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ABSTRACT: 
 
In machine learning, the preprocessing of the observations and the resulting features are one of the most important factors for the 
performance of the final system. In this paper, a robust approach to urban change detection for high resolution images is presented 
based on feature selection and machine learning. The rationale of the proposed approach is to improve the interclass variability by 
extracting change features of different types at different scales, to choose the informative change features by feature selection, to 
achieve the reliable results by machine learning. By taking advantages of feature selection and machine learning, the proposed 
approach is superior to the related methods in accuracy, efficiency and robustness. Experiments demonstrate the effectiveness and 
advantage of the proposed approach. 
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1. MANUSCRIPT 

Urban change detection is very important in urban monitoring 
such as the detection of new buildings or the discovery of 
modifications in the existing ones. With the development of 
high resolution sensors, it is possible to detect changes at the 
smaller spatial scale. However, urban change detection of high 
resolution images is more difficult due to the intrinsic 
complexity of high resolution images and the complex nature of 
the urban environments. First, the improvement in spatial 
resolution simplifies the problem of mixed pixels encountered 
in the standard multispectral images, but at the same time, it 
increases the internal spectral variability (intraclass variability) 
of each land cover class and decreases the spectral variability 
between different classes (interclass variability) (Carleer et al., 
2004). The resulting high intraclass and low interclass 
variability lead to the reduction in the statistical separability of 
the changed class from the unchanged class, which in turn 
brings out high change detection errors. Second, the fact that 
urban areas are composed of numerous materials (concrete, 
asphalt, metal, plastic, glass, shingles, water, grass, shrubs, trees 
and soil) makes it difficult to extract discriminative features to 
describe and separate the complex changes. In addition, the 
limited spectral resolution of high resolution sensors, which 
depends on the technical constraints, further increases the 
complexity of this problem. Third, most of the traditional 
change detection methods derive the “optimal” threshold under 
the assumption that both the changed class and the unchanged 
class are subject to Normal distributions. Unfortunately, the 
assumption of Normal distribution is always violated especially 
for changed class (Bovolo and Bruzzone, 2007). As a result, the 
optimal change map cannot be achieved even by the optimal 
threshold. Furthermore, based on threshold selection, it is 
difficult for the traditional methods to take into account the 
specific requirements peculiar to the specific end-users (Paul 
and Alessandro, 2000). 
 

To address the above difficulties, in this paper, we propose a 
robust approach to urban change detection for high resolution 
images based on feature selection and machine learning. By 
taking advantages of feature selection, the reduced number of 
features not only combats the curse of dimensionality but also 
leads to a reduced computational complexity. Furthermore, only 
the representative subset is determined from a given set of 
features for the change detection task. As a result, the 
discriminability between the changed class and the unchanged 
class is improved. With the help of SVM, a distribution-free 
classifier, change features of different types at different scales 
are combined implicitly and optimally to the specific end-user. 
The paper is organized in four sections. Section 2 presents a 
detailed description of the proposed approach step by step. 
Section 3 reports the experimental results obtained on real 
QuickBird images. Finally, section 4 draws the conclusions of 
this paper. 
 
 

2. CHANGE DETECTION BASED ON FEATURE 
SELECTION 

The basic idea of the proposed approach is to improve the 
interclass variability by extracting change features of different 
types at different scales, to choose the informative change 
features by feature selection, to achieve the reliable results by 
machine learning. To this end, three modules are designed in 
the proposed approach: feature extraction module, feature 
selection module and change detection module. In the first 
module, change features of different types at different scales are 
extracted individually. In the second module, informative 
change features are identified based on feature selection. 
Reliable changes are detected in the third module based on 
machine learning, which provides a natural way of combining 
the informative features of different kinds. 
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2.1 Feature Extraction 

Various features and similarity measures are presented in the 
literature to represent the changes, among which spatial-
contextual features are important since each pixel is likely to be 
surrounded by the pixels belonging to the same class. For the 
high resolution images we considered, in this paper, two simple 
yet effective features are used. One is the spectral difference, 
the other is local structural features, or texture. 
 
