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ABSTRACT: 
 
The effect of fire on natural resources is termed “fire severity” and is related to the energy output of the fire. Recently the term “burn 
severity” has been introduced to identify the impacts of fire on soil and plants when the fire has been extinguished. This study 
addresses the assessment of a large wildfire in Gibraltar Range National Park, Australia, through remote sensing of fire severity and 
explores the spatial relationships between fire severity and biophysical factors. Burn severity indices were developed from Landsat 
TM satellite images using pre-fire and post-fire images. Reflectance values computed from Landsat Enhanced Thematic Mapper 
(ETM) images acquired before and after the fire were used to estimate the Normalised Burn Ratio (NBR), which incorporates the 
near and mid infrared bands. Spatial distribution of ΔNBR data were calibrated with field observations and threshold values of burn 
severity were used to classify fire severity into 5 severity classes per vegetation type. ΔNBR values were extracted from different 
representative fire severities and spatial relationships were developed between ΔNBR and vegetation type, fuel type, fire danger 
index, time since fire, fire frequency, slope and rockiness in order to account for variables influencing fire severity patterns. General 
linear models and tests of significance were used to ascertain whether the effects of individual factors were statistically significant. 
The various models tested showed that no single factor (weather, fuel or landscape) accounted for the burn severity pattern. Fire 
weather and vegetation type were found to be the key factors in the models.   
 
                                                                                                   

                                                                 
*  Corresponding author.  This is useful to know for communication with the appropriate person in cases with more than one author. 

1. INTRODUCTION  

Fire severity is predicted to increase over the next 50 years with 
a 15-70% increase in the number of days of cert high to extreme 
Forest Fire Danger Index (FFDI) (Hennessy et al., 2005). 
FIRESCAPE modelling for the ACT has also simulated a 12-
70% increase in fire return and a 7-12% increase in fire-line 
intensity (Cary, 2002).  
 
Fire intensity is a component of fire regime that affects both the 
ecological and geophysical condition of fire prone landscapes 
on the New England Tablelands of Australia. Inappropriate fire 
regimes are listed as a key threatening process to biodiversity in 
the state of New South Wales hence understanding fire regimes 
and their biological impacts are critical to the development of 
fire management plans. One aspect of fire regime which we 
know little about is the spatial variation in fire intensity/severity 
and its short and long-term biological effect when combined 
with other components of fire regime. 
 
1.1 Assessment of burn severity 

The term 'fire severity' refers to the effect of fire on natural 
resources such as plants and soil and is related to the energy 
output of fire known as fire intensity measured as Kw m-2 
(Lentile et al., 2006). The term 'fire severity' is more usually 
applied to the immediate effect of the fire and therefore its 
behaviour across the fire ground. 
 
More recently the term 'burn severity' has been introduced to 
identify the impacts of fire on soil and plants when the fire is 
extinguished (Lentile et al., 2006). The term burn severity 
expresses the physical, chemical and biological changes on a 

site as a result of fire disturbance (White et al., 1996). Burn 
severity has routinely been assessed by on ground 
measurements in forest ecosystems in the northern hemisphere 
but has only been recently used to assessed burn severity in 
Australian vegetation (Hammill and Bradstock, 2006). A range 
of on ground measures have typically been used to quantify 
burn severity including: tree mortality, decrease in plant cover, 
soil transformation, and burn tip measures (de Santis and 
Chuvieco, 2007). One of the most widely used measures is the 
'Composite Burn Index' (CBI) developed by the US Forest 
Service (Key and Benson, 2006). The CBI was specifically 
designed to examine the biological effects of fire at a scale 
(30m) that then could be used to provide an index for 
extrapolation using moderate resolution remote sensing. The 
scores are numeric and range from 0 to 3 across a gradient from 
unburned to extremely burned.  
 
