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ABSTRACT: 
 
Segmentation of 3D data (some time 4D data) is a very challenging problem in applications exploiting Marine GIS data. To tackle 
this problem, this paper proposes a topological approach based on the Digital Morse theory which is a kind of Discrete Morse theory 
to high dimension Grid points. The essence of the approach concerns detecting critical points in the High dimension Data, which 
represent parts of the topology changing. Because less or more some prior information could be got, our approach is quite robust 
against noise. Experimental results demonstrate the validity of our method 
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1. INTRODUCTIO 

In the marine GIS, there are lot three dimensions Volume Data 
from ocean surveys of water temperature, salinity, and contami
nants.  The space distributing features of these data contains the 
key environment information of the sea from which they came. 
    One of the most important ways to analysis the space 
distributing features of 3D Data is to compute iso-surface of 
these data, and then visualize them. There are many method to 
compute or segment iso-surface in 3D date, the most popular 
one is matching cube, but in many cases it will commit errors, 
this is related to a  typical problem in mathematics involves 
attempting to understand the topology, or large-scale structure, 
of an object with limited information. This kind of problem also 
occurs in mathematical physics, dynamic systems and 
mechanical engineering. Morse theory is a generalization of 
calculus of variations, which draws the relationship between the 
stationary points of a smooth real-valued function on a manifold 
and the global topology of the manifold. Morse theory consists 
of two parts: one is the critical point theory and another is the 
application in calculus of variations. 

Dr. J.L.Cox and Dr. D.B.Karron from City University of 
New York developed a Digital Morse Theory, which expands 
the fundamental insight of Morse theory to the critical point and 
criticality graph theory in discrete set. With this powerful 
theory we can easily recognize iso-surface and analysis the 
geometry and topology of high dimensional data set. 
     Here I gave a comprehensive introduction to Digital Morse 
theory in this report and showed a few simple successful 
applications in Marine 3D Data iso-surface segmentation. This 
report is intended, as far as possible, to give an exact insight 
into digital Morse theory to the readers, who are interested in 
the theory. Fore I  believe it is a powerful tool to analysis high 
dimension temporal –space data in complicated GIS system 
such as Marine GIS 

2. MORSE THOERY  

Traditional Morse Theory begins with this insight: Let f  be a 

 continuous function defined on a compact, smoothly 
differentiable manifold 

2C
M . A Morse function has the 

following properties: Each critical point of f  is an isolated 
point, and at each critical point the Hessian (matrix of second 
order partials) is nonsingular. In other words each criticality is a 
single isolated point and is a true local maximum, minimum or 
saddle point (there are no points of inflection). Then the 
topology changes of the level sets of f occur only at the critical 
values and are completely characterized by the number of 
negative Eigen values of the Hessian at each critical point, 
which determines the number of linearly independent down 
directions, and thus whether it is a maximum, a minimum, or 
determines the type of saddle.  
 
Morse theory can be thought of  as a generalization of the 
classical theory of critical points (maxima, minima and saddle 
points) of smooth functions on Euclidean spaces. Morse theory 
states that for a generic function defined on a closed compact 
manifold (e.g. a closed surface)) the nature of its critical points 
determines the topology of the manifold. Morse functions are 
generic functions for which all the critical points are 
nondegenerate (the Hessian matrix of the function at the critical 
point is non singular).  
For a Morse function, the critical points determine the 
homology groups of the manifold, that is a sets of points for 
which the function is less than a given value x . Moreover 
these sets can fully describe the topology of the manifold. The 
way the manifold is embedded in the 3D space can be coded 
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using the Reeb graph which is a skeleton graph that encodes the 
evolution and the arrangement of the homology groups. 
Reeb graph represents the configuration of critical points and 
their relationship and provides a way to understand the intrinsic 
topological structure of a shape. Consequently, the Reeb graph 
has been used in many applications such as shape matching, 
shape coding and surface description and compression.  
 
