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ABSTRACT:  
 
This study focus on the characterization of hydrocarbon microseepages in the northern Tucano Basin (Bahia State, Brazil), using 
geostatistical analysis of regional hydrocarbon geochemical data yielded from soil samples and digital processing of Enhanced 
Thematic plus (ETM+/Landsat7 satellite) and Advanced Spaceborne Thermal Emission and Reflection Radiometer imagery 
(ASTER/Terra satellite). A theoretical detection model was devised in which gas anomalies (seeps) indicated by hydrocarbon 
geochemistry should spatially match a number of surface expressions, such as bleaching of soils and rocks (i.e., reduction of Fe3+ to 
Fe2+ ), geobotanical markers and development of specific clays (kaolinite) and carbonates (siderite). These indirect evidences were 
employed for the application of remote sensing data and information extraction techniques in order to locate sites more favorable to 
host hydrocarbon seeps in the Tucano Basin. The ETM+ data was processed using the pseudo-ratio technique - an adaptation of the 
classic principal components analysis. The ASTER data was processed using the Spectral Angle Mapper and the Mixture Tuned 
Matched Filtering techniques, which are commonly used for the processing of hyperspectral data, though adapted here for these 
multispectral dataset. In addition, the ASTER data were classified using three different neural network systems (Fuzzy Clustering, 
Radial Basis Functional Link Network and Probabilistic Neural Network). The results showed that a number of the sites predicted 
using the applied detection model concurred with known geochemical anomalies. Other sites with similar characteristics but for 
which no geochemical data were available were also revealed. These sites are taken as new potential targets for the presence of seeps 
and oil reservoirs. The research demonstrated the excellent potential of ASTER data and spectral-spatial methodologies for low-cost, 
onshore exploration of hydrocarbons in Brazil. 
 
 

1. INTRODUCTION 

Remote sensing techniques can potentially be applied to 
onshore hydrocarbon detection at both regional and local scales. 
At the regional scale, a synoptic view allows for the evaluation 
of lineaments, rivers, and spectra-mineralogical correlations.  
This information can be integrated with other data, such as the 
geology, geochemical (e.g. gasometrical) and geophysical 
(gravimetric, magnetometric, and seismic) data.  At the local or 
detailed scale, diagnostic spectral features associated with the 
effects of microseepage on mineralogy or vegetation can be 
targeted.  Ideally, these should be associated with the structural 
features, lithologic contacts, and rivers.  
 
The Tonã area within the Tucano Norte Basin (Bahia – Brazil), 
was selected for study because of its known occurrences of 
hydrocarbon seeps. Previous studies in the area include the 
characterization of surface light hydrocarbons based on 
geochemistry (Babinski et. al. 1993), and reconnaissance 
remote sensing studies (Almeida-Filho 1999, 2001, 2002 a,b,c).  
 
A new generation of satellite sensors are now better suited for 
geological applications compared with sensors like Landsat 
Thematic Mapper, which were designed most specifically for 
vegetation studies. This new generation of geoscience sensors 
includes the multispectral ASTER (Advanced Spaceborne 
thermal Emission and Reflection Radiometer) system on board 
the Terra platform.    

 
The objectives of this study are to evaluate the role of new 
generation multispectral satellite data for targeting hydrocarbon 
seepages in the Tucano Norte Basin. The work has both a  
regional perspective, as well as a local-scale perspective and 
uses geostatistical studies and neural network systems to 
explore for correlations with surface geochemistry (gasometry) 
leading to the development of a prediction model for 
hydrocarbon microseepage. 
 
 
2. STUDY AREA: TUCANO BASIN, NORTHEASTERN  

BRAZIL  

The study area is located at the northern Tucano Basin, 
northeast Brazil (Figure 1). As a half-graben, this basin belongs 
to the Recôncavo-Tucano-Jatobá rift, formed on the early stages 
of the South Atlantic opening in the Early Cretaceous 
(Magnavita et al. 2003). 
 
The predominant lithologies in the study area belong to the 
Marizal Formation and Tona Sequence. The Marizal formation 
comprises white to red sandstones and subordinate calcareous 
and bituminous shales. The Tona Sequence, which lies 
conformably on the Marizal Formation, is approximately an 
80m thick intercalation of sandstones and cherty limestones 
(Rolim 1984, Almeida-Filho 2002). The directions of the axis of 
the folds in the basin are variable, indicating complex phase of 
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Figure 1. (a) Locality and (b) geologic map of the Tonã study area within the Tucano Norte Basin (adapted from CPRM (2000) and 

Magnavita et al. (2003)). (c) ASTER false colour composite (321 in RGB). 
 
 

compression. Three sets of faults are dominant: N15E, N85E e 
N25W (Bueno et al. 1994).  
 

