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ABSTRACT:  
 
This paper examines the applicability of binary decision tree (DT) classifier and ASTER data for the monitoring of wetland 
vegetation at plant family level (eight dominant plant families in the study area, bare soil, marshland, residential area, and waterbody) 
in the Banghu Lake, a seasonal lake in the Poyang Lake region. Two sets of ASTER Level-1B Registered Radiance at the Sensor 
products, ASTER On-Demand L2 Surface Kinetic Temperature products, and ASTER Digital Elevation Model products on April 17, 
2006 and July 3, 2005 were used in this study. In addition to the reflectance of VNIR and SWIR bands, environmental variables 
which can be derived from ASTER products such as vegetation indices, water indices, topographic information, land surface 
temperature, and principal components were selected as the inputs of DT classifier. Field data collected in December, 2007 is 
grouped into training and testing samples for DT classification. DT performed poorly compared to those of maximum likelihood 
classification and support vector machines with the reflectance of VNIR and SWIR bands in single date. The classification accuracy 
was slightly improved by adding environmental indices and variables derived from ASTER products. In particular, topographic 
information, such as elevation, slope, and aspect, increased the classification accuracy the most. The classification accuracy is 
dramatically refined with the combination of multi-temporal ASTER inputs. However, mainly due to the problems with the training 
pixels for each class, overall and individual class accuracies remain low. 
 
 

1. INTRODUCTION 

 
Wetlands are one of the most important components of the 
whole ecosystem, accounting for 6.4% of the world’s land area 
(9million km2). All wetlands share three common 
characteristics: the ability to hold water; the presence of moist 
to wet soil; and the presence of water vegetation (Batzer and 
Sharitz, 2000). In particular, the presence of water vegetation 
plays a very critical role in wetlands ecosystems. Recently, 
wetland vegetation has been threatened by human activities 
which will, in turn, threaten the whole wetland ecosystem 
(Mitsch and Gosselink, 2000). These human activities include 
wetland draining or filling, hydrological alterations, chronic 
degradation due to nonpoint source pollution, and the 
introduction of exotic species (Cronk and Fennessy, 2001). 
There are also increasing concerns about the impact of global 
change including climate change on plant populations (Ji, 2008). 
Wetland loss around the world has been extensive in terms of 
area and vegetation type. 

In the past, information about wetland vegetation was obtained 
through field survey and aerial photo interpretation. In the last 
two decades, the development of remote sensing has replaced 
these methods for mapping wetland vegetation. The utilization 
of multi-temporal remote sensing data has improved the 
mapping accuracy of wetland vegetation (Lunetta, and Balogh, 
1999). In addition, other environmental indices and variables 
derived from remote sensing data have been used for improving 
mapping accuracy of wetland vegetation (De Colstoun et al., 
2003). However, the research of wetland vegetation mapping 
with the combination of multi-temporal remote sensing data and 

these environmental variables has not been fully pursued yet 
(Zeng, et al., 2007). 

Maximum likelihood classification (MLC), decision tree (DT), 
and artificial neural network have been widely used as the 
classifiers of wetland vegetation using remote sensing data 
(Miller and Franklin, 2002; Rogan et al., 2002; Goel et al., 
2003). In particular, DT classifier has been the preferred 
method because it enabled people to classify vegetation and 
land cover from multiple sources of data from different 
measurement scales, without considering distributional 
assumptions. However, the results from the studies with these 
classifiers were totally different because they applied each 
method in different conditions. The comparison study of these 
classification methods using multi-temporal remote sensing data 
and other environmental variables, such as land surface 
temperature and topographic information, has seldom been 
conducted. 