 

3. INTRODUTION OF DIGITAL MORSE THEORY 

Digital Morse theory applies this insight to discrete setting, 
where it cannot be assumed that the function is Morse in the 
aforementioned sense. This is because the data may contain 
clusters of identically valued readings, and thus, in general, not 
all critical points can be assumed isolated. Since in discrete 
setting data readings (function δ ) can be extended to a 
continuous function f in unaccountably many ways, we have to 
make some base assumptions, and these assumptions are 
consistent with the majority of the current practice and 
literature on so-called volumetric or density data. 
 
3.1 Relaxing Morse conditions with combinatorial insight  

Definition 1:  For simplicity, we assume that our data readings 
have been mapped onto the n-dimensional integer lattice in 
Euclidean space, that is, are given by a real-valued functionδ  

defined on
nZ . We form unit hyper cubes in the natural way, 

i.e., a line segment (edge) connects points iff their 
Euclidean distance is 1. Thus the data readings are given at the 
hypercube vertices (or lattice points). We shall assume, without 
loss of generality, that

, np q Z∈

δ is non-negative. We further assume 

that 0δ > on a finite subset of 
nZ  

. 
Definition 2: We will say that a continuous real-valued 

function f  interpolates δ if the domain of f is Euclidean n-

space, , 
nE f  is non-zero on a closed and bounded subset 

of , and for all , 
nE

np Z∈ ( ) ( )f p pδ= . 
 

Definition 3: We denote by fX τ≥

, the set of such that 
np E∈

( )f p τ≥ , for f that interpolates δ . Similarly, X τ
δ
≥

denotes 

the set such that 
np Z∈ ( )pδ τ≥ .Clearly, if f interpolates 

δ then fX Xτ τ
δ
≥ ≥⊆

.  
 

Definition 4:  We denote the topological boundary of a set  

by . 

X
( )B X
 

A first assumption made by most researchers' interpolation 
methods is that the underlying function is continuous. We shall 
reduce questions of the topology of the boundary components 

of fX τ≥

to basic combinatorial questions. Much will be made of 

connected sets of data readings in
nZ . The reason for this is 

simple. Each component  ofO fX τ≥

contains a subset of X τ
δ
≥

.   
 

We will regard this set as connected, that is, a set of data 
readings is connected if and only if the set is contained in the 
same level set component. As we shall argue, a reasonable set 
of assumptions on the interpolation method will allow us to 
reverse this implication. In other words, if we determine the 

connectivity of X τ
δ
≥

, this will determine the topology of the 

components of fX τ≥

.  
 
This is the basic idea behind the digital topology program: that 
objects are defined by discrete data reading connectivity. While 

we could use a discrete topology on X τ
δ
≥

to obtain our results, 
for generality we prefer to examine the standard point set 

topology of fX τ≥

, for a reasonable class of interpolation 

functions f .  
 
We will restrict the class of interpolation functions f by axioms 

on the structure of 
( fB X )τ≥

, for each τ . Since, in point of fact, 
most algorithms in the literature are for interpolating the 

components of
( )fB X τ≥

for specific τ , without actually 

specifying f on all of , this makes sense. For ease of 
exposition, we define with respect to each real number

nE
τ . 

 

Definition 5:   A point is High if 
np Z∈ p X τ

δ
≥∈ , that is, 

if ( )pδ τ≥ , and is Low if ( )pδ τ≤ .  
 
We shall assume that for each τ not in the (finite) range of δ  

( τ not equal to a data reading), fX τ≥

consists of a finite 

collection ( )iO τ , 1,...,i k= , of path connected, full-

dimensional components, and that the boundary ( ( ))iB O τ , of 
each component consists of a finite set of closed, bounded, and 
oriented manifolds. This is consistent with the literature and 
goals of the imaging community.  
 
Most methods, in the absence of further information, 

construct fX τ≥

with the simplest topology consistent with the 
data, that is, they don't introduce extraneous holes and handles 
in the objects, in the sense that every component of the level 
sets or their complement contains at least 1 data reading 
(integral point).  
 

