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ABSTRACT: 
 
The results of an investigation of the utility of LiDAR (Light Detection and Ranging) for recovering ecological variables are detailed. 
Mean LiDAR intensity and standard deviation of intensity were calculated for the classified groups; First return intensity in Canopy 
stratum (FRI_C), Last return intensity in Canopy stratum (LRI_C), First return intensity in Ground stratum (FRI_G) and Last return 
intensity in Ground stratum (LRI_G). These were analyzed and compared to the field derived variables; canopy, grass, leaf and bare-
ground cover and the quantity of fallen trees, over twenty five sites in the Barmah Mellewa Forest, Australia. First return intensity 
did show significant correlations with key ecological data: a high negative correlation (-0.509 P≤ 0.01) was found between mean 
canopy cover and FRI_C and a high positive correlation (+0.620 P≤ 0.01) between mean grass cover and FRI_C.  First return 
intensity in the ground stratum (FRI_G) was highly correlated with mean canopy cover (+0.580 P≤ 0.01) and fallen trees (log 
density, +0.698 P≤ 0.01). Mean canopy cover and fallen trees were found to be inversely proportional to the standard deviation of 
First return intensity in the ground stratum (-0.519 P≤ 0.01 and -0.686 P≤ 0.01 respectively). 
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1. INTRODUCTION 

LiDAR (Light Detection and Ranging) is an active sensing 
technology that emits laser pulses and measures the range 
distance between sensor and the illuminated target (so 
providing 3-dimensional information). Some LiDAR 
instruments can also record the intensity of the backscattered 
laser pulses. This allows for the characterisation of objects and 
their attributes. Such LiDAR information (along with 
appropriate positional data from GPS -Global Positioning 
System and INS -inertial navigation system) now provide the 
potential for accurate, fast and versatile measurements in 
renewable natural resource management (Wehr and Lohr, 1999). 
To date, most natural resource remote sensing has been 
undertaken using passive sensing technologies, mainly in the 
visible near infrared red portions of the electro-magnetic 
spectrum. Compared to these 2D information sources, LiDAR 
provides 3D information on the target, which enables the 
estimation of such variables as tree height (Suarez et al., 2005) 
and foliage biomass (Riano et al., 2003) in forestry. 
Characterisation of forest attributes at the level of a community, 
or stand, is required to better manage terrestrial resources such 
as forestry, Carbon sequestration, water resource management, 
soil stability and biodiversity. There is often a good correlation 
between biodiversity and measures of the variety and / or 
complexity of arrangement of structural components within an 
ecosystem (Mac Nally et al., 2001). Therefore, measurement of 
forest attributes and evaluation of their variety is often 
advocated as a good indicator of biodiversity in the context of 
conservation management. The potential for using LiDAR data 
for deriving forest attributes at the level of the forest stand has 
received strong attention recently (Brandtberg et al., 2003; 
Holmgren and Persson, 2004; Morsdorf et al., 2004; Riano et al., 
2003; Suarez et al., 2005; Zimble et al., 2003) and there is an 

increasing interest in developing forest structure for habitat 
assessment (Airborne Laser Survey Working Group, 2004).  
 
The focus of this paper is to investigate LiDAR intensity. There 
are few studies utilising LiDAR intensity, although they show 
promising results. In some early work, Means et al. (1999) 
estimated canopy height, basal area, stand biomass and foliage 
biomass in coniferous forest using LiDAR derived metrics 
which included canopy intensity sum, ground intensity sum and 
canopy closure calculated from intensity. These authors 
concluded that tree foliage biomass was best predicted by 
canopy intensity sum. Van Aardt et al. (2006) also included 
intensity-based parameters such as intensity mean and median 
to estimate forest volume and above ground biomass in a mixed 
forest, and indicated that multiple returns and intensity 
associated with each LiDAR hit might well be necessary for 
effective modelling of variation in more complex forests. For 
tree species classification, Brandtberg et al. (2003) included the 
intensity kurtosis, the intensity skewness and the maximum 
intensity value for individual leaf-off tree crowns in the six best 
single individual tree-based variables. Compared with the 
individual tree approach in these previous studies, this paper 
evaluates site condition at a landscape level utilising LiDAR 
intensity.  
 