3. HYDROCARBON MICROSEEPAGE  

A hydrocarbon microseepage is ''the surface expression of a 
migration pathway, along which petroleum is currently flowing, 
driven by buoyancy from a sub-surface origin'' (Clarke & 
Cleverly 1991). These surface features are evidence of the 
presence of oil and/or gas reservoirs below, even though they 
may not be enough to classify an area as economically 
interesting (Thompson et al. 1994, Schumacher 2002).  
 
Hydrocarbon microseepage is dominantly composed of methane 
(CH4), ethane (C2H6), propane (C3H8), butane (C4H10) and 
pentane (C5H12). These hydrocarbons can interact with the 
stratigraphic column and generate, at surface, an ample variety 
of physical, chemical, mineralogical, botanical, and 
microbiological alterations. Among these alterations, the most 
interesting for remote sensing are: 
 
• Bleaching: The reducing environment created by 

microseepage phenomenon can convert ferric-bearing 
minerals to the soluble ferrous state, resulting in potential 
bleaching of former “red” beds and soils (e.g., Donovan 1979, 
1986, Oliveira 1998). This bleaching phenomenon can be 
theoretically detected using the VIS portion of the 
electromagnetic spectrum as a sharp decrease in the “red” 
reflectance of rocks/soils; 

• Development of clay minerals: the production of CO2, H2S 
and organic acids related to the oxidation of hydrocarbons 
close to the surface can generate a reducing, slightly acid 
environment capable of promoting diagnetic alterations of 
feldspars to clay-minerals, such as kaolinite, illite, and 
chlorite (Schumacher 1996, 2002). Kaolinite can be 
spectrally characterized based on its SWIR diagnostic 
features (1.40-1.42 µm and 2.162-2.206 µm), as well as 
subordinate absorption features at 2.312, 2.350 and 2.380 µm; 

• Geobotanical Anomalies: vegetative cover is sensitive to 
soil toxicity, which can be caused by the presence of 
hydrocarbons and associated compounds. This sensitivity can 
be observed on the vegetation spectra, mainly on the portion 
related to chlorophyll (VIS), cell structure (NIR), and leaf 
water content (SWIR) (Oliveira 1998, Van der Meer et al. 
2002). 

Based on the above, a theoretical model was developed in this 
study. Viable targets are considered to comprise: (i) areas with 
high concentration of hydrocarbons in soil; (ii) areas where the 
photosinthetically active vegetation is absent or degraded; (iii) 
areas where surfaces rich in ferric iron are absent or poorly 
developed; (iv) areas rich in ferrous iron in contrast to the 
background; (v) areas with high clay concentration, particularly 
kaolinite.  
 
 

4.  MATERIALS AND METHODOLOGY 

4.1 

4.2 

Hydrocarbon Soil Geochemistry (Gasometry) 

The hydrocarbon soil geochemical survey data comprised more 
than six hundred measurements of methane, ethane, propane, 
butane, and pentane measured by Petrobras (Babinski et al. 
1993). These data were used in three different ways, namely: (i) 
to evaluate the spatial distribution of different hydrocarbons in 
soil; (ii) as reference and training points for understanding the 
spectral signatures of remote sensing images; and (iii) for 
validating the results obtained from the interpretation of remote 
sensing data, trying to confirm if the information discriminated 
from the processed imagery is related to hydrocarbon seepage. 
These data were initially processed using geostatistical 
techniques, including variographic analysis, variogram 
modeling, cross validation, and kriging (Olea 1995, Deustsch 
2002). 
 

 ETM+/Landsat-7 Data 

The Landsat ETM+ scene used in this work (path/row 216/66) 
was acquired in 30th September 1999. The main objective for 
using the lower spectral resolution Landsat ETM data 
(compared with ASTER) was the detection of areas rich in clays 
and Fe2+-bearing minerals and poor in Fe3+-bearing minerals 
and vegetation cover. The ETM+ data were processed using 
Principal Component Analysis (PCA), based on the method 
developed by Chavez & Kwarteng (1989) called “Selective 
Principal Components”. This involved PCA of the band ratios 
TM4/TM3 (vegetation), TM3/TM1, TM3/TM2 (Fe3+ (goethite 
and hematite)), (TM2/TM3) + (TM5/TM4) (Fe2+) (Prost 1980, 
Hunt 1991). 
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4.3 

5.1 

ASTER/Terra Data 

The ASTER Level 1B (Abrams et al 2002) were obtained in 
14th May 2006. The nine “reflective” ASTER bands (numbered 
1-9) were data were all resampled to 15 into a single image file.  
The following processing steps were then applied to the data: 