We will assume that the manifolds of
( fB X )τ>

intersect our 
hyper cubes in simple ways, so that any intersection with a 
hypercube edge is at a point, with a hypercube face is a one-

dimensional set and, in general, the intersection of
( fB X )τ>

with 
a d-dimensional hypercube is a d-1-dimensional set (see axiom 
2 below). This is a reasonable non-degeneracy assumption, as it 
merely means that at an iso-valueτ not precisely equal to a data 

reading, the plateau regions of
( fB X )τ>

never overlap a cube 
face.  
 
Most methods interpolate a single boundary surface crossing 
point on a hypercube edge if and only if the endpoint readings 
are High and Low. Even if one employs a method, for example, 
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that creates a level set boundary that snakes back and forth 
across the hypercube edge connecting two Highs, the two Highs 

will most surely be part of the same component of fX τ≥

, and 
thus no topological generality is lost by assuming that the entire 

hypercube edge is contained in fX τ≥

.  
 
Since edge adjacent Highs are assumed part of the same 
component, one may be tempted to define connectivity of 
X τ

δ
≥

by the transitive closure of the hypercube edge adjacency. 
Unfortunately, as observed in the seminal work in digital 
topology, edge adjacency alone leads to asymmetry in the sense 
that the complementary components will not be edge-connected 
(in 3-dimensions they will be 14-connected rather than 6-
connected).  
 
We will explain below why we feel that 6-connectivity for 
Highs is not the right choice. However, for any (local) 
connectivity one chooses, we can develop the same results: 
algorithms for identifying criticalities and constructing a 
criticality graph. This is because our axioms completely specify 
the topology of the boundary manifolds of the level sets, subject 
to the connectivity rule that one chooses. 
  
3.2  edge-connectivity is insufficient  

Definition 6 We call the interpolated boundary intersection 

points of 
( fB X )τ>

with cube edges, ``hit points''.  
 
Definition 7   When a hypercube face contains diagonally 
opposite Highs and diagonally opposite Lows we call it a 4-hit 
face, since by the above assumptions there is an intersection 

point with 
( )fB X τ>

on each edge (see figure 4). 
 
Definition 8   Choosing the diagonally opposed Highs in a 4-hit 
face as adjacent means that we will regard then as path 
connected through the cube face F , that is part of the same 

component of fF X τ≥∩
. In this case a pair of hits on edges that 

share a common Low vertex will be connected by a boundary 
curve within the face. Thus we call this choice ``Knit Low''. 
Similarly, the choice that makes the Highs nonadjacent (and 
thus the Lows adjacent) is termed ``Knit High''. 
 
These are the only two choices for face F , since if there is a 

path between the two Highs then there cannot be 

a path between the two Lows in , as it would have to 
cross

fX τπ ≥⊂ ∩ F
τ≤ ∩fX F

π  (and conversely). In two dimensions these will be our 
only two choices. As we shall see we will make a similar choice 
for 3 and higher dimensions. In this case we will regard them as 
adjacent if we determine that they are path connected through 
the interior of a cube sharing face F , however, as we shall see 
when we discuss critical 4-hit faces, no topological generality 
will be lost if we assume the path is through   F

Proposition 3.1  If f  interpolates δ then f fX Xτ τ≥− ≤
− =

. 
 

3.3 correct choice for diagonal adjacency  

So we must choose an adjacency rule that makes f fX Xτ τ>− <
− =

. 

Now the sets fX τ≥

obviously satisfy monotonicity as τ is 
decreased, in the sense that once a point becomes a member of 
the set it remains a member. This is obviously true as 

( )f p c≥ implies ( )f p τ> for cτ < . This implies that if two 
Highs of a 4-hit face F  are adjacent for a given threshold c , 
then they must then be adjacent for all values cτ < . For 3 
dimensions and higher we have to decide the maximum iso-
value  for which there is a path through the interior of a 
hypercube sharing F , between the two Highs. The different 
methods one can use to interpolate c  effect the values of 
certain types of criticalities but will not change the essential 
character of our results. The disambiguation value will only be 
important if there is no path between the two vertices that 
passes through any other High vertex within the hyper cubes 
that share the face, at the disambiguation value.  

c

 
3.3.1 Interpolating the disambiguation value:  
Definition 9 Disambiguation Rule: In 2 dimensions we 
bilinearly interpolate the disambiguation value as follows: For 
each 4-hit face we linearly interpolate δ across each edge. Now 
interpolate the position of the point p, called the disambiguation 
point, such that both the vertical and horizontal lines (with 
respect to the two coordinate directions on the face) that pass 
through this point intersect identical values on the opposite 
edges. Interpolate the value of this point, called the 
disambiguation value, and we extend the domain of

C
δ to 

include  (we call this the extendedp δ ).  
 
