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ABSTRACT: 
 
This study contributes to a better understanding of the spatial and temporal patterns of ecosystem dynamics in Southern Africa in 
response to climatic variability.  First, we identified the areas where NDVI is covarying with precipitation, and where rainfall 
anomalies are correlated with NDVI anomalies. The results suggest that these correlations are related to quasi-periodicities in rainfall 
patterns. Further, we studies the strength of these relationships over time, and analysed the spatial patterns of these correlations and 
relate them to physical properties, like soil type, vegetation type and topography. In order to do this, we proposed a new methodology 
based on wavelet transforms of the time series of NDVI and rainfall.  

 
 

1. INTRODUCTION 

Africa’s regional environment is closely linked with its climate, 
so that climatic constraints have been a major force in the 
development of vegetation, soils, agriculture and general 
livelihood. Life in Africa revolves around subsistence farming 
of rain-fed crops, which renders its society vulnerable to 
climatic fluctuations (Hulme et al., 1996). Because 
environmental changes in Africa are most directly related to 
rainfall, we focus on the relation between rainfall and vegetation 
dynamics (Richard and Poccard, 1998, Vanacker et al., 2005, 
Camberlin et al., 2007).  
 
It remains unclear whether and how much climate change is 
affecting rainfall variability in the Southern African region. Still, 
seen the large climatic variability in the region, an improved 
monitoring method and understanding of the relationship 
between rainfall and vegetation dynamics creates potential for 
better management its natural resources. Analysis of present 
links between rainfall and NDVI will identify areas that are 
potentially sensitive to changes in rainfall patterns, and thus 
where future changes in rainfall patters will affect vegetation 
dynamics most. 
 
The objectives of this study are, first to identify the areas where 
NDVI is co-varying with precipitation, and where rainfall 
anomalies are correlated with NDVI anomalies. Second, to 
relate these correlations to the quasi-periodicity in rainfall 
patterns. The third objective is to study the strength of these 
relationships over time. In order to do this, we propose a 
methodology based on wavelet transforms of the time series of 
NDVI and rainfall. The last objective is to analyse the spatial 
patterns of these correlations and relate them to physical 
properties, like soil type, vegetation type and topography. 
 
 

2. DATA 

Data from SPOT-VEGETATION is extended back in time with 
imagery from the various daytime AVHRR sensors. In order to 
construct a homogeneous time series, the VEGETATION 

preprocessing was taken as a baseline and the AVHRR 
preprocessing was performed with the same methods and 
standards. After processing the AVHRR archive, the NDVI 
datasets were integrated taking into account the difference in 
spectral response of the sensors. The integration of the data sets 
was investigated using data from an overlapping year. The 
resulting data set covers the Southern African region below 
15°S for the period February 1985 – December 2006 and 
includes the 10-day composited NDVI. Full details on the 
processing and evaluation of this long-term archive are given by 
Swinnen and Veroustraete (2008). 
 
The rainfall data used is from the ECMWF ERA-40 dataset and 
was obtained from the MARS-FOOD Unit of the JRC (Ispra). It 
consists of 10-day rainfall totals at 1° resolution.  
 
For both datasets, the actual 10-day values are used, but also the 
anomaly time series. The standardized anomalies are defined as 
the actual value subtracted by the mean over time for that 
compositing period, divided by the standard deviation of the 
NDVI over time for that compositing period.  
 
 

3. METHOD 

3.1 Continuous wavelet transformation 

Wavelet analysis of time series provides a particular time-scale 
representation of that time series. It is a tool to examine 
localized variations of power in a time series, as it breaks down 
a signal into frequency components that occur during a certain 
time period (Antoine, 2004).  
 