2.1.1 Spectral Difference: Let ( )id p be the spectral 
difference between two images at pixel p computed at the 

thi band. In this paper, we use d p to 

denote the final spectral difference at 
1
max ( )ii K≤ ≤

( )d p =

p , which combines the 

spectral differences at different channels, K  is the number of 
the spectral band. To be robust to noise, the spectral difference 
measure is normalized into the range of [0,1]  by the following 
slope function: 
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The parameter T  should be properly chosen to cope with 
image noise. Since the image noise can be modeled as Gaussian 
noise ),0( σN

N

, the noise in the difference image has a Gaussian 

distribution (0, )dσ  with 2dσ σ= . However, due to the 
effect of illumination changes, the shifts of spectral values for 
unchanged regions should be compensated to compute dσ . 
First, the shift of gray value at each pixel is calculated as 
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Where ( , )p Nδ  denotes the  spatial neighborhood 
centered  at 

N N×
p . Then the difference image becomes 
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By estimating the variance of noise to ,  'd dσ  can then be 
estimated. The average shift of the spectral difference for the 
unchanged regions is estimated as 
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With  '{ :| ( ) | 2 and | ( ) | }d mp d p d p TσΩ = < < ed  , where 

 is the median of medT d  and  is the number of pixels in 

the set 

||||Ω
Ω , most pixels of which come from the unchanged 

regions. From these estimations, the parameter T  can be 
chosen as | | 3u dd σ+ . 
 
2.1.2 Textural Difference: Texture is an important feature 
since it represents the spatial arrangement about the gray levels 
of pixels in an object. Among different texture features, local 
texture based on the gradient value is used in this paper since it 
describes how the gray level changes within a neighborhood 
and is less sensitive to illumination changes. 
 
Let  be the  image and )( pfi thi ' ( ) [ ( ) ( )]x y

i i if p f p f p=  
the gradient vector at the pixel p . The texture difference 
between two images at p  is defined based on the contextual 
distance: 
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Where  is the cross-correlation of gradient vectors of 

two images at q . 

( )ijC q

R  is the  spatial neighborhood. As 
illustrated in (Li and Leung, 2002), such difference measure can 
describe the difference within the local region, both the 
difference in magnitude and the difference in angle. What’s 
more, it is robust to illumination changes and noise. 

N N×

 
2.1.3 Multiscale Change Feature Extraction: Despite of 
the importance of spatial-contextual features, the problem is the 
choice of the window size (or the scale) because an 
inappropriate window size will produce miss- and over-
detections. One way to overcome this problem is to extract 
multiscale change features from a set of windows with different 
sizes. Cognitive-based studies suggest that human 
photointerpretation requires windows considerably larger than 
those employed in digital image classification studies (Binaghi 
et al., 2003). This is confirmed by the experiments conducted 
by (Hodgson, 1998), which show that the photointerpreters 
select windows of about 40 × 40 pixels (corresponding to about 
60m × 60m) to identify urban patterns in high spatial resolution 
images. For this reason, the above contextual difference 
features are extracted in the concentric windows with increasing 
sizes. The number and size of windows depend on the specific 
characteristics of the target compared with the other patterns 
within the image. Considering the image resolution used in this 
paper, the change features are extracted with windows of size 
r  ranging from 5×5 pixels to 51×51 pixels. Due to the high 
intraclass and low interclass variability of high resolution data, 
only the relative change information is not discriminative 
enough to represent the complex changes between images. For 
this reason, we analyze the original spectral signatures and the 
relative change information jointly. The multiscale change 
features can then be expressed as follows: 
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       .                             (6) ( ) [ ( ), ( )]o rF p F p F p=
 
 
Where 
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Since the dimensionality of the resulting multiscale change 
features is high and many entries contained in rF  may contain 
redundant information, the next step aims to figure out which of 
these features are best suited for the change detection task. 
 
2.2 Feature Selection 

For supervised change detection approach, a known problem is 
to find ways to reduce the dimensionality of the feature space to 
overcome the risk of “overfitting”. In the literature, different 
feature selection techniques are presented for the different 
applications. Considering the relevant and redundant properties 
of the multiscale change features, in this paper, we apply the 
feature selection procedure based on the combination of the 
Fisher criterion and principal feature analysis (PFA) (Lu et al., 
2007), which is motivated by the following facts. First, the 
Fisher criterion is a supervised criterion and it can remove the 
features which are noisy or irrelevant, but it does not take the 
redundancy of features into account. For example, if two 
features are entirely same and both have high the Fisher values, 
they will be both selected with high redundancy. Second, PFA 
is unsupervised, it explores the correlation between features and 
removes the redundant ones, but it cannot distinguish the noisy 
features from the relevant ones. 
 
2.2.1 Initial Feature Selection Based on Fisher Criterion: 

Given in  training samples 1 2{ , , , }i i i
inx x xL  for each class 

( 2i = , i.e., changed class and unchanged class), the class 
separability of  a feature set can then be measured by 
 
 

 .                               (9) 1(F wJ trace S S−= )b

iS

) .

