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ABSTRACT: 
 
The present study addresses the attempt made to explore the temporal (5-day revisit) and spatial resolution (56m) potential of 
AWiFS sensor aboard IRS-P6 to generate the land use land cover information using decision tree classification technique using See 5 
data mining algorithm. The results obtained after two annual cycles and issues related to digital classification of temporal satellite 
data were presented and discussed. The temporal datasets were co-registered to sub-pixel accuracy and were atmospherically 
corrected using modified dark pixel method. Scaled reflectance values were extracted for various classes and rule sets were 
generated using See-5 data mining algorithm. These rule sets were ported into ERDAS Imagine Knowledge Engineer and the 
temporal data sets were classified. The results indicate that temporal satellite data at monthly interval found to be suitable to address 
the seasonal variability in agricultural cropland. The problem with temporal dynamics of cloud cover could be overcome with a little 
extra care during training site selection. Additional training sites should be defined in cloudy regions keeping its temporal dynamics 
of the target class in view. Mis-registration among temporal data sets too can influence classification accuracies. Among various land 
cover classes, classification accuracy is poorer in classes those devoid of vegetal cover. Overall kappa statistic was 0.866 for 2004-
05 which was further improved to 0.908 during 2005-06.  

 
 

1. INTRODUCTION 
 

Land use land cover (LULC) information is one of the most 
important spatial information that is often required and got an 
important role in natural resource management and 
environmental planning. Till recent past, limited satellite data 
sets were used to derive land cover information. This approach 
often suffered with its inability to explain the staggered sowing 
across cropping seasons especially in agricultural areas. Multi-
dimensional data sets were used to derive the land cover 
information at various scales.   
 
Globally there are several land use land cover classification 
systems in vogue. These systems were developed to address 
specific project goal. In India, since major cropping patterns are 
more or less stabilized. Thus first cut information on net sown 
area will be very useful for taking stock of country’s 
agricultural situation. Keeping this in view, the land cover 
classification addressed in the present study incorporates 
agricultural classes discernable in a regional scale mapping 
programme. However, the agricultural cropping pattern will be 
very much staggered overlapping major cropping seasons 
namely, kharif (June to November), rabi (November to March) 
and zaid (March to June). Added to this, the duration of various 
crops ranges from 40 days to 120 days besides long duration 
crops (more than 6 months) like sugarcane, pigeon pea and 
cotton.  Thus to address such a complex cropping pattern with a 
cloud free data sets, the satellite data need to collected at a 
shorter intervals.  
 
When it comes to deriving information from satellite data 
through digital classification approach, supervised classification 

employing maximum likelihood algorithm has been the most 
commonly used digital classification technique on remotely 
sensed data (Richards, 1993). This classification method 
assumes that the probability distributions for the input classes 
are in multivariate normal form. This poses a limitation when 
spatial data with non-Gaussian distribution is also included 
while describing the data dimensionality. A common problem 
while using prior probabilities especially with maximum 
likelihood algorithm is that they can bias the posterior 
probability of a class towards the result predicted by the 
ancillary information (Strahler, 1980).  Hence, nonparametric 
classification algorithms are being increasingly used, which 
make no assumptions regarding the distribution of the data 
being classified (Foody, 1997; Carpenter et al., 1999). 
Nonparametric classification techniques found to be useful for 
land cover mapping when there is substantial intra-class 
variability and when the land cover classes tend to be 
multimodal (Gopal, et al, 1999; Friedl et al., 2000; Hansen et al, 
2000).  
 
