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ABSTRACT: 
 
Automated approaches to building detection are of great importance in a number of different applications including map updating 
and monitoring of informal settlements. With the availability of multi-source aerial data in recent years, data fusion approaches to 
automated building detection have become more popular. In this paper, two data fusion methods, namely Bayesian and Dempster-
Shafer, are evaluated for the detection of buildings in aerial image and laser range data, and their performances are compared. The 
results indicate that the Bayesian maximum likelihood method yields a higher detection rate, while the Dempster-Shafer method 
results in a lower false-positive rate. A comparison of the results in pixel level and object level reveals that both methods perform 
slightly better in object level. 
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

Automated approaches to building detection are of great 
importance in a number of applications, including map updating, 
city modeling and monitoring of informal settlements.  Up-to-
date maps are in high demand with the current widespread use 
of navigation systems. Map updating is a tedious task when it is 
performed manually by an operator. Each building has to be 
inspected in the map and in a recent aerial image (or a stereo 
pair). Changes are marked and the map is updated accordingly. 
This process is expensive and time consuming. Automation of 
this process will save time and cost, making it possible to do 
faster and more frequent map updating. 
 
Using data from only one source of data often does not provide 
enough information to correctly detect buildings in an 
automated fashion. By fusing data from multiple sources the 
chances of correctly detecting buildings increase. Several 
methods of data fusion have been used for the detection of 
buildings from multi-source aerial data (Bartels and Wei,2006; 
Lu et al.,2006; Rottensteiner et al.,2004a; Walter,2004). While 
relatively successful application of these methods has been 
reported, a comparison of the performance of the methods is not 
available. The objective of this paper is to provide a comparison 
of the two main data fusion methods, namely Bayesian and 
Dempster-Shafer, as applied to the detection of buildings from 
multi-source aerial data. 
 
The paper has the following outline: in the next section an 
overview of the previous research in the field of automated 
building detection is given. This includes building detection 
using one aerial image, stereo and multiple-overlap images, 
using height data and through the fusion of several sources. 
Section 3 provides a brief description of the Bayesian decision 
theory and the Dempster-Shafer evidence theory. In Section 4 
feature extraction and evidence gathering for classification and 

morphological post-processing for building detection are 
discussed. Experimental results and a comparison of the 
performance of the methods are presented in Section 5. 
Conclusions are drawn in Section 5.  
 
 

2. RELATED WORK 

Building detection from aerial images has been a hot topic since 
the early 1990’s. Early approaches were based on a single 
image. Buildings were detected by making use of their shadows 
(Lin and Nevatia,1996). Shadows have the disadvantage of not 
being visible in all situations. In addition, they can obscure one 
another thereby forming complex shapes, which do not 
resemble the original buildings. Lin and Nevatia,(1996) 
furthermore assume that the roofs of the buildings are 
rectilinear, flat, and that the shadows cast by the buildings fall 
on flat ground. This is clearly not the case in many urban areas. 
Using more than one image supplies more information and 
other methods of detection can be applied. Fischer et al.,(1998) 
use multiple images to recognize building features (points, lines 
and regions). These features are then used to construct building 
corners, wings, and faces, which in turn are combined to 
reconstruct a building. Fradkin et al.,(2001) use multiple images 
to detect facades of buildings. Several images from different 
angles are taken so that the problem of occlusion is reduced to 
some extent. After the facade has been found the rest of the 
building is detected. Contrary to roof detection (Khoshelham et 
al.,2005; Muller and Zaum,2005), facades have less area from 
which they can be detected, making their detection troublesome. 
 
Using several images it is possible to construct a height model 
of the scene. Weidner and Forstner,(1995) and Brunn and 
Weidner,(1997) use the height differences between buildings 
and the ground to make a guess about what is a building and 
what is not. Using this method, trees can be classified as 
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buildings if they have the same height as buildings. A height 
model of the scene can also be generated using an airborne laser 
scanner. Vosselman,(1999) uses laser scanner data to generate a 
Delaunay triangulation to reconstruct the rooftops and thus the 
buildings.  
 
