
3D FLOOD INFORMATION FROM SAR AS A MEANS FOR REDUCING
UNCERTAINTIES IN FLOOD INUNDATION MODELING.

Renaud Hostache1, Guy Schumann1,2, Patrick Matgen1, Christian Puech3, Lucien Hoffmann1, Laurent Pfister1

1 Centre de Recherche Public - Gabriel Lippmann (Dpartement EVA), L-4422 Belvaux, Grand-Duch du Luxembourg.
2 Visiting Research Fellow, School of Geographical Sciences, University of Bristol, BS8 1SS, Bristol, UK.

3 Cemagref (UMR TETIS), F-34093 Montpellier, France.
hostache@lippmann.lu, guy.schumann@bristol.ac.uk, matgen@lippmann.lu,

puech@teledetection.fr, hoffmann@lippmann.lu, pfister@lippmann.lu

KEY WORDS: Floods, SAR Imagery, Cartography, Distributed, Modeling, Calibration, Uncertainties.

ABSTRACT:

SAR images of river inundation prove to be very relevant for operational flood management. However, common exploitation of satellite
images of floods is generally restricted to a flood extent extraction. The usefulness of these images could be significantly improved by
providing a hydraulic-coherent 3-dimensional (3D) characterization of floods and by integrating these Remote Sensing-Derived (RSD)
spatial characteristics of floods in hydraulic models in order to render flood inundation forecasts more reliable and accurate. This study
aims at developing SAR image analysis methods that go beyond flood extent mapping in order to demonstrate the potential of these
images in the spatio-temporal characterization of flood events. To fulfill this objective, two research issues were addressed. The first
issue relates to water level estimation. Applied to an ENVISAT image of an Alzette River flood (2003, Grand-Duchy of Luxembourg),
the developed method provides± 54 cm average vertical uncertainty water levels, that were validated with ground surveyed high water
marks. The second issue aims at evaluating how far RSD flood characteristics could allow a better constraining of hydraulic models. To
achieve this goal, various calibration scenarii using only recorded hydrographs or recorded hydrographs and RSD flood characteristics
are computed. These scenarii show that the integration of the RSD characteristics leads to better constrain the model (i.e. the number
of parameter sets providing acceptable results with respect to observations is reduced) and render it more reliable, even in the case of
quite rather abundant ground observed data.

1 INTRODUCTION AND BACKGROUND

Floods are among the most important natural hazards in the world.
This explains the continuous efforts to better understand the flood
generating processes and to develop strategies to reduce the dam-
ages caused by flood events. SAR images of river inundation
prove to be very relevant (Schumann et al., 2007) for operational
flood management. For example, the ”Space and Major Disaster
Charter” provides flood extent maps extracted from satellite im-
ages only a few hours after image reception. These maps are then
distributed to rescue services in order to ease their operations. Es-
pecially because of their all weather image acquisition capability,
Synthetic Aperture Radar (SAR) satellites are very suitable for
flood extent mapping (Henry, 2004). Nevertheless, as mentioned
by Smith(1997), there is no doubt that Earth observation images
contain information that goes beyond simple flood extents. In this
context, this paper aims at arguing that satellite images can pro-
vide 3D flood characterization and enable the constraining of un-
certainties related to flood inundation modeling. Hydraulic mod-
eling is of paramount importance in most flood forecasting and
management systems. Due to huge stakes in flood management,
the reliability of these flood inundation models is of primary con-
cern (Pappenberger et al., 2005). In this framework, uncertainties
need to be kept to a minimum, for example during a calibration
process, using various observed data sets. Model calibration gen-
erally consists in forcing the outputs of the model so as to be
as close as possible to observed data, by modifying parameter
values. Nevertheless, depending on the observed data that are
available, many values of parameters could allow the model to
provide outputs close to observations and thus could be consid-
ered as acceptable with respect to observations. This has been in-
troduced byBeven and Binley(1992) as the equifinality concept
and induces uncertainties in the model calibration. In an opera-
tional context, the calibration is often done using point observa-

tions, such as recorded hydrographs at stream gauges. However,
these data are often insufficient to make the calibration reliable
(Horritt, 2000) as no reference data is available in-between these
point measurements. Taking into account additional observations
in calibration could help to better constrain the model, i.e. lead to
a reduction of calibration uncertainties by reducing the range of
acceptable parameter values (Matgen et al., 2004; Horritt, 2000;
Bates, 2004).