1.2 Remote sensing of burn severity 

From an ecological point of view, it is vital to establish whether 
high severity wildfires have distinctive ecological effects that 
cannot be easily predicted from the knowledge of more frequent, 
low-severity events (Wimberly and Reilly, 2007). However, a 
large amount of data is required to characterise the spatial 
patterns of wildfires and assess their ecological effects. Since 
patterns of burn severity can be quantified as changes in 
spectral signatures following the fire, satellite data constitutes 
an important tool for monitoring fire effects (Cocke et al., 2005; 
Key and Benson, 2002). One of the primary effects of fire on 
vegetation is its reduction of leaf water content, which should 
be able to be inferred from canopy spectral reflectance 
properties in the near infrared bands (Tucker, 1980). In addition 
to the changes in reflectance due to the decrease on leaf water 
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content, a number of spectral changes occur due to the fire 
consuming the vegetation, destroying chlorophyll, leaving the 
soil bare, charring the roots and altering soil moisture (Escuin et 
al., 2008). Reduction of chlorophyll absorption causes an 
increased reflectance in the visible electromagnetic region, 
along with leaf tissue damage originating a decrease in 
reflectance in the near infrared (NIR) region (Jensen, 2000). 
Furthermore, burned areas are partially or totally devoid of 
green vegetation and characterised by dry soil surfaces, 
originating decreased absorption in the visible and SWIR 
wavelengths. Thus, these wavelengths are sensitive to plant cell 
structure and have been used effectively to monitor forest 
mortality due to fire (Rogan and Yool, 2001). In addition, with 
a decline in crown shadow and a decrease in canopy moisture 
as a result of fire effects, mid-infrared (MIR) reflectance 
normally increases (van Wagtendonk et al., 2004). 
Remote sensing has been used extensively to map burn severity 
because changes in cover are known to be related to changes in 
reflectance (Lentile et al., 2006). An important factor in 
evaluating burn severity is the fact that the spectral signature of 
stressed vegetation after a fire may well indicate not only the 
level of stress but also the type of stress (Iverson et al., 1989). 
 
Approaches to remotely assess burn severity using multi-
spectral data have included the use of single date, post-burn and 
bi-temporal, pre- and post-burn indices. Even though bi-
temporal indices can introduce errors caused by differences in 
sensor calibration and atmospheric effects, they can be 
minimised by means of radiometric and atmospheric corrections 
and mapping results can be improved on spectrally similar areas 
by providing a pre-burn image (Epting et al., 2005). 
 
The ability of spectral indices combining the red and infrared 
regions to identify burnt areas has been successfully tested. 
Studies using the Normalised Difference Vegetation Index 
(NDVI) include the work done by Díaz-Delgado et al. (2003), 
Escuin et al. (2008), Hammill and Bradstock (2006), and 
Lozano et al. (2007). However, the potential of the MIR to 
discriminate burnt areas has given place to the Normalised Burn 
Ratio (NBR) which has been specifically developed for 
mapping of burnt areas and burn severity (De Santis and 
Chuvieco, 2007; Escuin et al., 2008; Key and Benson, 2002; 
Lozano et al., 2007; van Wagtendonk et al., 2004; Wimberly 
and Reilly, 2007).   
 
This study addresses the assessment of a large wildfire in 
Gibraltar Range National Park, Australia, through remote 
sensing of fire severity using the NDVI and NBR developed 
from Landsat TM satellite images using pre-fire and post-fire 
images. Also, it explores the spatial relationships between fire 
severity and biophysical factors.  
 
 

2. METHODOLOGY 

2.1 Study area 

The study area is located within the New England Tablelands 
(NET) Bioregion of eastern Australia (Figure 1). The area is 
within the Cfb (dry cool temperate) climate region which has an 
altitudinal range of 750-1500 m with rainfall varying from 1800 
mm in the eastern sites to 750mm per year in the western site. 
Rainfall maxima are in summer (January). Five major 
sclerophyllous habitats occur in the Bioregion; grassy eucalypt 
open forests and woodlands, shrubby eucalypt open forests, dry 
heathlands and heathy eucalypt scrub, heathlands and 

sedgelands and mesic tall eucalypt open forests. In addition, 
non sclerophyllous, warm and cool temperate rainforest are also 
widespread and are listed as World Heritage Rainforests. 
These broad groups form distinct floristic associations that are 
related to climate gradients, lithology and local physiography. 
As a generalization, nutrient poor siliceous soils provide 
habitats for scleromorphic shrub-dominated woodlands and 
forests whilst the more clayey soils derived from metasediments 
and basalts support grassy woodlands and forests. Shrubs occur 
throughout the landscape but are less abundant and less species 
rich in the grassy woodlands which are excluded from the study. 
 