This study investigates the applicability of binary DT classifier 
and the Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) data for the monitoring of 
wetland vegetation. More specific objectives of this study are: 
(1) to examine whether DT classifier can perform better than 
other classifiers for the wetland vegetation classification at 
plant family level; (2) to evaluate how environmental indices 
and variables derived from ASTER data can improve 
classification accuracy with DT classifier; and (3) to study how 
multi-temporal ASTER data can improve classification 
accuracy with DT classifier. 
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2. STUDY AREA 

We selected the Banghu Lake, a seasonal lake in the Poyang 
Lake region, as our study area (Figure 1.). Poyang Lake 
(115°47’ - 116°45’ E, 28°22’ - 29°45’ N) is located in the 
northern part of Jiangxi Province and to the southern bank of 
the lower reach of the Yangtze River. Water from five main 
rivers - Ganjiang, Huhe, Xinjiang, Raohe, and Xinshui - flows 
through Poyang Lake and discharges in the Yangtze River 
through a narrow passage at Hokou (Hui et al., 2007). Poyang 
Lake exhibits a large fluctuation in seasonal water level because 
water flows from these five rivers are different from one 
another (Chen and Lin, 2004). In the flood season, Banghu 
Lake is joined to Poyang Lake, and it is separated in dry season. 

Poyang Lake wetlands serve as the largest wintering spot for 
wild migratory birds in Asia – recently reported as the 
intermediate host of avian influenza, and as a livable habitat for 
a snail species – the intermediate host of schistosome (Chen and 
Lin, 2004; Feare, 2007). Recently, the dramatic changes in 
landscape patterns in Poyang Lake wetlands due to economic 
growth and urbanization in the last few decades have brought 
the shrink of the wetlands, deterioration of water quality, and 
loss of biodiversity. For the control of avian influenza and 

schistosomiasis, the dynamic modeling of wetland vegetation 
using remote sensing and other spatial datasets in Poyang Lake 
wetlands requires immediate action. 

 
 

3. DATA COLLECTION AND PRE-PROCESSING 

 
3.1 Field Data 

Field data was collected in December, 2007. The areas covered 
with at least 45m*45m squares of homogeneous land cover 
were recorded as sample plots. At each sample plot, name, 
height, coverage percent, and condition for first four dominant 
plants were recorded. Remarks on ground coverage were 
recorded as well. Handheld Global Positioning System (GPS) 
devices were used to acquire the geographic location of sample 
plots. 78 sample plots collected in the field were grouped into 
eight plant families (Table 1.), bare soil (BRS), and marshland 
(MSL). Sample plots were converted into 45m*45m rectangular 
polygons and saved as a shape file in ArcGIS 9.2. 

 
 

Figure 1. Study area – Banghu Lake in Poyang Lake region, Jiangxi Province, China 
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Family Main Species
Compositae (CMP) Artemisia lavandulaefolia DC, Artemisia selengensis Turcz, 
Cyperaceae (CPR) Carex capillacea, Carex scabrifolia, Carex unisexualis C.B. Clarke, Eleocharis vallcculosa Ohwi

Graminae (GRM)
Cynodon dactylon (Linn.) Pers, Paspalum paspaloides (Michx.) Scribn, Phalaris arundinacea Linn
Phragmites australis (Cav.) Trin. ex Steud, Poa pratensis Linn
Triarrhena lutarioriparia L. Liou var. lutarioriparia

Polygonaceae (PLG) Polygonum hydropiper Linn, Polygonum thunbergii Sieb. et Zucc, Rumex maritimus Linn
Porellaceae (PRL) Porella pinnata linn
Potamogetonaceae (PTM) Potamogeton distinctus 
Roseceae (RSC) Potentilla limprichtii J. Krause

Other Plants (OTP)
Kalimeris Indica  (Asteraceae), Coronopus Didymus (Linnaeus) J. E. Smith  (Brassicaceae)
Gossypium herbaceum L  (Gossypium), Sapium sebiferum (Linn.) Roxb  (Euphorbiaceae)
T. pratense  (Fabaceae), Camellia sinensis O. Ktze  (Theaceae)  

Table 1. Dominant species in study area and their plant families 

 
3.2 ASTER Data 

Two ASTER data acquired on April 17, 2006 and July 3, 2005 
were used in this study. Of a number of ASTER standard and 
on-demand data products, ASTER Level-1B Registered 
Radiance at the Sensor product (AST_L1B), ASTER On-
Demand L2 Surface Kinetic Temperature product (AST_08), 
and ASTER Digital Elevation Model product (AST14DEM) are 
selected in this study. 