The CWT of a discrete time series xn=x(tn) with a sampling 
interval of t, and of length N, is defined as the convolution of 　
the time series with a scaled (s) and translated (i) version of the 
wavelet function : 　  
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In this study, the Morlet wavelet was used, because it wavelet is 
a good choice for data that are varying continuously in time and 
are periodic or quasi-periodic. Because of its periodicity, it 
combines positive and negative peaks into a single broad peak, 
making it suited to capture oscillatory behaviour in a signal. 
Since the Morlet wavelet is complex, it returns information on 
the amplitude and the phase. The Morlet wavelet is of the form:  
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3.2 Wavelet coherency 

Wavelet transformation is a useful tool for the analysis of single 
time series, but also to investigate the time-scale representation 
between two time series. In this study, the NDVI – rainfall 
relationships for Southern Africa are investigated in wavelet 
space, using wavelet coherency. The wavelet coherency 
(WCOH) is a normalized time and scale resolved measure for 
the relationship between two time series (Maraun and Kurths, 
2004). It is defined as the amplitude of the wavelet cross-
spectrum normalized to the single wavelet power spectra: 
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the wavelet power spectrum of X (same for Y).  

It is a quantity between 0 and 1 and is used to identify both 
frequency bands and time intervals within which two time series 
are co-varying, thus it expresses the frequency dependence of 
the linear correlation between the two signals, and how this 
correlation evolves over time. 
 
To be able to calculate the wavelet coherency, it is necessary to 
smooth the cross spectrum beforehand, otherwise it will always 
equal 1 (this is similar to coherency in Fourier analysis) 
(Maraun and Kurths, 2004; Torrence and Compo, 1998). The 
reason for this smoothing is that coherency should be calculated 
on expected values. But in most cases this is impossible, as 
there is only one realisation of the time series and not a sample 
from the population. To overcome this problem, one should 
always simulate ensemble averaging by smoothing the 
coherency (Torrence and Webster, 1999; Maraun and Kurths, 
2004; Gurley et al., 2003).  
 
Because a complex mother wavelet is used, the Morlet wavelet, 
the phase difference between the rainfall and vegetation is also 
extracted pixel-wise, which provides information on how this 
lag varies over time.  

 
3.3 Significance testing 

Maraun and Kurths (2004) define a method for significance 
testing of wavelet coherency. The null hypothesis is formulated 
as “the two processes are not coherent”. In order to test this 
hypothesis, the probability distribution of the coherency under 
H0 is estimated.  
 
An empirical method for the significance testing is applied, 
because an analytical test is not possible due to the high 
correlation between vicinal wavelet times and scales. Monte 
Carlo simulations were performed to estimate the distribution 
under H0 numerically. The α significance level was determined 
from a Monte Carlo simulation of 10,000 sets of two white 
noise time series with the same length as the input time series. If 
a significant relationship can be detected between the two time 
series based on the coherency, one can use the cross-wavelet 
spectrum to estimate the phase (Maraun and Kurths, 2004). 
 
 

4. RESULTS AND DISCUSSION 

4.1 Dominant modes of coherency 

To assess the dominant modes of coherency between NDVI and 
precipitation, the frequency of occurrence of significant global 
wavelet coherency (gWCOH) was analysed. The gWCOH is the 
time-averaged wavelet coherency. This was done on the actual 
data, as well as on the anomaly time series (SDVI: standardised 
difference vegetation index, SDPI: standardised difference 
precipitation index).   
 
The NDVI and rainfall time series show in certain part of 
Southern Africa a strong coherency at the frequency bands 
centred around 1.5, 2.3, 3.5 and 5 years, besides the seasonal 
pattern (see Figure 1). These frequencies agree well with some 
well-known meteorological phenomena, like the Quasi-
Biennual Oscillation, Sea Surface temperature fluctuations and 
ENSO (Nicholson, 1989 and 2001).  
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Figure 1. Frequency histogram of the global wavelet coherency 
peaks calculated on the time series (black) and the anomaly time 

series (white). 
 