 
 
Figure 1. Location of Gibraltar Range National Park, New 

South Wales, Australia 
 
2.2 Image processing 

Landsat ETM images with a spatial resolution of 30 m were 
used for the purpose of this analysis. Two scenes, acquired in 
10 July 2002 and 10 May 2003 (Path 089, Row 081) were used 
as pre-fire and post-fire images respectively. Both scenes were 
registered to each other and rectified to a Universal Transverse 
Mercator (UTM) grid, zone 56. The computation of spectral 
indices was carried out in ERDAS Imagine© 9.0 and spatial 
analysis was performed in ArcINFO© 9.0 and ArcGIS© 9.1. 
In order to reduce the variability between scenes and be able to 
perform a multi-temporal analysis, we converted digital number 
values into surface reflectance values. Therefore, digital 
numbers were converted into at-satellite reflectance values 
according to the NASA (2007) and Chander and Markham 
(2003). This conversion involved the normalisation of the 
differences in sun-sensor geometry, sensor calibration, and 
atmospheric conditions. Next to the estimation of reflectance 
values, NDVI and NBR indices were computed for both pre-fire 
and post fire scenes: 
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Where ρ4 and ρ3 are the surface spectral reflectance measured 
in bands 4 (NIR) and 3 (RED) of the ETM sensor 
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Where ρ4 and ρ7 are the surface spectral reflectance measured 
in bands 4 (NIR) and 7 (MIR) of the ETM sensor 
 
The bi-temporal, differenced images (∆NDVI and ∆NBR) 
where then estimated by substracting the post-fire spectral 
values from the pre-fire scene: 
 
 

postfireprefire NDVINDVINDVI −=Δ        (3) 
 
 
and, 
 
  

postfireprefire NBRNBRNBR −=Δ         (4) 
 
 
2.3 Field calibration 

The link between field burn severity class, as identified by low 
level aerial photography and remote sensing burn severity 
indices was made by sampling polygons that had been 
classified into fire severity classes in each vegetation type. In 
independent training areas, a set of pixels was selected and the 
index values assigned to the ground burn severity classes. The 
mean values were then compared among the severity classes 
using a single factor ANOVA after normality and variance 
homogeneity assumptions were checked. The remote sensing 
index values were then used to define thresholds for classifying 
images based on the mean values for each field class. We used 
the mid point between each mean as the cut-point to bound each 
class following the method of Hammill and Bradstock (2006). 
Maps of the burn severity classes were taken into the field in 
July 2007 to verify the relationship between burn severity class 
and the amount of canopy damage still present five years after 
the fire. The proportions of each burn severity class, within 
each vegetation class, were calculated using a GIS. 
 
2.4 Factors influencing burn severity 

To assess the relationship between fire severity indices derived 
from remote sensing and environmental factors that may 
influence these patterns, GIS data on fire weather, standing fuel, 
physiography, and antecedent fire were assembled. Also, 
training areas were defined in known rocky areas and spectral 
statistics were estimated and used as input of a supervised 
classification to discriminate the rocky areas. An antecedent fire 
layer was derived from fire history layers prior to the landscape 
fire. 
 
In the analyses, firstly, individual factors to assess if the effects 
were statistically significant using general linear models and 

tests of significance were examined. Secondly, we used a 
modelling approach and fitted models with combinations of 
variables to examine which ones had the greatest information 
gain using an information theoretic approach (Burnham and 
Anderson, 2002). In these model selection approaches we used 
Akaike's Information Criterion (AIC) (Burnham and Anderson 
2002) and compared a number of candidate models. 
 