 

2. DATA COMPOSITION 

2.1 Study area 

The study area is situated in the Barmah Mellewa Forest, 
located on the border of New South Wales (NSW) and Victoria 
(VIC) in Australia.  The area is a riparian complex which 
comprises approximately 70,000 ha of wetland and forests.  
This system has a variety of land tenures including areas of 
national park and state forest reserves. In the latter, logging 
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operations exist which can hinder the monitoring process. The 
area is important since it represents the largest remaining river 
red gum (Eucalyptus camaldulensis ssp. obtusa Dehnh) forest in 
the world (Bacon et al., 1993). This landscape contains 
important rare and endangered Flora and Fauna (Harris and 
Rawson, 1992). The Barmah-Millewa Forests are recognised as 
a significant habitat for migratory birds in international treaties 
such as the Ramsar convention, the Japan-Australia Migratory 
Birds Agreement and the China-Australia Migratory Birds 
Agreement (Chong, 2003). Conservation of biodiversity is 
therefore critical in this area. 
 
2.2 LiDAR (Light Detection And Ranging) data 

The LiDAR data used in this research was gathered in July 
2001 and acquired by the Murray Darling Basin Commission, 
using ALTM, Optech airborne laser scanning system (small 
footprint and discrete return). Table 1 details the specifications 
of the sensor at the time of acquisition. The instrument output 
comprises three data sets: First return pulse, Last return pulse 
“ground” and Last return pulse “non-ground”.  Each data set 
contains two variables: elevation information and an intensity 
of return value. 
 
 
Scanner Model ALTM 1225 (now ALTM 3025) 

Sampling intensity 11000 Hz and 12500Hz 

Flying height 1100m 

Laser swath width 800m gross, 600m net (25% overlap 
between swathes) 

Laser wavelength & foot-
print 1.047 microns ; 0.22m diameter 

Vertical Accuracy 0.15m (1 sigma) 

ALS Internal precision 0.05m 

Acquisition Date July 2001 

 
Table 1.  LiDAR acquisition specifications 

 
 

2.3 Field data 

Initial ground data collection commenced in July 2002 and 
comprised standard ecological surveys collected using the Birds 
Australia Atlas Habitat template as well as state government 
“Ecological Vegetation” surveys. Preliminary comparisons of 
this ground data to the LiDAR information were not promising. 
In July and September, 2005 a further field survey was 
completed specifically to explore and validate the ecological 
content of the LiDAR dataset.  The four year time difference 
between LiDAR acquisition date and field observation is 
unfortunate. However, the research team confirmed there was 
no major logging or wild fires during this period, and forest 
condition was similar. Twenty five plots were randomly 
positioned throughout the forest with a caveat of accessibility. 
Surveys were established as two hectare circular plots. A plot 
was established by defining a centre point and taking a GPS 
measurement. This includes resident positional error of x y, ± 
7m on average. Tree height (m) was determined using a 
clinometer. Canopy and understorey cover (%) such as grass, 
leaf and bare ground, were assessed with the reference 
photography. These measurements were conducted at the plot 
centre and at three of the four peripheral cardinal points. The 
quantity of fallen trees was assessed over each plot in four 
classes; absent, 1-5 logs, 6-15 logs and more than 15 logs. 

3. DATA ANALYSIS 

Data for the 2ha plots was extracted from the LiDAR point 
cloud for the three data sets (First, Ground and Non-ground). 
To allow for positioning inaccuracies in locating the plot areas a 
10% buffer was placed around each plot yielding an amended 
plot size of 2.2ha (84m radius circular plot). The first stage in 
processing was to group the three data sets (First, Ground and 
Non-ground) into a singular combined point cloud. This was 
then reclassified into two strata; Canopy and Ground. This was 
achieved using the maximum elevation value of the Ground 
dataset as a threshold (derived from Ground return statistics on 
a plot by plot basis). This was necessary since there were 
pronounced variations in ground elevation between plots which 
required a local definition of what constitutes ground. 
Subsequently, the data in each stratum was reclassified into two 
groups; First return and Last return, to determine if there was 
any difference between these two interactions. This yielded four 
data sets that correspond to elevation and intensity information 
for two strata canopy and ground; with First pulse returns and 
Last pulse returns recorded for each.   
 