In this context, the aim of this study is to develop methods that al-
low to derive 3-dimensionnal information from a SAR image of a
flood in order to provide more reliable flood forecasting models.
SinceSchumann et al.(In Press) showed that SAR images from
current satellites provide extra information only if the amount of
ground point data is fairly limited, this study further aims at eval-
uating the advantages and the limits of taking SAR derived infor-
mation into account in hydraulic modeling.

Based on the study ofRaclot and Puech(2003) that provides
± 20 cm average uncertainty using aerial photographs, the wa-
ter level estimation method employed here is composed of two
steps (Hostache et al., 2006): i) extraction of the flood extent lim-
its which are relevant for water level estimation, ii) estimation of
water levels by merging the relevant limits and a high resolution
high accuracy Digital Elevation Model (DEM) under hydraulic
coherence constrains. To show the potential of satellite images
for model uncertainty reduction, a stepped calibration approach
has been adopted. In a first step, traditional calibration scenarii
are conducted using various recorded hydrographs. In a second
step, the RSD water levels are integrated in the calibration for re-
ducing the uncertainties associated to flood inundation modeling.
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2 STUDY AREA AND AVAILABLE DATA

The area of interest includes a 18 km reach of the River Alzette
(Grand-Duchy of Luxembourg) between Pfaffenthal and Mersch.
In this area, the River Alzette meanders in a flat plain that has
an average width of 300 m (between Beggen and Mersch) and a
mean slope of 0.08%. At Mersch, the drainage area of the river
Alzette covers 404 km2. Although some large villages lie within
the natural floodplain of the river, no severe damages were re-
corded for the early January 2003 flood (Schumann et al., 2007),
which had a peak discharge of around 70.5 m3.s−1 at the Pfaf-
fenthal hydrometric station, corresponding to a return period of
5 years. With approximately 3 km.h−1, the velocity of the flood
peak propagation in the Alzette plain was low.

The image used in this study has been acquired by the Synthetic
Aperture Radar (SAR) sensor of the ENVISAT satellite (descend-
ing orbit, C band (5.6 cm wavelength), Vertical-Vertical (VV) and
Vertical-Horizontal (VH) cross polarization) at 9:57 PM, on Jan-
uary 2nd 2003, just after the flood peak, at the beginning of the
recession. This radar image, amplitude coded, has a pixel spac-
ing of 12.5 m, resulting from the sampling of a complex image of
25 m spatial resolution. The ENVISAT image has been georefer-
enced using Ground Control Points (GCP) on aerial photographs.
The Root Mean Squared Error (RMSE) after this georeferencing
was 10 m.

The collected hydrometric data are six water stage hydrographs
that were recorded at the stream gauges located in the villages of
Pfaffenthal (upstream), Walferdange, Steinsel, Hunsdorf, Lintgen
and Mersch (downstream). For Lintgen and Hunsdorf, recorded
water stages are only available for low water depth because of
measurement system disability. Moreover, the coordinates (X,Y)
of 84 high water marks have been measured on the ground with
a GPS (≈ 5 m planimetric accuracy) and the maximum water
level during the flood event has been measured using a theodolite
(altimetric accuracy around± 2 cm) at 7 points distributed across
the floodplain.

The altimetric data used in this study are a LiDAR DEM (2 m
spatial resolution and a± 15 cm mean altimetric uncertainty),
200 bathymetric cross sections with a “theoretical” centimetric
altimetric uncertainty (some errors of more than 30 cm have been
found during ground control survey).