Pre-processing and Hyperspectral Classification of ASTER 
data. A cross-talk correction was applied to all SWIR bands 
pre-processed to the Level 1B data (ERSDAC 2001). The 
atmospheric correction was executed using the software 
Atmospheric Correction Now (ACORN). This process included 
the calculation of radiant transference based on the 
MODTRAN-4 model (Imspec 2001), which reduced the data to 
surface reflectance. A mask for removing vegetation and clouds 
was also applied. The hyperspectral classification was done 
using different endmembers (field or image-derived) and 
executed based on a semi-automatic procedure. This procedure 
included first the Minimum Noise Fraction (MNF) and Pixel 
Purity Index (PPI) techniques which were applied ASTER’s 
“reflected” bands 1 to 9 bands. Then the classification was 
preceded using two algorithms: the Spectral Angle Mapper 
(SAM) (Kruse et al. 1993) and the Mixture Tuned Matched 
Filtering (MTMF) (Boardman 1998). 

ASTER Data Classification by Neural Networks. Digital 
classification of ASTER data by neural networks is a practical 
tool for building favorability maps of economic minerals (e.g. 
Nóbrega et al 2003). In addition, it is useful for hydrocarbon 
seepage detection, since it aims to recognize hidden patterns in 
the scene pixels based on the available bands and spatial 
resolutions. The neural network processing can be applied 
directly to Level 1B ASTER data or to the reflectance data. In 
this research, the data was processed through the GeoXplore 
software (Looney & Yu 2000) based on three systems: Fuzzy 
Clustering (unsupervised), Radial Basis Functional Link 
Network (RBFLN) and Probabilistic Neural Network (PNN) 
(supervised). Following several training steps using the 
available gasometrical data as a control, these three systems 
were then used to process similar data to generate predictions as 
to which class/s they belonged. It is relevant to highlight that 
before training the neural network, the gas anomalies and not-
anomalies were tuned into a fuzzy set using the “Large” and 
“Small” pertinence functions, respectively (Looney & Yu 2000). 
The neural networks yield different results which may differ for 
each of the study sites approached here (Figure 1B). Here, 
results from these three networks were compared, as well as the 
results obtained using pre-processed and processed ASTER data.  
 
 

5. RESULTS & DISCUSSION 

Kriging of Gasometrical data 

The kriging results of the soil gasometrical point data 
(ethane+propane+butane+pentane) were merged with the 
geologic map (Figure 2a) to reveal two large anomalies, here 
coined, the “north anomaly” and the “south anomaly”. Two 
additional, but less expressive anomalies, were also enhanced - 
one on the top of the Tonã Sequence (central area) and another 
on the southeast portion of the area. Except for the anomaly at 
the central area, all the anomalies are associated to lithologic 
contacts or rivers (usually at the headwaters).  
Soil gas concentration was interpolated individually in order to 
evaluate the spatial distribution of each hydrocarbon in the area. 
Maps of the lighter gases (i.e. ethane (C2H10), propane (C3H8), 
and butane (C4H6)) were combined in a false color composite 
and draped over an ASTER band 1 imagery (Figure 2b). The 

northeastern anomalies, which are composed mostly of ethane 
and propane, are here taken as prime evidences of the position 
of hydrocarbon reservoirs, since such lighter gases can migrate 
as amorphous plumes.  
 

(a) (b) 

 
Figure 2. (a) Kriging results of gasometrical data (C2-C5 

concentration) merged with the geologic map (Figure 1). Note 
the anomalies (lighter colors) related to rivers and lithologic 

contacts. (b) False color composite of Ethane (C2H10), Propane 
(C3H8) and butane (C4H6) draped over ASTER band 1 imagery. 

Note singular anomalies of lighter and heavier gases. 
 
5.2 

5.3 

ETM+/LANDSAT-7 Data Processing  

The Landsat ETM+ scene was processed through Selective 
PCA to enhance surfaces rich in ferric and ferrous iron, clays 
and vegetation. The results (Figure 3) illustrates a consistent 
correlation among C2-C5 anomalies and areas rich in ferrous 
iron and clays, but lacking in vegetation, a result that agrees 
with the theoretical model here proposed for the detection of 
seeps on-shore.  
 

ASTER/Terra Data Processing 

Hyperespectral Processing. Although ETM+ data have enough 
spectral resolution to allow the discrimination between surfaces 
generically distinct in composition, it is difficult to identify 
specific minerals at the surface using these data. Kaolinite 
minerals are particularly interesting for microssepage detection 
and they can be mapped using ASTER’s 6 SWIR bands (e.g., 
Ducart et al. 2006). In this study, the processing for targeting 
kaolinite was based on algorithms usually employed for 
hyperspectral data classification (Boardman and Kruse, 1994; 
Boardman, 1998), here adapted for ASTER reflectance data.  
 