 

4. EXPLORATORY ANALYSIS OF THE LIDAR 
RETURN INTENSITY 

In order to assess the biodiversity information content of the 
LiDAR data the mean values for a range of ecological variables 
were calculated. Canopy, grass, leaf and bare-ground cover 
information were summed in each plot and presented as a mean. 
As the quantity of fallen trees was assessed over each plot in 
four classes; absent, 1-5 logs, 6-15 logs and more than 15 logs, 
we used this class value as an ecological variable.  
 
For comparison with field data, mean LiDAR intensity and 
standard deviation of intensity were calculated for the classified 
groups; First return intensity in Canopy stratum (FRI_C), Last 
return intensity in Canopy stratum (LRI_C), First return 
intensity in Ground stratum (FRI_G) and Last return intensity 
in Ground stratum (LRI_G). To examine the relationship 
between LiDAR data and collected ecological variables, Peason 
correlation coefficient was calculated to test the relationship 
between intensity values; mean intensity and standard deviation 
of intensity, and mean canopy cover, mean grass cover, mean 
leaf cover and mean bare-ground cover. The Spearman rank 
correlation coefficient was used to evaluate the relationship 
between intensity values and the quantity of fallen trees. 
 
4.1 First return intensity in Canopy stratum (FRI_C) 

FRI_C shows a strong negative correlation with canopy cover 
(Table 2). In other words, where canopy cover is high, first 
return intensity in canopy stratum is low. We assume the 
following scenario. At 1.047 μm, reflectance and transmittance 
components are the dominant radiation transfer processes 
(Bauer et al., 1986; Curran, 1985; Lillesand et al., 2004). 
Effectively the downward-welling radiation pulse is randomised 
on the interaction with the canopy layer. Therefore weak pulses 
are often returned to the LiDAR sensor. On the other hand, 
where the canopy is sparse, laser pulses are much less likely to 
interact with canopy objects but when they do, the nature of the 
interaction is different. The pulse is more likely to interact with 
solid materials such as branches and boles, and stronger 
returned pulses therefore result.  
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FRI_C also displays a strong positive relationship with grass 
cover (Table 2). This provides strong anecdotal evidence since 
one would expect more grass growth where the canopy is sparse, 
if light is a limiting growth factor. In other words, grass does 
not grow thickly where canopy is dense, because FAPAR is 
reduced. Although the correlation between mean leaf cover and 
FRI_C is only significant at the 0.05 level, a similar relationship 
was observed.  
 
 
 FRI_C LRI_C FRI_G LRI_G 

Mean canopy  
cover 

-.509(**) 0.077 .580(**) 0.045 

Mean grass  
cover 

.620(**) 0.367 -.429(*) .424(*) 

Mean leaf  
cover 

-.435(*) -0.346 0.33 -0.355 

Mean 
bare-ground  
cover 

-0.309 -0.235 0.02 -.406(*) 

** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed). 

 
Table 2.  Correlations between mean intensity and field data 

 
 

4.2 First return intensity in Ground stratum (FRI_G) 

FRI_G also exhibits significant positive association with 
canopy cover (Table 2). Where canopy cover is high, the first 
return intensity in the ground stratum is high. Our field data 
demonstrates a positive association between large trees and 
dense canopies. Large fallen trees and debris are therefore more 
likely to be on the ground and stronger pulses result. FRI_G 
also shows a strong positive correlation with the amount of 
fallen trees (Table 3), which suggests where fallen trees are 
abundant, first return intensity in ground stratum is high. We 
hypothesise that when laser pulses hit solid materials such as 
logs and fallen trees, strong pulses are returned.  
 
The standard deviation of FRI_G displays a negative correlation 
with canopy cover (Table 4) and the amount of fallen trees 
(Table 5). This can be explained as where canopy cover is high 
(fallen trees are abundant), the standard deviation of first return 
intensity in the ground stratum is low. The standard deviation of 
intensity is a measure of variation in intensity values. Assuming 
that each component on the ground has a distinct interaction 
with the LiDAR pulse, standard deviation of FRI_G could be 
used as an index of heterogeneity of ground condition. A high 
standard deviation of FRI_G indicates heterogeneous ground, 
and lower standard deviation of FRI_G suggests homogeneous 
ground. Where the canopy is dense or fallen trees are abundant, 
ground is more likely homogeneous. 
 