3 METHOD

3.1 Extraction of 3 dimensional information from SAR im-
ages

This section aims at extracting 3-dimensional information from
a SAR flood image that is relevant for hydraulic modeling. In
this context the methodology is composed of two steps. The first
step relates to simple flood extent mapping. The innovative part
in this study consists in evaluating the uncertainties in such maps
and their relevance for water level estimation. The second step
relates to the water level estimation. In this section, efforts will
be made to evaluate the uncertainties and to remove or at least
to identify the errors that are related to flood characteristics from
SAR images. These efforts are necessary when the final aim is
to use RSD characteristics for hydraulic model calibration. As
a matter of fact, any error related to these characteristics may
render the calibrated model unreliable.

3.1.1 Extraction of flood extent limits relevant for water level
estimation. Flood extent mapping using SAR images is widely

applied (Smith, 1997) because water appears with very low back-
scatter compared to other objects, thereby making flooded area
detection relatively straightforward. However, in case of wind
or strong precipitations that induce wavelets on the water sur-
face, the latter could be roughened thereby increasing the back-
scatter. In this case, the detection of open water becomes non
trivial. At the image acquisition time, the wind speed was moder-
ate (5 m.s−1 recorded in a station close to the study area), caus-
ing presumably negligible wind effects on open water surfaces.
In this study, radiometric thresholding has been used because it
is a robust and reliable way (Henry, 2004) to detect flooded ar-
eas on SAR images. Nevertheless, although water appears with
low backscatter on images, the radiometric distributions of water
bodies and other land use types are not totally separated and do
overlay. As a consequence, applying a single threshold value on
the SAR image does not allow to detect all water bodies with-
out detecting at the same time non flooded areas. To deal with
this radiometric uncertainty, two thresholds are applied. The first
one,Tmin, aims at detecting only pixels that correspond to water
bodies. As a matter of fact, the proposed value forTmin repre-
sents the minimum radiometric value of non-flooded pixels (i.e.
outside the floodplain and outside the permanent water surfaces).
The second one,Tmax, aims at detecting all flooded areas, at the
risk of detecting in addition non-flooded areas that have a simi-
lar radiometric value to the flooded one. The proposed value for
Tmax is the maximum radiometric value of water bodies outside
the flooded area (i.e. lakes or the river channel if wide enough).
Furthermore, although the thresholdings allow to take into ac-
count radiometric uncertainties, there remain some errors in the
flood extent map that have to be corrected or at least identified in
order to render the flood extent map relevant for hydraulic model-
ing. These errors are mainly due to shadowing effects and emerg-
ing objects that mask open water surfaces (Horritt et al., 2001).

The shadowing effects are due to hill-slopes that are not illumi-
nated by the incident RADAR signal. They appear on SAR im-
ages with very low backscatter, similar to open water backscatter.
These errors are treated by removing, using a GIS, from the flood
map, areas detected as open water that are located on hill-slopes
(identified using a topographic map or a DEM). The errors due to
objects that mask water can not be easily corrected, but it is pos-
sible to identify objects likely to be emerged. As a consequence,
the solution chosen in this study is to ignore urban and vegetated
areas because they may cause highly erroneous water level esti-
mates and to remove them from the flood extent map. This means
that these areas will be given a ’No Data’ value, i.e. no informa-
tion about the presence or absence of water. After the treatment of
error prone areas, the flood extent map has four possible values,
depending on the intensityI of the SAR image pixels and the land
use: 0 = certainly non-flooded (I > Tmax), 1 = certainly flooded
(I < Tmin), 2 = potentially flooded (Tmin ≤ I ≤ Tmax) and
’No Data’ = around buildings and trees. Then, considering that
local errors in the flood extent map have been treated beforehand,
pixels equal to 1 correspond only to open water and pixels equal
to 0 correspond only to non open water. This induces that the
potentially flooded areas (pixels equal to 2) define fuzzy limits of
the flooded areas that take into account radiometric uncertainty.
Moreover, the accuracy of the georeferencing of a SAR image
induces additional spatial uncertainties on these fuzzy limits that
need to be taken into account. To do this, it has been chosen to
buffer the fuzzy limits with a size equal to the SAR image geo-
referencing accuracy (10 m for the ENVISAT image). The flood
extent map, with buffered fuzzy limits, that represents the first re-
sult of the methodology, will be used for water level estimation.