The computational simplicity and operational flexibility of 
nonparametric methods facilitated land cover classification 
significantly. One such widely used nonparametric 
classification technique is decision trees. Several authors 
demonstrated the utility of decision trees derived in supervised 
fashion provide an accurate and efficient way for land cover 
classification problems using remote sensing data (Friedl and 
Brodley, 1997; Hansen et al., 1996; Swain and Hauska, 1977). 
The decision trees can be used to handle the nonlinear 
relationships among input data sets (Xu et al, 2005) and noisy 
as well as missing data (Quilan, 1993).   
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Keeping the land use land cover information requirement in 
view, the present article addresses the suitability of 
commercially available See-5 decision tree (DT) classifier to 
handle the temporal spectral variability to capture land use and 
land cover information. The results obtained after two annual 
cycles of multidate analysis and issues related to digital 
classification of temporal satellite data using decision trees 
were presented and discussed. In this study an effort was made 
to addresses the impact of sample size on decision tree and its 
accuracy, effect of satellite data mis-registration and utility of 
NDVI as a stand alone parameter for land use land cover 
classification. 
 
 

2. METHODOLOGY 
 
The entire process adopted in the present work involves top of 
atmospheric reflectance generation, atmospheric correction, 
georectification, data mosaicing, ground sample collection, 
generation training sets from multi-temporal AWiFS data and 
digital classification using rules generated from See-5 DT 
classifier and accuracy assessment.  
 
2.1 Pre-processing 
 
The digital numbers (DNs) of all the data sets were converted 
into at-satellite radiance values using the linear scaling 
functions provided in the data product’s leader file. Using the 
orbit parameters like date of acquisition, solar zenith angle and 
Earth-to-Sun distance, top of atmospheric reflectance has been 
computed as per Liang et al (2001). The solar irradiance values 
for the AWiFS spectral bands were computed using the solar 
tables provided by Nickel and Labs. Finally, these outputs were 
re-scaled for 10-bit output using a constant scaling function 
across bands. The temporal data sets were georeferenced using 
image to image tie down procedure. The georeferenced master 
reference image already available has been used for 
georectification though image-to-image tie down procedure. For 
all the data sets used in the present study, the individual RMS 
error of each data set was < 50m and was in range of 26m to 
50m. The atmospheric correction was carried out using 
modified dark pixel subtraction method (Chavez, 1988). 
 
2.2 Ground truthing 
 
Historic as well as current satellite data has been used along 
with legacy maps for planning the ground truth campaign. 
Historic satellite data helped in locating the hotspots where land 
cover changes have taken place. During kharif as well as rabi 
crop seasons, ground truth was collected covering various land 
cover types with a special focus on agricultural crops. To record 
the location of various ground truth sites, EMTAC Bluetooth 
GPS was used.  A part of these points were used for   defining 
the training areas, while a portion was used for accuracy 
assessment.  
 
2.3 Digital Classification 

 
Besides using the scaled reflectance (SR) values per se, an 
attempt was also made to study Normalized Difference 
Vegetation Index (NDVI) as a standalone parameter for LULC 
classification. NDVI images were generated using simple image 
arithmetic.  
 
 
NDVI = (NIR- Red ) / (NIR + Red)                                 (1) 

 
 
Where, 

NIR and Red are radiometrically normalized and 
atmospherically corrected reflectance values of NIR and 
Red bands of AWiFS. 
 

Initially the temporal spectral response of various land use land 
cover classes was studied.  Training sets were defined in light 
of their temporal response vis-à-vis ground truth information by 
contemporaneous visual inspection of temporal images. 
Digital counts (scaled reflectance values) as well as NDVI 
values were extracted for these training areas defined for 
various classes. Rules set / decision tree was generated using 
See-5 data mining software for various sample sizes.  
 
The resultant accuracies of training set classification were 
studied along with the rule sets derived. These decision trees 
were analyzed in light of their characteristics and accuracies. 
These rule sets were ported into ERDAS Imagine Knowledge 
Engineer and the temporal data sets were classified. To 
accomplish the workflow, an interface developed with Visual 
Basic 6.0 was used. 
 
 

3. RESULTS & DISCUSSION 
 
The results obtained from the present study were arranged into 
three sub-sections viz., effect of sample size, utility of NDVI as 
a stand alone parameter, effect of mis-registration on land use 
land cover classification. 
 