After removing the effects of cross-talk in SWIR bands, 
AST_L1B data were orthorectified using AST14DEM data and 
one geoid point (Iwasaki and Tonooka, 2005). Radiance at the 
sensor in all visible and near infrared (VNIR) and shortwave 
infrared (SWIR) bands of AST_L1B data were then converted 
into spectral reflectance at the sensor (Tsuchida, 2008). No 
atmospheric corrections was performed because no information 
about atmospheric condition such as water vapor was available. 
Topographic effects were not removed because our study area 
was relatively flat and those effects can be ignored. We did not 
conduct any geometric correction among product data and 
strongly depended on the ground control point (GCP) sets 
assorted with each ASTER product. All data was resampled to 
15 meters. 

In addition to digital elevation model (DEM) and land surface 
temperature (LST), other environmental indices and variables 
which can be derived from ASTER data were also selected as 
the input of decision tree classifier. The normalized difference 
vegetation index (NDVI), the soil-adjusted vegetation index 
(SAVI) (Huete, 1988), the normalized difference water index 
(NDWI) (McFeeters, 1996) and the modified normalized 
difference water index (MNDWI) (Xu, 2005) for each data was 
calculated from the reflectance of VNIR and SWIR bands. 
Principal component analysis (PCA) was also performed with 
the reflectance of VNIR and SWIR bands for each data. The 
first principal components, explaining more than 95% of the 
variance, were selected. Slope and aspect were calculated using 
DEM. All input data in two periods (reflectance of VNIR and 
SWIR bands, two VIs, two WIs, elevation, slope, aspect, LST, 
and PC1-2) was stacked into one ENVI image file. 

 
4. METHOD 

 
The following analyses were carried out to investigate the 
applicability of DT classifier and ASTER data for the mapping 

of wetland vegetation. Field sample plots were randomly 
separated into two groups – training samples and testing 
samples – roughly with the proportion of 60:40 (Table 2.). Each 
sample accounted for nine pixels of 15m resolution ASTER 
inputs because it was recorded only at the center of a 45m*45m 
square of homogeneous land cover during the field data 
collection. Training samples of residential area (RDT) and 
waterbody (WTR) were also collected through the visual 
interpretation of both ASTER false color images. Training and 
testing sample pixels are the same throughout the whole 
analysis. Mean + one standard deviation method was utilized on 
pruning trees. All classification procedures were performed in 
ENVI 4.3 except DTs were built with the rpart package in R 
2.6.1. The performance of the classifiers was evaluated only for 
plant family classes (first eight classes in Table 2.) based on 
overall accuracy, Kappa coefficient, and producer’s / user’s 
accuracy of each class. Confusion matrices for the classification 
results were omitted due to the space limitation. 

Class Field
Sample

Training
Sample

Testing
Sample

Compositae (CMP) 45 27 18
Cyperaceae (CPR) 288 171 117
Graminae (GRM) 189 117 72
Polygonaceae (PLG) 27 18 9
Porellaceae (PRL) 27 18 9
Potamogetonaceae (PTM) 36 18 18
Roseceae (RSC) 27 18 9
Other Plants (OTP) 45 27 18
Bare soil (BRS) 9 9 0
Marshland (MSL) 9 9 0
Residential (RDT) 0 0 0
Waterbody (WTR) 0 0 0  

Table 2. Number of sample pixels used for classification 
 

4.1 Comparisons of Classification Techniques with Single 
Date ASTER Reflectance 

To test the performance of DT classifier, the reflectance of 
ASTER VNIR and SWIR bands in 2006 was classified utilizing 
DT classifier. We also performed an MLC and a support vector 
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machine (SVM) (Huang et al., 2002) classification with the 
same ASTER inputs for comparison. 