3.1.2 Water level estimation. To derive water levels, the met-
hod is based on a merging between the fuzzy limits of the flood
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Figure 1: a. Study area, ENVISAT SAR image (VH polarization,
amplitude coded) and stream gauges. b. SAR image derived flood
extent map.

extent map and the underlying DEM, as proposed byBraken-
ridge et al.(1998). As a matter of fact, during this merging, the
uncertainties in the fuzzy limits are transferred to the water level
estimates (Brakenridge et al., 1998; Schumann et al., submitted).
Consequently, areas with gentle relief have been ignored for wa-
ter level estimation because they imply important uncertainties on
water level estimates. After this removal, only the most reliable
limits remain. These are shaped as small patches that are sparsely
distributed across the floodplain. Considering that radiometric
and spatial uncertainties have been taken into account and that
error prone areas have been removed beforehand, the remaining
relevant limits are assumed to include the real flood extent limits
(Hyp. 1). Under this hypothesis, the merging between relevant
limits and the DEM allows the extraction of the terrain elevations
inside all relevant limits and thus an estimation of intervals of
water levels that should include the true value, provided that the
DEM altimetric uncertainty (uncDEM = ± 15 cm for the
Lidar DEM) is taken into account. This means that the intervals
of water level estimation are:
IWLsat

i = [WLsat
min,i; WLsat

max,i]
= [Elsat

min,i − uncDEM ; Elsat
max,i + uncDEM ]

,

with Elsat
min,i andElsat

max,i being respectively the minimum and
the maximum values of the terrain elevation inside a given rel-
evant limit. Then, each resulting interval of water level estima-
tion - IWLsat

i - is assumed to include the real local water level
(Hyp. 2). However, these estimation intervals only stem from a
remote sensing process and do not consider hydraulic laws gov-
erning water flow. Consequently, the water level estimation met-
hod is enhanced by a hydraulic coherence algorithm, previously
developed byRaclot and Puech(2003) for water levels estimated
from aerial photographs.

The hydraulic coherence algorithm is based on the law stating
that water level decreases from upstream to downstream (Hyp. 3),
in case of low flow velocity, as for the river Alzette. To apply
Hyp. 3 to the remotely sensed water levelsIWLsat, the flow

directions between locations of water level estimates need to be
known. For hydraulic modeling, a one-dimensional (1D) model
has been developed. This model is based on the assumption of
1D hydraulic flow. This means that the water flows from one
cross section to the following starting at the first cross section
(upstream boundary condition) and ending at the last one (down-
stream boundary condition) (Roux and Dartus, 2006). Using the
same flow scheme on the relevant limits, it has been possible to
determine a hydraulic hierarchy, composed of up-/downstream
relationships between locations of water level estimation - corre-
sponding to the locations of the relevant limits. Thus,Hyp. 3
means that if the relevant limitA is upstream of the relevant
limit B, then the water level must decrease fromA to B. Due
to Hyp. 2, the hydraulic coherence algorithm may force the fol-
lowing constraints:WLsat

max(B) ≤ WLsat
max(A), and vice-

versaWLsat
min(A) ≥ WLsat

min(B). As a consequence, prop-
agating these constraints following the flow direction, the algo-
rithm forces a decrease upon the maxima (WLsat

max,i) from up-
stream to downstream and a rising upon the minima (WLsat

min,i)
from downstream to upstream. This provides constrained water
level estimates, called final water levels hereafter, that will be in-
tegrated in the calibration process.

3.2 Introduction of remote sensing-derived flood character-
istics to the hydraulic model calibration

The aim of the second part of the methodology is to better con-
strain the hydrodynamic model using the RSD spatially distributed
water levels. Recent studies (Bates, 2004; Matgen et al., 2004)
have shown that flood extents derived from SAR images could
be useful for hydraulic model calibration. The originality in this
study is to integrate a different kind of information derived from
SAR, namely water levels. To deal with uncertainties in the ob-
served data and the parameter value determination, the calibration
process has been based on Monte-Carlo simulations.