 
4.2 Analysis of the spatial patterns of these dominant 
modes 

To assess the spatial patterns of these dominant modes, the time 
length of significant coherency within a frequency band 
centered around the dominant frequencies was calculated. In 
addition, the strength of this relationship over time was analysed 
using the standard deviation of the wavelet coherency over time. 
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The WCOH applied on the S10 NDVI and rainfall time series, 
reflects co-varying processes. To determine the conditions for 
which rainfall exerts an effective forcing on NDVI, it is 
necessary to distinguish the interannual variations of both 
parameters from their seasonal cycle (Richard and Poccard, 
1998). Therefore, the WCOH of the standardised anomalies of 
NDVI and rainfall was also calculated for the lower frequencies. 
In the remainder of the text, the analysis on the yearly cycle was 
performed on the original dataset, whereas for the lower 
frequencies the standardized anomaly datasets were used. The 
results for the time length of significant WCOH for the 
periodicities of 1, 2.3 and 3.5 years are presented in Figure 2, 
and the standard deviation of the WCOH over time in Figure 3. 
 
At the seasonal cycle (periodicity = 1 year), vegetation 
dynamics are significantly co-varying with rainfall over the full 
time series for 62.28% of the region. When considering all 
pixels having this significant relationship for at least a duration 
of 90% of the 20-years time period, then 80% of the land pixels 
are selected. NDVI and rainfall are strongly co-varying at the 
seasonal cycle and this relationship is stable over time, as 
suggested by the small standard deviation of WCOH at 1 year 
(Figure 3, upper).  
 
For the southeastern part of the study area, except the area 
around Cape Town, the two time series are not co-varying when 
looking at WCOH at 1 year (Figure 2, upper). This is also the 
case, for some distinct areas, like the Etosha Pan, the 
Makgadikgadi Pans, which have no or little vegetation cover, 
and the Okavango Delta, which receives water from the 
Okavango upstream. The WCOH length at 1 year periodicity is 
considerably shorter for the mountainous areas of the 
Drakensbergen in South Africa and Mashonaland in Zimbabwe, 
and also for the deep arenosols of the Kalahari in South-West 
Botswana and South-Namibia. Here, the low vegetation cover 
might explain this pattern. The areas with a shorter significant 
WCOH-length are associated with higher standard deviations in 
the relationship over time.  
 
The anomaly time series show no significant coherency between 
NDVI and rainfall for the seasonal cycle, suggesting that all 
remaining variability in NDVI is distributed over other 
periodicities or is not caused by rainfall variability. 
 
The second frequency component in the coherency between 
NDVI and rainfall occurs at a frequency band around 1/2.3 
years. The gWCOH at this periodicity is significant for 3.54% 
of the area. Only a few pixels (1.8 %) show a consistent 
significant WCOH over the time period at 2.3 years periodicity, 
but for more than 25% of the pixels WCOH(2.3) is significant 
during half of the time period (Figure 2, middle), of which the 
majority in one single period. The areas with high WCOH at 2.3 
years periodicity are generally associated with low standard 
deviations (Figure 3, middle). The east of South Africa shows a 
stable non-relationship between NDVI and rainfall at this 
frequency.  
 
WCOH at 3.5 years periodicity is significant during the total 
time period in 5% of the study area. Only 20% of the area 
shows a significant WCOH at this periodicity range during at 
least half of the time series. The majority of these significant 
periods occur in one single episode. The standard deviation of 
WCOH at 3.5 years periodicity over time is generally low for 
areas with a longer significant period. 
The spatial distribution of the high coherency at these frequency 
bands largely coincides with the catchments of rivers, like the 

Limpopo, Zambezi and their tributaries. The clusters of high 
coherency in South Africa are located along the Gauteng, and in 
Angola along the Cunene and the rivers that feed the Okavango 
Delta. Only the high coherency patches in Botswana are not 
located along rivers, but these areas are located in depressions 
in the landscape. These are all areas that receive water from the 
upstream catchments, suggesting that there is an effect of the 
additional water availability, which has a periodicity of 2.3  and 
3.5 years (Nicholson and Entekabi, 1986), accumulating from 
the surrounding areas on the NDVI. Absence of significant 
WCOH is found in mountainous areas (Drakensbergen, 
Mashonaland, Namibia, Grote Karoo in South Africa), and also 
in the Namib Desert. 
 