2.5 Validation 

Validation points were distributed using a stratified random 
sampling. At least 10 points per severity class within 3 
vegetation types were located. Due to the lack of validation 
points in the Rainforest, Hethlands and Grassy Woodlands, no 
accuracy assessment was carried out for these communities. 
Error matrices were calculated in order to estimate the overall 
accuracy and the kappa coefficient.  
 
 

3. RESULTS AND DISCUSSION 

3.1 Mapping of burn severity 

The burn severity ∆NBR and ∆NVDI indices produced very 
similar results across vegetation types. However, since the NBR 
involves the use of infrared bands, showed a better performance 
on a small area covered by clouds; hence ∆NBR results will be 
reported. There were pronounced differences (P<0.001) in the 
burn severity index across vegetation types with Dry 
Sclerophyll Forest and Rocky Outcrops having high mean 
indices whilst grassy forest had low indices reflecting the 
'greening up' post fire. 
 
Remote sensing ∆NBR values for each major vegetation unit 
were found to overlap for each of the burn severity classes that 
were determined from aerial photography. However, the mean 
values for each of the classes differed significantly so that 
threshold ranges could be determined by midpoints between 
means (Table 1). The number of sites used for validation was 
limited by the post-fire aerial photography. Therefore, only 
classification accuracies for Dry Sclerophyll Forest, Wet 
Sclerophyll Forest and Rocky outcrop were evaluated. In the 
case of Rocky outcrop and Wet Sclerophyll forest, a few low 
severity areas were identified in the aerial photographs, 
therefore low and moderate severity classes were amalgamated. 
 
 
 
 
  ∆NBR Severity classes 
Vegetation 

type 
Sites U L M H 

HL 8 <-178 na -52--178 >-52
RO 7 <110 na 110-188 >188
DSF 14 <76 76-159 159-284 >284
WSF 13 <41 na 41-74 >74 
RF 13 <46 46-60 60-101 >101
GW 4 na <221 na >221

Vegetation types: HL = Heathlands; RO = Rocky outcrop; DSF 
= Dry Sclerophyll Forest; WSF = Wet Sclerophyll Forest; RF = 
Rainforest; GW = Grassy Woodland. Burn severity classes: U = 
Unburnt; L = Low; M = Moderate; H = High 
 

Table 1. ∆NBR threshold values used to classify satellite data 
and derive fire severity maps. Thresholds are midpoints 

between mean values for replicated training sites.  
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Spatial distribution of burn severity across vegetation types is 
shown in Figure 2 and the extent of area burned per burn 
severity level and vegetation community can be observed in 
Table 2. Dry Sclerophyll Forest and Wet Sclerophyll Forest 
were the most affected vegetation types in terms of burned area 
and burn severity level. However, the spatial pattern of burn 
severity was affected by fuel continuity and the presence or 
absence of exposed rocks. 
 
 

Vegetation 
Type 

Burn severity class 

 U L L-M M H 
HL 0 141 0 246 184 
RO 62 0 42 0 2 
DSF 1,778 2,166 0 3,868 3,415
WSF 1,341 0 463 0 1,784
RF 519 80 0 180 188 
GW 623 0 0 0 149 

Vegetation types: HL = Heathlands; RO = Rocky outcrop; DSF 
= Dry Sclerophyll Forest; WSF = Wet Sclerophyll Forest; RF = 
Rainforest; GW = Grassy Woodland. Burn severity classes: U = 
Unburnt; L = Low; L-M = Low to moderate; M = Moderate; H 
= High 
 

Table 2. Extent of burned areas (ha) per vegetation type and 
severity class. 

 
The influence of fuel continuity on the burn severity index was 
pronounced across most community types. In both Dry 
Sclerophyll Forest and Rocky Outcrops high levels of exposed 
rock decreased the fire severity index whereas in the Grassy 
Forests, Heaths and Wet Sclerophyll Forest it increased fire 
severity. 
 