In 3 dimensions we use trilinear interpolation to determine the 
maximum value c  at which the diagonally opposite Highs are 
path connected through the interior of either cube that shares 
the face . In higher dimensions we similarly use multi-linear 
interpolation to choose the maximum value c for which the 
Highs are connected through the interior of any hypercube 
sharing . As in 2 dimensions, we interpolate an interior point 

 with value c. The interior point  so interpolated is called 
the disambiguation point and is associated with the face . For 
specific 

F

F
p p

F
τ , if cτ > with respect to face , regard the Lows as 

adjacent (knit High), else regard the Highs as adjacent (knit 
Low), with respect to .  

F

F
 
3.3.2  Critical 4-hit faces defined.  
Definition 10   We define a 4-hit face as critical, if for all 

, the disambiguation value, the diagonally opposite 
Highs are not path connected within any n-dimensional 
hypercube that shares the 4-hit face. 

T c>

 
3.4 The Disambiguates Marching Cube and it’s solution 

Marching cube theory assumes a discrete 3D image that maps a 

value ( , , )V x y z R∈  to each grid point
3( , , )x y z Z∈ . The 

image  can also be considered as a density function on a 

subset of

V
3Z . The Marching-Cubes (MC for short) algorithm 

was first introduced by Lorensen and Cline to extract a 
triangulated surface from V  corresponding to an iso-density 

 

1345

http://www.casi.net/D.DMT/D.Overview/AcademicPressPaper14-03/node36.html#figure4


The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B8. Beijing 2008 
 

value. The first application of this work was the visualization of 
iso-density surfaces in medical imaging. We first consider cubic 

cells of coordinate ( , , )x y z whose vertices are placed on the 8 

input samples ( , , )x i y j z k+ + + of the volume data, with 

,i j , ; The triangulated iso-surface given by the 
Marching-Cubes algorithm is locally computed according to the 
way of the surface intersects each cell of V using a look-up 
table with 14 possible configurations (see figure 1). The 
coordinates of the MC vertices along an edge of a cell is given 
by an interpolation process between the values of V and the 
chosen iso-level.  

{ }0,1k ∈

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                      

Figure 1  
 

Note that some of original Lorensen and Cline's configurations 
may lead to ambiguities in the reconstruction and thus construct 
surfaces with holes. As showed in Figure 2, the when 
connecting left cube with right cube, there is a hole in construct 
surface. For the right face of the right cube (the left face of the 
right cube) is ambiguous in classic Marching Cube. 

 

Figure 2 
 

With the method of correct choice for diagonal adjacency in 
Digital Morse theory, we can solve this problem. As shown in 
Figure 3, for each 4-hit face we linearly interpolate δ across 
each edge and  interpolate the position of the point p,   is 
called the disambiguation point and is associated with the face 

. For specific 

p

F τ , if cτ > with respect to face F , regard the 
Lows as adjacent (knit High), else regard the Highs as adjacent 
(knit Low), with respect to . F
 
 

 
Figure 3 

 
 

4. EXPERIMENTS AND CONCLUSION  

Digital Morse Theory provides a novel way to manipulate 
images in terms of n-dimensional criticality defined objects and 
assemblages of objects, instead of individual pixels in an image 
plane. Our preliminary experience with using DMT has enabled 
the rapid segmentation of salinity and temperature distribution 
of sea, as depicted in figure 4 and figure 5, the result was 
accepted by marine scientists. 
 

 
Figure 4  salinity 

 

 
 

Figure 5  temperature 
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