3.2.1 Hydraulic model structure. The set up of a hydraulic
model requires the knowledge of a three-dimensional (3D) geom-
etry of the floodplain and channel, initial conditions, boundary
conditions and hydraulic parameters, e.g. friction coefficients.
For a one dimensional (1D) hydraulic model, the geometry is de-
fined by a main flow line - usually the median axis of the river
channel (Roux and Dartus,2006), and cross sections, placed per-
pendicularly to the main flow line. In 1D modeling, it is assumed
that the water level is uniform on each cross section. The hy-
draulic model used in this study has been set up under Hec-RAS
(United States Army Corps of Engineers (USACE),2002). The
3D geometry of the model has been extracted using the DEM
and the bathymetric data (Cf. section2). The upstream bound-
ary condition is the discharge hydrograph calculated at the Pfaf-
fenthal hydrometric station using the recorded stage hydrograph
and a rating curve (relationship between water depth and dis-
charge), and the downstream boundary condition using the rat-
ing curve at the Mersch hydrometric station (Figure1). Further-
more, an inflow has been imposed 2 km upstream of Mersch
as the discharge hydrograph calculated using the rating curves
and the limnigraphs recorded at Schoenfels (River Mamer) and
Hunnebuer (River Eisch) stream gauges (Figure1). The initial
condition is calculated by the model as a steady flow simulation
using the discharge at the Pfaffenthal hydrometric station (up-
stream boundary) at the starting time. The calibration parameters
are two Manning friction coefficients (one for the river channel
and one for the floodplain). A single channel Manning coeffi-
cient has been attributed for the entire reach in the model because
the channel aspect appeared homogeneous along the study area
during field observations. Moreover, the aim is to avoid over-
parameterization and to focus on the interest of taking RSD water
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levels into account during calibration. Additionally, withfriction
inside the floodplain being higher than inside the riverbed, the
Manning coefficient in the floodplain should be higher than that
of the channel.

3.2.2 Calibration process. The aim of a calibration is to find
the parameter values that enable the model to provide outputs
that are close to observations. If no satisfactory results can be ob-
tained with any of the tested parameter sets, the model assump-
tions, the model structure and the boundary conditions should be
questioned (Beven and Binley, 1992). The calibration process
used in this study is based on a random generation of parameter
sets and subsequent hydraulic model simulations with each set
of parameters. Subsequently, outputs provided by each simula-
tion are compared to recorded observations. Using this calibra-
tion process, it is possible to represent performances of the model
versus parameter values (Horritt, 2000).

In this study, as proposed by the GLUE methodology (Beven and
Binley, 1992), the uncertainty of the observations is taken into
account during the model performance calculation. This means
that the outputs of the model are compared with the observation
using fuzzy logic: each point observation data is affected by an
interval representing the measurement uncertainty. As a matter of
fact, the simulated water levels are compared with intervals of ob-
served water levels. For the RSD water levels, the estimations are
obtained directly as intervals (IWLobs

sat = [WLobs
min; WLobs

max] =
[WLsat

min; WLsat
min]) that take uncertainties into account. For wa-

ter levels recorded at stream gaugesWLobs, it has been assumed
that the measurement uncertainty is around± 1 cm:
IWLobs

stream = [WLobs
min; WLobs

max]
= [WLobs

stream − 0.01; WLobs
stream + 0.01]

To evaluate the model results, the RMSE has been used in this
study because it allows the calculation of a global performance
criterion that combines various kinds of water level observations.

RMSE =
√

∑

t,x

∆WL2

n

with: ∆WL =






0 if WLsim
∈

[

WLobs
min; WLobs

max

]

WLsim
− WLobs

min if WLsim < WLobs
min

WLsim
− WLobs

max if WLsim > WLobs
max







(1)

In (1), WLsim is the simulated water level at timet and at cross
sectionx, n is the number of observed water levels used for the
RMSE calculation, andWLobs

min andWLobs
max are the bounds of

the intervals of observed water levels as defined previously. With
this definition, the RMSE gives the same weight to each observed
water level (in time and space).