 
 
Figure 2. Burn severity classes for each vegetation class at 

Gibraltar Range national Park based on calibrated 
∆NBR indices 

 
3.2 Accuracy assessment 

Higher overall accuracies were obtained for the Dry Sclerophyll 
Forest and Wet Sclerophyll Forest 73% and 70% respectively. 
The lowest accuracy was observed for the Rocky outcrop (52%). 
Error matrices and overall kappa coefficients are shown in 
Table 3, Table 4 and Table 5 for each assessed vegetation type. 
 

 
 HIGH MODERATE LOW TOTAL
HIGH 16 2 1 19 
MODERATE 4 14 1 19 
LOW 4 2 7 13 
TOTAL 24 18 9  
ACCURACY 73%    
KAPPA 0.58    
 
Table 3. Error matrix between ∆NBR and field observations for 

Dry Sclerophyll Forest, overall accuracy and overall kappa 
 
 
 HIGH LOW-

MODERATE 
TOTAL 

HIGH 8 5 13 
LOW-
MODERATE

2 8 10 

TOTAL 10 13  
ACCURACY 70%   
KAPPA 0.40   
 
Table 4. Error matrix between ∆NBR and field observations for 

Wet Sclerophyll Forest, overall accuracy and overall kappa 
 
 
 
 
 
 
 HIGH MODERATE TOTAL 
HIGH 6 5 11 
MODERATE 5 5 10 
TOTAL 11 10  
ACCURACY 52%   
KAPPA 0.05   
 
Table 5. Error matrix between ∆NBR and field observations for 

Rocky outcrop, overall accuracy and overall kappa 
 
The obtained accuracies are slightly low if compared to 
previous works (Escuin et al., 2008; Cocke et al., 2005). 
However, those studies do not report on burn severity within 
different vegetation types, which may conduct to a better 
classification due to a similar burn severity response as result of 
homogeneous vegetation. 
 
3.3 Modelling the cause of fire severity 

Our modelling showed that no single factor (weather, fuel or 
landscape) accounted for the burn severity pattern. Both fire 
weather and type of vegetation were important factors in the 
model. More importantly our analyses showed interactive 
effects which means that each vegetation type responds 
differently in combinations with other variables. For example, 
increasing rockiness decreased severity in Dry Sclerophyll 
Forests, but increased severity in the Wet Sclerophyll Forest. 
Time since the previous fire did not appear to affect severity 
strongly in the more fire prone landscape but we had no data for 
< 8 years since the last fire. Areas with higher fire frequency 
tended to have higher burn severity. This suggests that frequent 
fire in the more mesic parts of the landscapes increases the 
severity of succeeding fires. 
 
 
 

1480



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 2008 
 

MODEL MODEL No. AIC ∆ AIC 
FW + SF + P + AF 1 122702 0 
FW + SF + P 2 122759 58 
FW + SF 3 122876 175 
FW 4 126197 3495 

FW = Fire weather; SF = Standing fuels; P = Physiography; AF 
= Antecedent fire 
 
Table 6. Models that best explain fire severity indices. Lowest 
AIC values are the best models. A change in AIC (∆AIC) of < 

10 is regarded as an appropriate alternate model 
 
The high degree of fit for model No. 1 suggests that it could be 
feasible to infer past fire severity if there is knowledge about 
the FFDI over the duration of the burn and some information on 
antecedent fire history. 
 
 

4. CONCLUSIONS 

This study has shown it is possible to use remote sensing 
imagery to classify and map burn severity in different 
vegetation types on the New England Tablelands. We are aware 
of only one other study in Australia that has progressed fire 
severity mapping to this stage (see Hammill and Bradstock, 
2006). Our results are comparable with their study in terms of 
the limitations and scope of mapping, but our study covers a 
wide range of community types. 
Classification accuracy of burn severity could be improved by 
a) increasing the spatial resolution of imagery; however, this 
can result in loss of spectral resolution (e.g. SPOT5); b) 
collecting burn severity ground data for developing a specific 
field-based burn severity index. Future research in Gibraltar 
National Park should take into account these factors.  
 
Results from this study can be incorporated into management 
strategies in terms of designing fire management zones and 
strategic burns. 
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