4.2 DT Classifications with Different Combinations of 
Single Date ASTER Inputs 

To examine how environmental indices and variables derived 
from ASTER data can contribute to the improvement of 
classification accuracy with DT classifier, we performed a set 
of DT classifications with six different ASTER input 
combinations: (1) reflectance of VNIR and SWIR bands in 
2006 (Ref) + vegetation indices (NDVI, SAVI: VI); (2) Ref + 
water indices (NDWI, MNDWI: WI); (3) Ref + elevation, slope, 
and aspect (TPG); (4) Ref + LST; (5) Ref + PC1-2 (PC); and (6) 
Ref + VI + WI + TPG + LST + PC (ALL). 

4.3 DT Classifications with Different Combinations of 
Multi-temporal ASTER Inputs 

To evaluate how multi-temporal ASTER inputs can improve 
DT classification accuracy, another set of DT classifications 
was executed with four different ASTER input combinations: (1) 

reflectance of VNIR and SWIR bands both in 2005 and in 2006 
(Ref06 + Ref05); (2) Ref06 + Ref05 + all environmental 
variables in 2006 (ALL06); (3) Ref06 + Ref05 + all 
environmental variables in 2005 (ALL05); and (4) Ref06 + 
Ref05 + ALL06 + ALL05.  

 
5. RESULTS 

5.1 Performance of DT, MLC, and SVM Classifiers Using 
Single Date ASTER Reflectance 

The classification results with MLC, DT, and SVM classifiers 
are shown in Table 3.. Classification accuracy indicates that 
classification with MLC performed the best (overall accuracy = 
51.36%, Kappa = 0.30); with SVM, the second (overall 
accuracy = 46.46%, Kappa = 0.25); and the least accurate was 
DT (overall accuracy = 41.94%, Kappa = 0.26). 

The classification with DT generated the highest producer’s and 
user’s accuracy for Compositae (CMP) and other plants (OTP) 

 

 

Prod. Acc. User Acc. Prod. Acc. User Acc. Prod. Acc. User Acc.
CMP 66.67% 33.33% 29.41% 35.71% 0.00% 0.00%
CPR 46.30% 60.98% 47.62% 48.19% 62.96% 54.84%
GRM 51.39% 41.67% 40.91% 50.00% 47.22% 45.33%
PLG 22.22% 7.41% 0.00% 0.00% 0.00% 0.00%
PRL 44.44% 80.00% 50.00% 100.00% 77.78% 87.50%
PTM 38.89% 24.14% 0.00% 0.00% 50.00% 16.67%
RSC 0.00% 0.00% 33.33% 100.00% 0.00% 0.00%
OTP 27.78% 71.43% 26.67% 15.38% 0.00% 0.00%
Overall
Kappa

51.36%
0.3

46.46%
0.25

Class
Name

DT MLC SVM

41.94%
0.26  

Table 3. Accuracy Comparisons with Three Classifiers 
 

Prod. Acc. User Acc. Prod. Acc. User Acc. Prod. Acc. User Acc.
CMP 66.67% 33.33% 66.67% 33.33% 94.44% 39.53%
CPR 40.52% 68.12% 42.59% 67.65% 44.44% 70.59%
GRM 54.17% 38.24% 51.39% 39.36% 56.94% 47.13%
PLG 22.22% 7.41% 0.00% 0.00% 22.22% 7.14%
PRL 44.44% 80.00% 44.44% 80.00% 44.44% 80.00%
PTM 38.89% 24.14% 38.89% 24.14% 38.89% 24.14%
RSC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
OTP 27.78% 33.33% 72.22% 33.33% 16.67% 50.00%
Overall
Kappa