With the availability of multi-source aerial data in recent years, 
data fusion approaches to building detection have increasingly 
attracted attention. One of the common approaches to data 
fusion for classification of objects is based on the Bayesian 
decision theory. Walter,(2004) applies Bayesian maximum 
likelihood method to object-based classification of multi-
spectral data. Rottensteiner et al.,(2004b)  fuse height data with 
NDVI from multispectral images based on Dempster-Shafer 
theory. Lu et al.,(2006) use a similar method to detect buildings 
in multi-source aerial data based on the Dempster-Shafer theory.  

 
 

3. BAYESIAN AND EVIDENCE-BASED DATA FUSION 
FOR BUILDING DETECTION 

3.1 Bayesian approach 

In a typical data fusion strategy, feature vectors are extracted 
from the multi-source data, and a decision is made for each 
feature vector as to what class of object it belongs to. In the 
Bayesian fusion, a decision is made on the basis of maximizing 
the likelihood of a feature vector x being belonged to a class wj. 
This is realized by evaluating a decision function for each 
feature and each class (Duda et al., 2001): 

where the conditional probability p(x/wj) is the probability of a 
feature vector x when drawn from the class wj, and P(wj) is the 
prior probability of the class wj. The pixel or object with the 
feature vector x is then assigned to the class wj if: 

 
The probabilities in Eq. (1) are derived from the training data. 
Feature vectors are often assumed to have a Gaussian 
distribution; thus, p(x/wj) is replaced with a multi-dimensional 
Gaussian function with parameters μ and Σ (mean and 
covariance respectively). The decision function can then be 
expressed as: 

 
Classification of features based on the decision function given 
in Eq. (3) is referred to as the maximum likelihood method. A 
simple case of the maximum likelihood method is when an 
assumption can be made that the features in all classes are 
independent and have the same variance. Further, if it can be 
assumed that the prior probabilities of all classes are the same, 
the decision function in Eq. (3) will simplify to: 
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which suggests that instead of maximizing the decision function, 
a classification of feature vectors can be performed on the basis 
of minimizing the distance of each feature to the means of the 

classes. Accordingly, the method is referred to as the minimum 
distance classification. 
 
3.2 Dempster-Shafer approach 

Dempster-Shafer data fusion approach is based on making 
decisions according to available evidence for each object class. 
Each feature is seen as a piece of evidence that provides a 
certain degree of belief in each class hypothesis (Gordon and 
Shortliffe, 1990). Hypotheses include not only all classes but 
also any union of the classes. The effect of a piece of evidence 
to the hypotheses is represented by a probability mass 
assignment function m. The amount of belief to a hypothesis A 
is represented by a belief function: 

which is the sum of the mass probabilities assigned to all 
subsets of A by m. When two or more evidences are available, 
the probability masses assigned to the hypotheses are combined 
using the following combination rule: 

where 1-k is a normalization factor in which k is the sum of all 
non-zero values assigned to the null set hypothesis Ø. The 
decision on the class of a feature can be made based on a 
maximum belief decision rule, which assigns a feature to a class 
A if the total amount of belief supporting A is larger than that 
supporting its negation:  

 
 

4. EXPERIMENTS AND RESULTS 

4.1 Experimental setup 

Experiments were conducted to evaluate the performance of the 
Bayesian and evidence-based fusion in building detection.  The 
study area was a suburban part of the city of Memmingen, south 
of Germany. 
 
4.1.1 Data:  The available data for the experiments included 
airborne laser range data containing first pulse and last pulse 
DSMs with a density of 1 point per m2, and orthorectified aerial 
imagery in visible and near infrared channels with a ground 
resolution of 0.5m. In addition, a DTM of the scene was 
available in which buildings and other objects were filtered out. 
Fig. 1 depicts the color infrared orthoimage and the first pulse 
laser range image of the study area. 
 
4.1.2 Classes:  For the classification of objects in the study 
area four classes were considered: building (B), tree (T), bare 
land (L) and grass (G). The main object of interest was building, 
and in the final evaluation only buildings were taken into 
account. 
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4.1.3 Features:  Three types of features were extracted from 
the data: 
− height difference between the first pulse laser DSM and 

the last pulse laser DSM (DSMfe-DSMle); 
− height difference between the last pulse laser DSM and 

the DTM (DSMle-DTM); 
− Normalized Difference Vegetation Index (NDVI) derived 

from the red and near infrared image channels. 
 