Previous studies (Hostache et al., 2007; Schumann et al., In Press)
have shown that RSD flood information is useful to reduce un-
certainties in case of limited calibration data. In this study, the
aim is to evaluate how far RSD flood information is useful for
uncertainty reduction in hydraulic model calibration with more
abundant calibration data. If many stream gauges are available,
we propose to address various calibration scenarii to evaluate the
enhancement provided by the integration of RSD water levels.
This means that every possible combination of one, two and so
on stream gauges (6 available at maximum for the Alzette study
area) is used to calculate a RMSE of the model results with and
without taking into account the RSD water levels. In each calibra-
tion scenario, using the RMSE to assess model performance, the
simulated water levels are compared with the observed water lev-
els (1). For example, if two stream gaugesS1 and S2 and RSD
water levels are available, six scenarii are addressed, providing
six RMSE values: RMSE(S1), RMSE(S1 ∪ RSD), RMSE(S2),
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RMSE(S2 ∪RSD), RMSE(S1 ∪ S2), RMSE(S1 ∪ S2 ∪ RSD).

4 RESULTS AND DISCUSSION

4.1 Water level estimation

To extract the flood extent, a double thresholding has been ap-
plied to the georeferenced ENVISAT image (VH polarization)
(Figure1 a). The thresholding of the SAR image usingTmin and
Tmax provides the flood extent map shown in Figure1 b. As par-
tial validation of the RSD flood boundaries, ground surveyed high
water marks (yellow dots) located in areas without trees or build-
ings have been added to Figure1 b. 92 % of these are included
in the fuzzy limits of the flood extent map. Moreover, the mean
distance between the high water marks that lie outside the fuzzy
limits and these fuzzy limits is equal to 4 m. This is lower than
the coordinate accuracy of these points (accuracy of the GPS used
to calculate the high water marks is of approximately 5 m). As a
consequence, these results show that the method employed in this
study for flood extent mapping is suitable. Hence, theHyp. 1and
the assumption of low wind effects on water surface roughness
are appropriate.

As the limits of the flood extent map are fuzzy, the water level
estimates resulting from the merging between these limits and
the DEM are in the form of intervals. To characterize the uncer-
tainty of the resulting initial water level estimates, the half mean

interval (
mean(WLsat

max
−WLsat

min
)

2
) of the resulting water level es-

timates has been calculated. This “mean uncertainty”, equal to
± 88 cm, is relatively high. Then, the constraining algorithm of
initial water level estimates using hydraulic coherence concepts
has been applied. This provides final water level estimates shown
in Figure 2 with a mean uncertainty (see above) of± 54 cm.
Compared to the mean uncertainty of the initial RSD water levels
(± 88 cm), this value shows a significant improvement and thus a
better capability of the final water levels to reduce the uncertain-
ties of a hydraulic model can be expected. Moreover, Figure2
shows that eachin situhigh water mark measurement is included
in the corresponding interval of RSD water level, which is crucial
because it validates at least partially the RSD water levels and es-
peciallyHyp. 2which states that the ”true” water level is inside
the intervals of RSD water levels.
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4.2 Evaluation of hydraulic model calibration uncertainty
reduction by the means of remote sensing-derived water
level integration

The calibration of the hydraulic model was based on Monte-Carlo
simulations. For this procedure, 2000 sets of parameters were
randomly generated within the following intervals of physically
plausible values:nc ∈ [0.01; 0.1] and nflp ∈ [0.01; 0.2]
for the channel and floodplain Manning coefficients respectively.
Next, for each generated set of parameters, one hydraulic model
run (between the 1st of January 2003, at 03:00 PM, and the 8th

of January 2003, at 00:00 AM) was performed, and the results of
these simulations were compared with observations by calculat-
ing an RMSE (1). To estimate the acceptable values of the model
parameters, those providing the lowest RMSE, with a tolerance
of ± 1 cm (i.e. RMSE≈ RMSE± 1 cm) have been selected.
This tolerance is reasonable considering that a 1 cm decrease of
the RMSE does not represent a significant enhancement of the
model results.