Prod. Acc. User Acc. Prod. Acc. User Acc. Prod. Acc. User Acc.
CMP 0.00% 0.00% 66.67% 35.29% 0.00% 0.00%
CPR 50.93% 58.61% 41.67% 58.44% 68.10% 63.20%
GRM 56.94% 39.81% 51.39% 39.78% 44.12% 65.22%
PLG 22.22% 7.69% 0.00% 0.00% 0.00% 0.00%
PRL 0.00% 0.00% 44.44% 80.00% 22.20% 50.00%
PTM 38.89% 31.62% 38.89% 23.33% 38.89% 33.33%
RSC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
OTP 16.67% 75.00% 77.78% 42.42% 50.00% 21.95%
Overall
Kappa

40.00% 42.65% 47.92%
0.19 0.27 0.28

0.25 0.28 0.31
Class
Name

Ref+LST Ref+PC Ref+ALL

Class
Name

Ref+VI Ref+WI Ref+TPG

40.42% 42.70% 45.19%

 

Table 4. Accuracy Comparisons of Classifications with Single Date ASTER Reflectance and Environmental Indices / Variables 
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families. Only DT could classify Polygonaceae (PLG) family, 
although its producer’s and user’s accuracy remained low. MLC 
had the highest user’s accuracy for CMP, Gramineae (GRM), 
Porellaceae (PRL), and Roseceae (RSC) families. MLC was the 
only classifier for RSC family, although its producer’s accuracy 
was low. SVM obtained the highest producer’s accuracy for 
Cyperaceae (CPR), PRL, and Potamogetonaceae (PTM) 
families. However, SVM could not classify CMP, PLG, RSC, 
and OTP families at all. 

5.2 DT Classification Using Single Date ASTER 
Reflectance and ASTER-derived Environmental Indices / 
Variables 

Table 4. shows the DT classification results using different 
combinations of single date ASTER inputs. The accuracy 
assessment results indicated that Ref + ALL could improve the 
overall accuracy DT classification the best, with an increase of 
5.98% (41.94% to 47.92%), while Ref + TPG could make the 
best improvement in Kappa coefficient, with an increase of 0.05 
(0.26 to 0.31). The addition of WI and PC could not contribute 
any notable improvement to the classification accuracy. Ref + 

VI and Ref + LST negatively affected the accuracy. 

For the individual plant families, Ref + TPG showed the 
greatest amount of improvement in both the producer’s and 

user’s accuracy for CMP, and in the user’s accuracy of CPR. 
The addition of VI did not have any significant effects on the 
classification accuracy. Ref + WI and Ref + PC made great 
improvements of the producer’s accuracy for OTP. The addition 
of LST slightly increased the user’s accuracy for PLG and OTP. 
Ref + ALL improved the producer’s accuracy for CPR and the 
user’s accuracy for GRM and PTM the most. The producer’s 
and user’s accuracy for PLG and RSC could not be improved 
significantly by adding any environmental indices and variables 
derived from ASTER products. 

5.3 DT Classification Using Multi-temporal ASTER 
Reflectance and ASTER-derived Environmental Indices / 
Variables 

Table 5. indicates the DT classification results using different 
combinations of multi-temporal ASTER inputs. Although every 
combination significantly improved the overall accuracy and 
kappa coefficient, the combination of Ref06 + Ref05 + ALL05 
made most significant improvements, with the increases of 
15.47% (41.94% to 57.41%) in the overall accuracy and 0.15 
(0.26 to 0.41) in Kappa coefficient. Ref06 + Ref05 + ALL06 
showed the least improvements both in the overall accuracy and 
in Kappa coefficient. 

