3750
0.6 0.2561
0.9 
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mismatch between the set of pixels considered for these 
accuracy measures.  
 
3.4 Experimental results on ASTER (SWIR) image 

The test were further carried out in finding the effects of the 
MRF based SRM technique on ASTER (SWIR) image. For this 
experiment, certain differences were made in the preparation of 
the reference data set using IKONOS image. This image was 
resampled to grid size of 5m before applying the MLC 
classification to the image using the classes defined on the 
ASTER (SWIR) image. This makes a scale factor of S=6 to be 
defined between the two images, making the maximal pixel 
neighbours of 120 to be considered.  
In contrast to the previous results the optimal λ values shows a 
different range in achieving the optimal results. Looking at the 
results (Table 6), the optimal values for λ  seems to stay in the 
range of 0.1 to 0.3. And the highest accuracy levels with a K 
value of 0.3682 has been achieved for a λ  value of 0.25. One of 
the reasons for this range may be the spatial resolution of the 
image, which makes the scene contains more homogeneous 
representation of objects. This means when the pixels are 
divided to sub-pixels the spatial dependency between the sub-
pixels will not be increased significantly, still leaving the sub-
pixels as mixed pixels.  
 

 
 
 

 
 

Table 6. Kappa agreement for different λ values and the 
resulting plot for ASTER (SWIR) image 

 
The resulting super resolution maps for these range is shown by 
figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Effect of smoothening parameter on SRM, λ= (a) 0.1, 

(b) 0.2, (c) 0.25 and (d) Reference image 
 
The cross validation with the reference image showed the 
results in table 7.  
 

Class CC RMSE AEP 
V 0.6419 0.2795 0.6178 

S 0.3800 0.1746 -0.2194 
I 0.6638 0.3032 0.2464 
Total  0.7573 0.6448 

(a) 
Class CC RMSE AEP 

V 0.8109 0.1949 -0.1390 
S 0.5425 0.2004 0.6791 
I 0.8127 0.2133 -0.0169 
Total  0.6086 0.5232 

(b) 
Table 7. Accuracy statistics for ASTER (SWIR) image by CC, 

RMSE and AEP (a) between fractions of Hyperion linear 
unmixing & Reference fractions (b) between OSRM fractions 

and the reference fractions 
 

According to the table 7(a) Hyperion fractions from linear 
unmixing shows a marginal association with reference fractions 
from IKONOS image, with the CC being 0.6419 and 0.6638 for 
the vegetation and impervious classes respectively. The poor 
classification results for the soil class has been repeated again 
with the CC of 0.3800. Finally with respect to the tables 7(a) 
and (b) the significant improvements in the classification results 
can be seen, with the CC improving in to the range of 0.8 for 
the vegetation and impervious classes and for the soil class the 
correlation value of 0.38 in the Hyperion linear unmixing has 
been improved to value of 0.5425 in the SRM results. These 
results shown by the CC have been mirrored by the total AEP 
and RMSE values. The biasness in the predictions using SRM 
technique is less than what it is in the linear unmixing, with the 
total RMSE falling down from 0.7573 to 0.6086 and the total 
AEP is falling from 0.6448 to 0.5232. The overall results 
indicate that higher classification accuracies can be obtained 
using the SRM with respect to the linear unmixing techniques. 
 
3.5 Experimental results on Landsat ETM+ image 

Table 8 shows the results for the Landsat ETM+ image. The 
optimal λ value was determined as 0.25 with highest K value of 
0.4224. The optimal range for smoothening parameter lies 
between 0.1 to 0.3. 
 