In the Bayesian approach, the extracted features were directly 
used for evaluating the decision function. To compute the 
mean and covariance matrix for each class a set of training 
regions was specified in the data. Fig. 2.A shows the training 
regions. 
 
 In the Dempster-Shafer approach, features were used to obtain 
evidence (probability mass) for each class hypothesis. For the 
derivation of evidence we developed linear evidence 
assignment functions based on the training data. These 
functions were tuned by trial and error to yield best separation 
of the objects. Fig. 3 illustrates the evidence assignment 
functions.  
 
The combination of evidences derived from different features 
was carried out using the combination rule given in Eq. (6). 
Table 1 and Table 2 demonstrate the evidence combination 
process where s is the evidence derived from the height 
difference between the last pulse DSM and the DTM, t is the 
evidence derived from the height difference between the first 
and last pulse DSMs, and u is the evidence derived from the 
NDVI. Table 3 summarizes the final evidence values 
computed for the four classes. 
 
Both the Bayesian and Dempster-Shafer methods were applied 
in pixel level and in object level. In pixel level, features and 
evidence values were computed for each individual pixel. In 
object level, a segmentation of the color infrared orthoimage 
was first obtained, and the mean of features within each 
segment was used in the computations. The segmented 
orthoimage is depicted in Fig. 2.B. As can be seen, the image 
is slightly oversegmented so that overgrown regions are 
avoided. 
 

4.1.4 Detection of buildings:  As mentioned before, 
buildings are the main object of interest in this research. 
Therefore, to evaluate the performance of the fusion methods in 
the context of building detection a binary building image was 
obtained from the classification results. A morphological 
opening operation was applied to clean this binary building 
image from small objects that were identified as building. This 
process was followed by a morphological reconstruction 
operation to retrieve the building boundaries that were 
smoothed out in the opening process. Fig. 4 illustrates the effect 
of this post-processing in a sample binary building image. 
 
4.2 Results 

The Bayesian and Dempster-Shafer methods were applied to 
the data in both pixel level and object level. In the application 
of Bayesian maximum likelihood method, we noticed that, the 
variance of the height difference between the first and lust pulse 
laser data in the building training regions was considerably 
small. To examine the influence of small variance, and 
consequently nearly singular covariance matrix, we also 
classified the data with the minimum distance method. Fig. 5 
shows the classification results as well as the detected buildings 

obtained by applying the three methods to the data in pixel level. 
Fig. 6 shows the object-level results. As can be seen, the three 
methods yield slightly different classifications of the data in the 
four predefined object classes methods; however unlike the 
Bayesian maximum likelihood and minimum distance methods, 
the classification results of the Dempster-Shafer method include 
also pixels and objects that are not assigned to any of the four 
classes (shown in black in the lower left images of Fig. 5 and 
Fig. 6). For the evaluation, these unclassified pixels were 
considered not-building. 
 

   
                      A                                                  B 

Fig. 1. A. Color infrared aerial orthoimage of the study 
area; B First pulse laser range image of the 

area. 

   
A                                               B 

 
 

 

Fig. 2. A. Training regions for four classes; B. Segmented 
CIR orthoimage. 

Building Tree Land Grass

 
The evaluation of the performance of the methods was carried 
out based on a set of ground truth data that contained building 
boundaries extracted manually from the RGB orthoimage. Fig. 
7 depicts these reference building boundaries. Three 
performance measures were obtained by comparing the 
buildings detected using each method and the reference data: 
 
− Detection rate: the ratio of the number of pixels correctly 

detected as building to the total number of building pixels 
according to the reference data; 

− False positive: the ratio of the number of pixels wrongly 
detected as building to the total number of not-building 
pixels according to the reference data; 

− False negative: the ratio of the number of pixels wrongly 
detected as not-building (missed building pixels) to the 
total number of building pixels according to the reference 
data. 
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Table 4 summarizes the performance measures obtained by 
applying each of the three methods to the data in pixel level. 
The performance measures of the methods in object level are 
given in Table 5. As can be seen, the Bayesian maximum 
likelihood method yields the highest detection rate and the 
lowest false negative rate in both pixel level and object level. 
The Dempster-Shafer method and the minimum distance 
method perform better in terms of the false positive rate. For 
both methods the false positive rate is about 5 times lower than 
that of the maximum likelihood method. A comparison of the 
performance of the methods in pixel level and in object level 
reveals that the detection rates and the false negative rates are 
slightly improved for all methods in object level, whereas the 
false positive rates are still better in pixel level.  
 