 
 
Where the within-class scatter matrix  and between-class 

scatter matrix  are estimated by 

wS

bS
 
 

 .                                        (10) 
2

1

ˆ
w i

i
S P

=

= ∑
 
 

and 
 
 

2

1

ˆ ˆ ˆ ˆ( )( T
b i i i

i
S P μ μ μ μ

=

= − −∑                         (11) 

 
 
The priori probability of class i is estimated by 

2

1

i
i

i
i

n

n
P

=

=
∑

, 

the class means iμ  are estimated by 1

1

ˆi
j

i
i
ji

n

n xμ
=

= ∑ , and the 

gross mean μ  is estimated by 
2

1

ˆ ˆi i
i

Pμ μ
=

=∑ . 

 
This measure serves a good criterion for feature subset selection, 
and has shown superior performance in many practical 
problems. However, its calculation for a large number of 
features is computationally expensive. Instead, the Fisher 
criterion for one single feature has been prevalently used to 
select the discriminant features. For the  feature, it is 
calculated by 

thk
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Where and are the  diagonal element of  and 

 respectively, and they can be calculated from the data of 
single feature. For initial feature selection, we calculate the 
Fisher criterion of each feature, order the features in the 
decreasing order of criterion values, and simply select the 
features with the maximum values, while the features with very 
small Fisher values are abandoned. Though the single-feature 
Fisher criterion does not consider the joint separability of 
multiple features, it is able to retain all discriminant features by 
only removing irrelevant and noisy features, for which the 
Fisher criterion is nearly zero. 

k
bS k

wS thk bS

wS

 
2.2.2 Feature Selection Based on PFA: PFA exploits 
the structure of principal components to choose the principal 
features, which retains most of the information both in the sense 
of the maximum variability in low-dimensional subspace and in 
the sense of minimizing the reconstruction error. By PFA, the 
representative feature subset can be found as follows: 
 
1) Compute the sample covariance matrix Σ  for the 

feature vector dimension-n X . 
 
2) Compute the principal components and eigenvalues of the 

covariance. i.e., TA AΣ = Λ , A  is the orthonormal 
matrix composed of the eigenvectors of  Σ , and 

1 2 , , ]n[ ,diag λ λ λΛ = L  with 1 2 nλ λ λ≥ ≥ ≥L . 
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3) Choose the subspace dimension q and construct the 

matrix qA  from A . This can be chosen according to the 

desired variability of the data to be retained. The retained 
variability is the ratio between the sum of the first q  
eigenvalues and the sum of all eigenvalues. This ratio is 
empirically set to 90%. 

 
 
4) Cluster the vectors 1 2| |,| |, ,| |nV V VL  to p  clusters 

using the meansk −  algorithm, | |⋅  denotes the vector 
composed of the abstract values of all elements. 

 
5) From each cluster, find the corresponding vector | |iV , 

which is the closest in Euclidean distance to the mean of 
the cluster. Choose the corresponding feature, ix , as  
principal feature. T

a
his step will yield the choice of p  

principal features. 
 
2.2.3 Combined Feature Selection Based on Fisher 
Criterion and PFA: To remove both irrelevant and 
redundant features, we combine the Fisher criterion and 
principal feature analysis. The single-feature Fisher criterion is 
used as the pre-selection criterion to select the best 
m individual discriminant features. Then PFA is used to cluster 
the m  pre-selected features into p groups, and one feature 
from each group forms a subset of principal features. In pre-
selection by the Fisher criterion, to decide the number of 
retained features, we accumulate the Fisher values in decreasing 
order until the sum of values exceeds a pre-specified percentage 
of the total values. Since we apply the above feature selection 
procedure only to the multiscale “relative” change feature rF , 
th
 

e final change features can be represented as: 

 

              (13) 

 is the subset selected from  by the above 
rocedure. 

 

 in 2002 and 2003. The selected test sites are shown 

s 
re listed in Tab. 1, from which we can conclude that Overall. 
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3. EXPERIMENTAL RESULTS 

To assess the effectiveness of the proposed approach, 
experiments were conducted on high resolution images of many 
scenes. For space limitation, only the results on one data set are 
shown in this paper. The data set is composed of three channels 
(red, green and blue) images of 401 × 701 pixels (61 cm/pixel). 
The data set is taken over Beijing (China) acquired by 
QuickBird
in Fig. 1. 
 