3.1 Temporal signatures 
 
The temporal spectral response of various target classes indicate 
that, vegetation by virtue of having low reflectance in red and 
high reflectance in NIR forms a characteristic curve which 
clearly separates from other land cover classes like bare fields 
and water bodies. The temporal combination of the above 
mentioned spectral reflectance patterns distinctly separates 
various land cover classes. This especially helped in separating 
various seasons of cropping – kharif, rabi and zaid. While 
kharif crop exhibits vegetation reflectance pattern during 
October, and exhibits a bare soil reflectance curve during 
subsequent periods. While rabi crop portrays characteristic 
vegetation signature during November to March, it shows 
characteristics response of bare soils during other months. The 
triple cropped areas, agricultural and forest plantations and 
forest areas do have an overlapping temporal signature with 
distinct spectral response pattern in at least one of the data sets 
which helped their separation. However, overlapping temporal 
and spectral response between plantation and semi-evergreen 
forest present this area resulted in poor classification accuracies. 
This could be efficiently overcome by including a mask 
separating forest and non-forest areas in the classification. 
 
3.2 Effect of training sample size 
 
An attempt was made to understand the influence of training set 
size on classification accuracy and the number of rule sets 
generated by decision tree classifier. Initially large training sets 
(approximately 2500 pixels) covering various possible 
variations in temporal response were defined for each class and 
the SR values were extracted. The variation in training set 
definition by virtue of cloud cover was treated as a separate 
class. From this pool of training set pixels, training samples of 
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various land cover classes were drawn randomly in the 
multiples of 50. The influence of training set size was tested up 
to 750 pixels per class. It was observed that there was an 
improvement in training set classification accuracy up to 300 
pixels per training set and there after it is more or less stabilized 
in cloud free areas.  
 
 

 
 

Figure-1. Effect of training sample size on classification 
accuracy of evergreen forest class. 

 
The cross computed classification accuracy of training sets was 
found to increase as the number of training set size increases. 
The general range of classification accuracy is 74.8% to 97.3%. 
In figure-1 the effect of training sample size for a representative 
training class like evergreen forest has been depicted. For most 
of the classes, this increasing trend was observed up to a 
training set size of 300 pixels and there after showing an 
insignificant change in accuracy. However for cloud infested 
areas, the training set accuracies were improving up to 500 
pixels size. Thereafter there were minor deviations in accuracy 
which may be due to intra-class variability of training set or 
may be because of random selection of training pixels from 
pool. This indicates that the training set size has got influence 
on accuracy and up to a certain sample size. This sample size 
however can not be fixed as same for all the land cover classes. 
It depends on the inherent variability in the spectral response of 
target features. To address the missing data (like cloud infested 
areas), the sample size need to be increased. 
 
3.3 Influence of cloud contamination 
 
The cloud contamination in the data sets has influence on the 
decision tree structure (table-1). 
 
 

Sl. 
No 

Description Max. Tree 
depth 

No. of 
nodes 

No. of leaf 
nodes 

1 Cloud free data 4 116 82 
2 Cloud infested 

areas 
6 162 101 

 
Table-1. Decision tree structure as a function of cloud          

contamination. 
 

From the above table it is clear that the cloud contamination can 
influence the decision tree structure by increasing the tree depth 
as well as number of nodes. From the above table it could be 
observed that the number of nodes used for branching the 
decision tree (total nodes – leaf nodes) as well as tree depth is 
high in cloud infested areas. The same has also been observed 

in the targets that have heterogeneous target representation by 
means of temporal staggering in spectral response.  
 
3.4 NDVI as a stand alone parameter 
The decision tree classification has been performed on temporal 
data sets with SR as well as NDVI values alone and in 
combination (SR + NDVI together). There was no significant 
improvement in overall classification accuracy when NDVI is 
added to SR values over using SR values per se. Using temporal 
NDVI values as stand alone data set resulted in significantly 
poorer classification accuracies. Thus NDVI as a stand alone 
parameter is not very much suitable for LULC digital 
classification using DT approach.  
 