On the reach between Pfaffenthal and Mersch, water stage hydro-
graphs are available at six stream gauges (Figure1 a). For each
combination of one to six of these stage hydrographs, a RMSE
(1) between the recorded and simulated water stages has been cal-
culated. Next, the same calculations have been done by adding
the RSD water levels in order to evaluate the performance gain
given by these RSD flood characteristics. Using these RMSE, it
is possible to obtain, for each of these calibration scenarii, a set of
acceptable values of model parameters. To estimate the calibra-
tion uncertainty, two indicators have been chosen. The first one
is the range of acceptable parameter values (nc and nflp). The
second one is the average deviation between the maximum and
the minimum values of the water levels simulated by the set of
acceptable models (mean WS deviation). This second indicator
provides an average uncertainty (in meters) on the water levels
simulated by the acceptable model ensemble. Furthermore, to
estimate the reliability of the acceptable model ensemble, the in-
dicator chosen is the global RMSE between the simulated water
levels and all available observations of water level (the six water
stage hydrographs, the RSD water levels and the ground surveyed
high water marks). This provides the mean error of the water
levels predicted by the acceptable model ensemble. Table1 and
Table2 summarize the results of the calibration process for each
calibration dataset. In Table1, only the water stage hydrographs
are used for the calibration. In this table, the values have been
calculated by averaging the indicators proposed above for each
calibration scenario that takes a given number (1 to 6) of stage
hydrographs into account. Table2 shows the same indicators, but
calculated for the calibration scenarii that take into account stage
hydrographs recorded at stream gauges and RSD water levels.

In Table 1 and Table2, although the acceptable values of the
channel Manning coefficients seem higher than expected for such
a river, the ensembles of acceptable parameters obtained in this
study are in agreement with those obtained bySchumann et al.
(2007) for a similar reach of the river Alzette. This could be due
especially to the presence of trees on the stream embankments
that increase the frictions for the overtopping water. Moreover, it
is worth noting that the ranges of acceptable floodplain Manning
coefficients are large. A simple reason is that this flood event is
of relatively low magnitude (5 year return period), which induces
that most of the water (more than 90% in this case) flows through
the channel.

Additionaly, contrary to what could be expected, the most con-
strained intervals of acceptable parameters are not obtained when
the maximum number of water stage hydrographs is taken into

account in the calibration. For example, scenario 2 in Table2
(i.e. 2 hydrographs and RSDWL) gives a more constrained in-
terval than scenario 6 (6 hydrographs and RSDWL). This is due
to the 1 cm variation around the minimum RMSE that has been
allowed to determine the acceptable set of parameters. As a mat-
ter of fact, the threshold for the model parameter set acceptability
changes from one scenario to the other. Therefore, it is possible
that the liberty with 6 gauges is more important than with 2 due
to the fact that the optimal parameter set is not the same for each
water stage hydrograph.

Table1 and Table2 show that the integration of RSD water lev-
els allows a reduction of acceptable parameter value ranges. This
induces a significant reduction of the model results uncertainty
considering that the decrease of the simulated water stage mean
deviation is equal to 7-10 cm if the RSD water levels are inte-
grated in the calibration. Even if the reduction of uncertainty be-
comes lower when considering a higher number of hydrographs,
it is significant. As a consequence, Table1 and Table2 illustrate
asignificant enhancement of the calibration when integrating the
RSD water levels. Moreover, in all scenarii, the global RMSE,
which is an indicator of the calibrated model accuracy, is a little
reduced by the integration of the RSD water levels. This means
that the RSD flood information tends to render the model more
reliable and accurate.