Fig. 2(a) shows the ground truth labeled manually, in which the 
changed class is shown in red. Training regions are shown in 
Fig. 2(b) (the changed regions: red, the unchanged regions: 
blue). Fig. 2(c) is the result by the proposed approach. To 
demonstrate the effectiveness of the proposed approach, the 
change detection results by the other three different methods are 
also shown. Fig.2 (d) is the result without feature selection, 
while Fig.2 (e) (f) show the results with feature selection based                                             (b)  

on Fisher criterion and PFA respectively. By comparing Fig.2 
(c)-(f) with Fig.2 (a), most changes are detected correctly based 
on different methods, even without feature selection, this 
indicates the effectiveness of the multiscale features in 
improving the discriminability of the changed class from the 
unchanged class. To illustrate the advantages of feature 
selection for change detection, we use Missed Alarms, False 
Alarms and Overall Alarms to compare the performances of 
different methods. The performances by the different method
a

 
 

 
                                        (a) 

 

 
                                        (b)  

 Figure 1: Im cquired at 
2002,(b): image acquired at 2003. 

 

ages used in this paper. (a): image a

                                        (a) 
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                                      (c) 

 
   
 

                                    (d) 

 
                                      (e) 
 

 
 
                                      (f) 
 

selection. (f): change map by SVM and PFA feature selection. 
 

Figure 2: Results comparison against different methods. (a): 
reference change map. (b): training samples. (c): change map 
by the proposed approach. (d): change map by SVM without 
feature selection. (e): change map by SVM and Fisher feature 

Accuracy SVM Fi A sher+PF Fisher PFA 
Missed alarms 14026 11306 12275 13386
False Alarms 10582 12070 11592 10832

Overall Alarms 24608 23376 23867 24218
 

 comparison against different feature 

 
Alarms by feature selection based on the Fisher criterion and/or 
PFA are smaller than the method without feature selection, 
which shows the importance of feature selection in improving 
change-detection accuracy. Feature selection based on Fisher 
criterion can improve the performance since it can remove 
noisy or irrelevant features. Feature selection based on PFA can 
improve the performance as it can remove redundant features. 
Among three different feature selection strategies, Overall 
Alarms by the combination of Fisher criterion and PFA is the 
smallest. This difference implies the effectiveness of the 
proposed approach. Such effectiveness lies in the ability of the 
proposed approach in removing both irrelevant and redundant 
features. 

 
Accuracy SVM Fisher+PFA Fisher PFA 

Missed alarms 10649 14696 13111 12019
False Alarms 20044 10835 15104 15016

Overall Alarms 30693 25531 28215 27035
 

Table 2: Robustness comparison against different feature 
selection strategies 

 
To evaluate the robustness of the proposed approach, we apply 
a conformal affine transformation (rotation: 1 , translation: 1 
pixel) on Fig.1 (b) to simulate the miseffects of view-angle 
variation and misregistration. The results by different methods 
are shown in Fig. 3, the corresponding performances are listed 
in Tab.2. In this case, Overall Alarms by different methods are 
larger than the first experiment. Compared with the result based 
on SVM without feature selection, Overall Alarms by the 
methods with feature selection are smaller. This comparison 
shows the importance of feature selection in reducing the noise 
caused by view-angle variation and misregistration. Among the 
three different methods with feature selection, Overall Alarms 
by Fisher+PFA is still the smallest, which indicates the 
robustness of the proposed approach. In detail, False Alarms by 
the three methods other than Fisher+PFA is larger than the first 
experiment since the land surface properties at wrong locations 
are evaluated instead of real changes at the same location 
between one time and another. However, the proposed approach 
is hardly affected by view-angle variation and misregistration, 
this can also be confirmed by comparing Fig. 3(a) with Fig.2(c). 
The underlying reason is that the complementation of Fisher 
and PFA is helpful in improving the robustness. As a final 
remark, it is worth noting that the number of features selected is 
not the same for the two set of experiments since the features 
are selected automatically based on the ratio of the first 

Fisher values and/or the first 

o

m p eigenvalues. 
 
 

 
4. CONCLUSIONS 

Conventional pixel-based change detection schemes are less 
suited for urban change detection of high resolution images due 
to the resulting high intraclass and low interclass variability as 
well as complex man-made objects. In this paper, a robust 
approach is proposed for urban change detection of high 
resolution images, the main innovation lies in the discriminative 
multiscale feature extraction, feature selection as well as 
machine learning. The experiment results reported in this paper 
confirm the effectiveness of the proposed approach. Despite of 
the promising preliminary results, many future developments 
need be considered to make our approach more robust and more 

Table 1: Accuracy
selection strategies 
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