3.5 Effect of mis-registration on land use land cover 

classification 
 
The co-registered temporal datasets do have mis-registration 
across data sets ranging from 1 to 3 pixels. This resulted in mis-
classification in the output especially in borders where the 
transition between land cover classes happens. However, the 
misclassification is not the same across spatial domain. Further, 
the extent of mis-classification depends on the decision rule 
used while classifying a pixel.  
Accuracy assessment 
 
The classified output was subjected post classification accuracy 
assessment. A stratified random sampling approach has been 
adopted with at least 15 ground reference points per class. The 
location of each point has been recorded with the help of GPS. 
The output class for each of these points has been extracted 
from classified image and a confusion matrix has been 
generated.  The following table provides the conditional kappa 
statistics of various LULC classes. 
 
 

Sl. 
No

LULC class 2004-05 2005-06

1 Built up land  0.9685 0.9715
2 Kharif crop land 0.8883 0.8937
3 Rabi crop land 0.8653 0.9467
4 Zaid crop land 0.9015 0.9467
5 Double / triple crop land 0.8480 0.8933
6 Current fallow land 0.8141 0.8400
7 Plantations / orchards 0.8998 0.8400
8 Evergreen / Semi-Evergreen 

forest 0.9638 0.9465
9 Deciduous forest 0.7908 0.8416

10 Shrub or degraded forest  0.8293 0.9685
11 Swamp / Mangrove  0.9060 0.9467
12 Grassland & Grazing Land 0.8587 0.9918
13 Other Wastelands 0.8913 0.8405
14 Gullied/Ravines 0.8295 0.9461
15 Scrubland 0.8651 0.8416
16 Water bodies  0.9481 0.8416
17 River sand 0.9815 0.9981

 
Table-2. Class-wise conditional Kappa statistics. 

 
The lower classification accuracy in deciduous forest is due to 
the signature overlap with shrub / degraded forest class. 
Similarly, there exists a signature overlap among other 
wastelands class, current fallow and gullied / ravenous areas. 
Overall kappa statistic for the classified output was 0.866 
during the year 2004-05. It was further improved to 0.908 
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during 2005-06 due to availability of relatively cloud-free data 
set covering most of the variation in staggering of crops.  
 
 

4. CONCLUSIONS 
 

The decision tree classification algorithm (See-5) used in this 
study is able to exploit the temporal variation in target spectral 
properties satisfactorily. The decision tree classification could 
effectively tackle the temporal variability and the output image 
is having relatively low salt-pepper noise and is spatially 
contiguous. 
There is high temporal variation of crop cover especially across 
dryland and irrigated regions by virtue of variation in crop type 
and staggered sowings. Results indicate that temporal satellite 
data at monthly interval found to be suitable to address the 
variation cropland. The temporal data was found to be very 
useful in separating fallows with sparse grass cover during 
kharif season and crops those are in initial vegetative phase. It 
was also found that the problem with temporal dynamics of 
cloud cover could be overcome with a little extra care during 
training site selection. However, there was a relatively lower 
accuracy in permanent vegetation classes when compared to 
areas those with temporally variable vegetal cover. These 
classes include evergreen forests, and very dense scrubs with 
broad-leaved vegetation in northern hilly region and plantations 
in plains. The plantations could be separated from forests by 
addition of forest mask into the classification. It was also 
observed that accuracy of co-registering temporal datasets has 
got a significant influence on the classification accuracy. 
However, the classification results because of mis-registration 
across data sets are quite complex to interpret.  To address the 
cloud cover problem, additional training sites should be defined 
in cloudy regions keeping its temporal dynamics in view. Tthe 
overall classification accuracy in these cloud infested regions is 
visually estimated around 60-70%. Further, the accuracy a land 
cover class in cloud-infested regions depends on the extent of in 
the satellite image that provides major contribution to the 
signature of that class. 
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