 

 
 

Figure 2. Length of significant wavelet coherency over the time 
length of the time series for various periodicity ranges: 1 year 

(upper), 2.3 years (middle), and 3.5 years (lower). Colours  
range from red (= 100%) over yellow to green (=50%), over 

cyan to blue (=1%). No significant coherency is represented in 
white. 
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Factors affecting the relationship between NDVI and 
precipitation 
In this study, we examined the influence of vegetation type, soil 
type and topography on the strength of the vegetation response 
to rainfall. To do so, the patterns of high coherency at the 
different frequencies were compared to the areas with low 
coherency, and their correspondence with the areas’ physical 
characteristics was investigated. If a high coherency at a certain 
frequency predominantly occurred consistently in areas with 
certain biophysical characteristics (e.g. soil type), it would 
suggest that these physical factors have an influence on the 
rainfall – NDVI relationship.  
 
 

 
 
Figure 3. Standard deviation of the wavelet coherency for 

various periodicity ranges: 1 year (upper), 2.3 years 
(middle), and 3.5 years (lower). Colours  range from 
green (stdev=0.2) to dark blue (stdev=0.02). 

 
 

From the observed patterns in the previous section, it was 
already suggested that some high coherency areas follow the 
course of large rivers, or are located in depressions (e.g. in 
Botswana). We investigated whether site-specific characteristics 
such as topography (altitude and slope), land cover, soil, and 
mean annual rainfall influence the occurrence of high wavelet 
coherency and the time lag between NDVI and rainfall. 
 
Vegetation type controls only to a small extent the rainfall – 
NDVI relationship, but the dependency on soil type for the 
anomaly time series shows a stronger gradient, suggesting a 
stronger influence. The importance of topography (altitude and 
slope) is more pronounced for the anomaly time series. Areas 
with higher altitude or higher slopes show generally a lower 
higher coherency, whereas flat, lowland areas show the 
strongest relationship between rainfall and NDVI. The reason 
for this is quite obvious. Rainfall will penetrate the soil more in 
flat areas than in areas with a higher slope, where a part of the 
rainfall will disappear as run-off to lower areas and will not be 
available for vegetation growth at the site itself.  
 
For this reason, we believe that the relationship between rainfall 
and NDVI is not only affected by the site-specific topography, 
but also by the topography at the landscape scale.  
 
The time lag between the vegetation response to rainfall was 
also analysed pixel-dependent, whereas for most studies, this is 
usually taken as a constant. It is found that the response time of 
vegetation to rainfall can be up to 4 months, with a maximum 
variability of 1 month over the investigated time period. This 
variability seems to be larger in depressions in the landscape. 
Further, we analysed the influence of geographical conditions 
on the time lag found that mean annual rainfall, soil type, land 
cover type and topography play a role in the explanation of the 
time lag variability in the area.  
 
 

5. CONCLUSION 

The analysis showed that wavelets are a suitable tool to analyse 
both the strength of the relationship and the response time 
between NDVI and rainfall, and their variability over time. 
 
Using this method, we contributed to a better understanding of 
the rainfall-NDVI relationships by showing that not only site-
specific geographical conditions affect the relationship (both 
strength and response time), but also the topography of the 
surrounding landscape. We also showed that the anomalies of 
NDVI are distributed over a number of periodicities that are 
also found in the rainfall signal. In addition, we could relate the 
area where these periodicities occur to the area where these 
periodicities occur in the rainfall signal. The topography of the 
watershed level plays an important role in this relationship.  
 
These periodicities in rainfall have been related to well-known 
meteorological phenomena, which possibly can be affected by 
global change. This study contributed to the delineation of the 
areas, which might be sensitive to a change in these 
meteorological phenomena.  
 
Further, we showed that the variability of the time response of 
vegetation growth to rainfall varies over time, whereas other 
studies assumed a constant time lag for the whole time series 
under investigation, and also for each pixel in the area of 
interest.  
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