Uncertainty/Accuracy
Calibration ranges of acceptable mean WS global

dataset parameter values deviation RMSE
nc nflp (m) (m)

1 WS Hy. 0.046-0.052 0.05-0.2 0.15 0.24
2 WS Hy. 0.046-0.052 0.05-0.2 0.15 0.23
3 WS Hy. 0.046-0.053 0.05-0.2 0.17 0.22
4 WS Hy. 0.046-0.053 0.05-0.2 0.17 0.22
5 WS Hy. 0.047-0.054 0.05-0.2 0.18 0.22
6 WS Hy. 0.047-0.054 0.05-0.2 0.18 0.22

Table 1: Uncertainty and accuracy for the calibration scenarii
based only on water stage hydrographs (WS Hy.).

Uncertainty/Accuracy
Calibration ranges of acceptable mean WS global

dataset parameter values deviation RMSE
nc nflp (m) (m)

1 WS Hy.
+ RSD WL

0.048-0.05 0.11-0.18 0.05 0.23

2 WS Hy.
+ RSD WL

0.049-0.051 0.06-0.2 0.05 0.22

3 WS Hy.
+ RSD WL

0.048-0.051 0.05-0.18 0.1 0.22

4 WS Hy.
+ RSD WL

0.048-0.052 0.05-0.18 0.09 0.22

5 WS Hy.
+ RSD WL

0.048-0.052 0.05-0.18 0.1 0.22

6 WS Hy.
+ RSD WL

0.048-0.052 0.05-0.17 0.1 0.22

Table 2: Uncertainty and accuracy for the calibration scenarii
based on water stage hydrographs and RSD water levels.

5 CONCLUSIONS AND FUTURE WORK

Smith(1997) andRaclot and Puech(2003) argued that potential
exploitations of flood images go beyong simple flood extent map-
ping. In this context, previous studies succeeded in estimating
water levels using a merging between SAR images of floods and
DEM, but with important uncertainties (1-3 m forBrakenridge
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et al.(1998)) or with good accuracy (Schumann et al., 2007) but
uncertainties difficult to assess (Schumann et al., submitted). In
this framework, the methodology presented in this study allows
the estimation of water levels with associated uncertainty bounds,
accurately enough to reduce uncertainties in a hydraulic model
calibration. The RSD water level estimates have been obtained
with a± 54 cm mean uncertainty, using an ENVISAT SAR im-
age of a River Alzette flood event. This water level estimation
presents a lower uncertainty than the one observed byBraken-
ridge et al.(1998). This is due to an analysis of the hydraulic
relevance of RSD flood extents and a hydraulic coherence algo-
rithm, previously developed by (Raclot and Puech, 2003) for ar-
ial photographs. Although the uncertainty is higher in the current
study than in the study ofRaclot and Puech(2003) (uncertainty
≈ ± 20 cm), satellite imagery offers enhanced potential to ob-
tain RSD water levels that are accurate enough to be useful in
hydraulic model calibration.

Integrated in a hydraulic model during calibration in addition to
traditional calibration data -e.g. water stage hydrographs-, the
RSD water levels are capable of significantly reducing uncertain-
ties - i.e. by reducing the ranges of acceptable parameter values,
even in the case of quite rather abundant ground observed data.
Indeed, for a 1-D model of the river Alzette, integrating the RSD
water level in the calibration complementary to six water stage
hydrographs distributed along the river bed, the reduction of the
uncertainty on the simulated water levels is equal to 7 cm. This
result shows the efficiency of the RSD water levels for reduc-
ing calibration uncertainty. As a consequence, using the method-
ology presented in this study, the predictions of the calibrated
model become more suitable due to a better constraining, both
temporally and spatially.

Furthermore, with the launch of new radar satellites (e.g. ALOS,
RADARSAT-2, Cosmo-Skymed, TerraSar-X) that have better spa-
tial and radiometric resolutions, the uncertainties of water level
estimates will presumably be further reduced, getting closer to
the results ofRaclot and Puech(2003) obtained with aerial pho-
tographs. Moreover, in addition to the use of RSD water levels
for calibration, it would be of great interest to evaluate the pos-
sibilities of assimilating such data in hydraulic models (Matgen
et al., 2007), since this may allow the forecasting of flood extents
with a higher accuracy.
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d’eau en plaine inondée à partir d’images satellites radar et de
données topographiques fines).Remote Sensing Journal (In
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