 

 
 
 
 
 
 
 
 
 
 

 
Table 8. Kappa agreement for different λ values and the 

resulting plot for Landsat ETM+ image 
 
 
This shows a similar behaviour of the MRF model parameters 
in generation of the SRM for the different image characteristics 
of the Landsat image and the ASTER (SWIR) image. The 
OSRM produced with optimum λ value of 0.25 according to 
figure 5(b) shows a high agreement with the reference image 
than the other two images. The resulting images shows an 
significant smoothness for each class, this makes the OSRM 
more visually appealing, but it degrade the quality of the image 
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0.25 0.3682 
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due to the missing of the details. One reason for this is the high 
scale factor S=6 used, which invariably grow the 
neighbourhood size. This significantly improves the effect of 
prior energy, with many sub pixel configurations with 
equivalent contextual energy, making the OSRM to become 
smoother even with a low smoothening parameter value λ. 
When the likelihood energy is controlled by a higher 
smoothening value (1-λ) the more homogeneous objects (eg. 
Vegetation patches) with more number of pure pixels tend to be 
classified properly than the scattered object (eg. soil). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Effect of smoothening parameter on SRM, λ= (a) 0.1, 

(b) 0.2, (c) 0.25 and (d) Reference image 
 
The results of the OSRM and the Hyperion linear unmixing 
were comparatively analysed as shown in table 9. According to 
the experiments the linear unmixing results have a marginally 
high correlation with respect to the OSRM results with the 
reference fractions generated from the IKONOS MLC classified 
image. With the overall RMSE dropping slightly from 0.7429 to 
0.7079 MRF base SRM results shows its advantage in correctly 
predicting the fractions. And this has been justified by an 
identical AEP measure of 0.0134 for the OSRM results 
 

Class CC RMSE AEP 
V 0.8230 0.3247 0.7307 
S 0.5708 0.1549 -2.6871 
I 0.7682 0.2633 0.2222 
Total  0.7429 -1.7342 

(a) 
Class CC RMSE AEP 

V 0.6883 0.2882 0.2759 
S 0.3251 0.1440 -0.1624 
I 0.7290 0.2757 0.1001 
Total  0.7079 0.0134 

(b) 
Table 9. Accuracy statistics for Landsat ETM+ image by CC, 

RMSE and AEP (a) between fractions of Hyperion linear 
unmixing & Reference fractions (b) between OSRM fractions 

and the reference fractions 
 

The overall results suggest that the MRF base SRM technique 
on Landsat image has a marginally higher advantage than the 
linear unmixing technique with the hyper spectral remote 
sensing image. 
 
 

4. CONCLUSION 

Parameter determination is an important step for optimizing the 
performance of the super resolution mapping. This study 
applies the MRF based super resolution mapping to a 

significant number of real satellite images with different 
characteristics for the first time. 
 
The results obtained on applying the MRF based SRM 
technique using IKONOS image shows that to model the 
contextual information needed for an accurate land cover 
classification, the global energy needs to be modelled with a 
higher λ value (smoothness parameter) in the range of 0.3 to 0.5. 
This smoothness parameter range was justified with the similar 
results obtained from ASTER (VNIR) image. The λ range 
experienced in case of low resolution satellite images like 
ASTER (SWIR) and Landsat image was different where the 
global energy has a tendency to depend on likelihood energy 
more than the prior energy, claiming the λ values to stay in the 
range of 0.1 to 0.3 and also the range for the optimal λ values 
getting narrowed down to a lower range. In other words, it is 
observed that the class labelling depends more on the spectral 
information. The overall results suggests that with the different 
input image characteristics (spectral and spatial resolutions), the 
input parameters should be tuned to obtain optimal results. 
Moreover, these parameters tend to change, depending on the 
image characteristics, especially the spatial resolution. In high 
spatial resolution images with the Gibbs potential function 
taking low values the pixels corresponding to low energy state 
have a high probability in generating a class. This means that 
the prior energy brings in the additional information to classify 
the image pixels correctly. Hence this can lead it taking a 
higher weight (λ) than in the case of a lower spatial resolution 
image. Though the likelihood energy poses these variations due 
to the radiometric range of the dataset, result from IKONOS 
and ASTER (VNIR) images suggest that there is no significant 
difference in treating the likelihood energy for the optimal 
results. The observation on ASTER (SWIR) and Landsat 
images also justifies the above conclusions. Hence, it can be 
concluded that the spectral range of these MSS images may not 
have an effective influence over the optimal SRM results. 
 
The comparative analysis between the Hyperion linear 
unmixing results and the MRF based SRM results based on 
RMSE, AEP and CC shows that the MRF models produce super 
resolution maps with accurate fractional representation for each 
class at the subpixel level than the linear unmixing results. 
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