 

s 
t 
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{T,L,G} (1-s) 
 

{T} (t) {Ø} st {T} t(1-s) 
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Table 1. Combination of evidence s (from DSMle-DTM) with t 

(from DSMfe-DSMle). 
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Table 2. Combination of evidence u (from NDVI) with s๏t 

(combination of s and t). 
 

Class hypothesis Combined evidence (s๏t๏u) 

{B} s(1-t)(1-u) / (1-t+tu-su) 
{T} (1-s)tu / (1-t+tu-su) 

{L} (1-s)(1-t)(1-u)/(1-t+tu-su) 
{G} (1-s)(1-t)u/(1-t+tu-su) 

 
Table 3. Combined evidences for simple class hypotheses. 

 
By visual inspection of the results in Fig. 5 and Fig. 6, it can be 
observed that building objects detected by the application of the 
methods in object level are relatively larger than those detected 
in pixel level. A superimposition of the detected buildings on 
the reference boundary map showed that in pixel-based results 
many building pixels at the boundaries of buildings were 
missed. This explains the better detection rate and false 
negative rate of the object-based results.  
 
An examination of the detection results also suggests that when 
the detected buildings are to be compared against a map for the 
purpose of change detection, the Dempster-Shafer results 
provide better signals for an operator, as compared to the 
Bayesian results, due to the much lower rate of false positive 
signals.  
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Fig. 3. Evidence assignment functions for the Dempster-Shafer 

method. 
 

       
A                                    B                                 C 

Fig. 4. Cleaning of the binary building image using 
morphological operations. A. Binary building image; 

B. Morphological opening removes small objects, 
but also smoothes out building boundaries; C. 

Morphological reconstruction retrieves the building 
boundaries. 

 
Fig. 7. Manually extracted building boundaries used as 

reference data for the evaluation of detected 
buildings. 
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Fig. 5. Classification results (left column) and detected 
buildings (right column) obtained by applying the 

algorithms in pixel level; Top row: results of 
maximum likelihood method; Middle row: results 
of minimum distance method; Bottom row: results 

of Dempster-Shafer method. 

 Fig. 6. Classification results (left column) and detected 
buildings (right column) obtained by applying the 

algorithms in object level; Top row: results of 
maximum likelihood method; Middle row: results 
of minimum distance method; Bottom row: results 

of Dempster-Shafer method. 

Building Tree Land GrassBuilding Tree Land Grass 

 

 

Table 4. Performance ixel level 
using the three methods. 

 

Table 5. Performance m bject level 
using the three methods. 
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5. CONCLUSIONS 

Automated approaches to building detection are important in 
the updating of cadastral maps and monitoring of informal 
settlements. In this paper, a comparative analysis of two data 
fusion and classification approaches, namely Bayesian and 
Dempster-Shafer, as applied to automated building detection in 
aerial data was presented. Results showed that both methods 
perform slightly better in object level than in pixel level. A 
comparison of the performance of the methods revealed that the 
Bayesian maximum likelihood method yields a higher detection 
rate, as compared to the minimum distance method and the 
Dempster-Shafer method; however, the rate of pixels wrongly 
detected as building is also higher in the Bayesian method. In 
practice, the crucial measure in the evaluation a detection 
method is the rate of missed building pixels. In this respect, the 
Bayesian maximum likelihood method was found to have a 
better performance; however, the missed pixels in the 
Dempster-Shafer method were found to be mostly at the 
boundaries of buildings. Therefore, the higher rate of the missed 
building pixels in the Dempster-Shafer method should not be 
seen as a critical drawback of the method. 
 
In this research, we trained the Dempster-Shafer evidence 
assignment functions using the training regions, and on the 
basis of a trial and error procedure. Further research can be 
focused on developing more elaborated training algorithms for 
the assignment of evidence in the Dempster-Shafer method. 
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