 

 FRI_C LRI_C FRI_G LRI_G 

fallen trees -.450(*) -0.251 .698(**) 0.126 

** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed). 

 
Table 3.  Correlation between mean intensity and the amount of 

fallen trees 

 
FRI_C 
STDEV 

LRI_C 
STDEV 

FRI_G 
STDEV 

LRI_G 
STDEV 

Mean canopy  
cover 

0.085 0.134 -.519(**) 0.133 

Mean grass  
cover 

0.003 0.27 0.287 0.202 

Mean leaf  
cover 

-0.091 -0.319 -0.302 -0.241 

Mean  
bare-ground  
cover 

-0.037 -0.223 0.177 -0.189 

                       ** Correlation is significant at the 0.01 level (2-tailed). 
 

Table 4.  Correlations between standard deviation of intensity 
and field data 

 
 

 
FRI_C 
STDEV 

LRI_C 
STDEV 

FRI_G 
STDEV 

LRI_G 
STDEV 

fallen trees 0.301 0.288 -.686(**) 0.352 

** Correlation is significant at the 0.01 level (2-tailed). 
 

Table 5.  Correlation between standard deviation of intensity 
and the amount of fallen trees 

 
 

5. DISCUSSION 

The results of the analysis revealed that the last return intensity 
for both canopy and ground returns (LRI_C and LRI_G) does 
not show significant correlation with the field based ecological 
variables (Table 2 & 4). This fits with the results of Brandtberg 
et al. (2003) who report lower accuracy in classifying species 
when using last return information. Moffiet et al. (2005) 
asserted that the last return intensity is affected by the pulse 
energy remaining within the portion of footprint as well as 
reflective surface properties. This can have a profound impact. 
In other words, the return is a result not just of the ground cover 
but also the amount of energy remaining in the pulse. In our 
study, this was explained by the standard deviation of intensity 
in each plot. A higher standard deviation of intensity was 
observed in the last return (LRI_C and LRI_G) as compared to 
the first return (FRI_C and FRI_G), indicating the last return 
has greater variation in intensity. This is especially salient since 
there is no species difference in Canopy stratum. We propose 
the difference in intensity variation between first return and last 
return in canopy stratum (FRI_C and LRI_C) could be due to 
the amount of pulse energy that remains to interact with the 
vegetation component in the canopy stratum. However, mean 
intensity of LRI_C is higher than FRI_C in all plots.  
 
It is possible, but unlikely that emitted pulse intercepted a 
vegetation component initially, but the majority of pulse energy 
remained for the next vegetation interaction.  As our data set 
can not identify whether FRI_C is singular or the first return out 
of two returns, we can not conclude if this is the case. It is also 
possible that the last return interacts with a solid material such 
as a branch or a large fallen tree on the ground, since most of 
LRI_C were found in lower level of Canopy stratum. This 
would explain why mean intensity in LRI_C was higher than 
FRI_C.  
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The mean intensity of FRI_G is higher than LRI_G in most 
plots. This is because FRI_G is the first return and therefore did 
not lose any energy before it interacted with the ground with 
sufficient pulse energy, while the pulse energy of LRI_G was 
reduced being intercepted by vegetation component in Canopy 
stratum.   
 
 

6. CONCLUSION 

Significant correlations were found between first return data 
(FRI_C, FRI_G and FRI_G_STDEV) and field based ecological 
observations (mean canopy cover, mean grass cover and fallen 
trees).  The automated mapping of these important ecological 
variables is key to the successful management of at risk 
ecological communities worldwide. 
 
 

7. FUTURE WORK 

Another case study is being undertaken using new LiDAR data 
within a forest ecosystem, located in the Rubicon catchment of 
the Cradle coast region of Tasmania, Australia. This LiDAR 
data is derived using a RIEGL LMS-Q560 sensor. This is a full 
waveform system, it can record up to six returns. More detailed 
analysis of the relationship between LiDAR intensity variables 
and field data will be analyzed to examine whether LiDAR can 
recover ecological variables such as structure and biodiversity 
information about native vegetation.   
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