 

 
 

Figure 3. PCA applied to ETM+ data for the central area 
(Figure 1B). (a) false colour composite showing surfaces rich in 

ferrous iron (red) and ferric iron – goethithe (green) and 
hematite (blue); (b) density of photosynthetically active 

vegetation; (c) clays and/or carbonate abundance. 
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The reference spectra used for such classification were gathered 
from soil samples collected in the center of the hydrocarbon 
anomaly observed in the south area (Figure 2b). Spectral 
measurements were carried out under laboratory conditions 
using a FieldSpec-Full Resolution spectroradiometer 
(Analytical Spectral Devices). These spectra were compared to 
the USGS spectral library and showed diagnostic features of 
kaolinite in the SWIR range. For the other sites, a different 
experiment was performed. Reference (reflectance) spectra 
were collected directly from the sites observed in the ASTER 
imagery as high concentrations (≥ 30 ppm) of C2-C5 in the soil. 
These imagery-derived spectra are similar to the spectra derived 
from field samples, as well as to the USGS kaolinite spectra.  
 
Based on these reference pixels (endmembers), all sites were 
classified using the Spectral Angle Mapper (SAM) and the 
Mixture Tuned Matched Filtering (MNMF) techniques. The 
MTMF classification revealed superior results against SAM 
classification, and were mostly coincident to the gasometrical 
anomalies (Figure 4). 

 

 
 

Figure 4.  MTMF results for the (a) north and (b) central 
anomalies based on endmembers derived from the ASTER 
imagery. (c) MTMF result for the south anomaly based on 

endmembers yielded from lab spectra of field samples. 
 

Neural Network Classification. The favorability maps 
obtained using the Probabilistic Neural Network (PNN) and the 
Radial Basis Functional Link Network (RBFLN) applied to 
ASTER data showed an improved classification of sites 
containing gas anomalies, in contrast to the inferior results 
provided by Fuzzy Clustering. The experiments using 
comparative classifications based on Level 1B and reflectance 
data showed the latter to be advantageous.  
 
The neural network processing indicated that the areas classified 
as strongly favorable to hydrocarbon accumulation are related to 
the rivers and lithologic contacts, as previously pointed by the 
geostatistical analysis (Figure 5). It also confirmed the 
relationship between microseepage and river’s headwaters.  
 
In the southwest area, there are two important geologic features: 
the Sainté Fault and the contact between the Tucano Basin and 
basement rocks. Both of them were indicated as favorable sites 
to hydrocarbon accumulation by gasometry. Similarly, the 
neural network classification mapped only the Tucano Basin 
side of this contact. For the south area, the anomaly earlier 
described by the kriging technique and also by Almeida-Filho et 
al. (2002a) was detected by the neural network classification.   
 
 

6. CONCLUSIONS 

The geostatitics (kriging) of the hydrocarbon geochemical data 
proved very efficient and provided an easy understanding of the 
spatial distribution of microseepages over the Tucano Basin. 
The kriging results revealed the relation between the gas 
anomalies with the structural lineaments, lithologic contacts, 
and rivers. These results were used as guides for the subsequent 
digital image processing steps.  

 
 

Figure 5.  Hydrocarbon favorability by PNN ((a) and (b)) and 
by RBFLN ((c) e (d)) for the central, southwest, south and north 

sub-areas. 
 

The results yielded thorough Principal Components Analysis of 
the ETM+/Landsat was consistent with the known hydrocarbon 
microseepages based on a hypothetical detection model.  That is, 
all of the microseepage sites show an absence of green 
vegetation and ferric iron minerals and the presence of ferrous 
iron minerals and of clays and/or carbonates.  
 
The hyperspectral classification of the ASTER data was 
successfully applied to target areas rich in kaolinite – a mineral 
that can be used as a potential vector to oil/gas accumulations. 
The best classifications where obtained with the MTMF 
algorithm using known endmembers. These classifications 
where more restrictive, but included the gas anomalies. 
 
The spectro-spatial classification of ASTER data - a pioneer 
approach using the GeoXplore software for this type of 
application - was implemented using three different artificial 
neural networks. The results, especially those obtained with the 
Probabilistic Neural Network (PNN) and Radial Basis 
Functional Link Network (RBFLN) systems, were robust and 
comparable to the hyperspectral classification results. The 
neural network processing included, mostly, the anomalous 
points from the geochemistry data and excluded those points 
known as not anomalous. These classifications showed, even in 
small areas, tight correlation of the high hydrocarbon 
favorability with the structural features and rivers, as previously 
indicated by kriging. In addition, these classifications revealed 
potential targets for microssepage even without surface 
geochemical data. The use of neural network through the 
GeoXplore software proved to be an additional, rapid, and 
efficient methodology for characterization of features in 
ASTER/Terra images related to hydrocarbon microseepages.  
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