 
 

 

Prod. Acc. User Acc. Prod. Acc. User Acc. Prod. Acc. User Acc. Prod. Acc. User Acc.
CMP 33.33% 40.00% 33.33% 35.29% 100.00% 52.94% 61.11% 40.74%
CPR 78.70% 69.67% 68.10% 65.29% 75.93% 66.13% 69.83% 75.00%
GRM 51.39% 54.41% 43.06% 46.97% 44.44% 65.31% 56.94% 59.42%
PLG 22.22% 9.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
PRL 88.89% 100.00% 55.56% 50.00% 22.22% 100.00% 22.22% 100.00%
PTM 38.89% 31.82% 38.89% 30.43% 83.33% 51.72% 38.89% 23.33%
RSC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
OTP 23.53% 80.00% 72.22% 37.14% 33.33% 22.22% 52.94% 26.47%
Overall
Kappa 0.33

57.41%
0.43

52.80%
0.38

Class
Name

Ref06+Ref05 Ref06+Ref05+ALL06 Ref06+Ref05+ALL05 Ref06+Ref05+ALL06+ALL05

55.39%
0.39

50.72%
 

Table 5. Accuracy Comparisons of Classifications with Multi-temporal ASTER Reflectance and Environmental Indices / Variables 

 

For the individual plant families, the combination of Ref06 + 
Ref05 + ALL05 made the greatest improvements in both 
producer’s and user’s accuracy for CMP and PTM. Ref06 + 
Ref05 improved both the producer’s and user’s accuracy for 
PRL, the producer’s accuracy for CPR, and the user’s accuracy 
for PLG and OTP. Ref06 + Ref05 + ALL06 only showed 
significant improvement in the producer’s accuracy for OTP. 
Ref06 + Ref05 + ALL06 + ALL05 resulted in the most 
improvement in both producer’s and user’s accuracy for GRM 
and the user’s accuracy for CPR. RSC could not be classified 
by any combinations of multi-temporal ASTER reflectance and 
the environmental indices / variables derived from ASTER 
products. 
 
 

6. DISCUSSION 

All results from the comparisons of the classification methods 
for the reflectance of ASTER VNIR and SWIR bands have 
relatively poor classification accuracy, although DT can 

classify CMP and OTP families more accurately than MLC and 
SVM. It is quite possible that the classes at plant family level 
defined in this study contain substantial training errors and/or 
spectral overlaps with other classes. Especially in this study, the 
definition of OTP family can largely affect the classification 
results because it consists of different plant families combined 
without considering their spectral characteristics. The poor 
accuracy also indicates that in this case, the imbalance in the 
field sample numbers among classes negatively affects the 
classification result. Particularly for DT classifier, this 
imbalance can produce better results for classes with larger 
numbers of training samples at the expense of classes with 
smaller numbers, as was discussed by de Colstoun et al. (2003). 
In order to archive more acceptable classification accuracy, we 
must reconsider the class definitions and make efforts to 
arrange the number of training pixels per class equivalently. 
Also, future field trips should be deliberately planned to collect 
roughly equal numbers of sample plots per class and as much 
variety of sample plots as possible, taking plant structures and 
soil conditions into account. 
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The classification with the combination of single date ASTER 
reflectance and the environmental indices and variables derived 
from ASTER products reveals that topographic information 
(TPG), such as elevation, slope, and aspect, can improve the 
classification accuracy the most. This result is consistent with 
the research by Zeng et al. (2007), although we do not assess 
which topographic information is primarily responsible for this 
improvement. The combination of ASTER reflectance (Ref) 
and TPG also makes a great improvement for the classification 
of CMP family. Temperature information (LST) does not 
contribute to the improvement of classification accuracy. It is 
well known that general temperature retrieval algorithms are 
largely affected by waterbody and shadows. Particularly in 
wetlands, the existence of water can lead to the less accuracy in 
temperature retrieval. It also can be inferred that AST_08 
product might not have enough spatial resolution and/or that its 
inter-scope registration might not be accurate enough for that 
purpose. To refine the accuracy of wetland plant classification 
with DT, other environmental indices and variables need to be 
tested. Particularly, information about soil condition would 
improve the classification accuracy. Also, texture information 
could contribute to the improvement, as Wright and Gallant 
(2007) examined. 
 
The classification with the combination of multi-temporal 
ASTER reflectance and the environmental indices and variables 
derived from ASTER products shows that the combination of 
ASTER reflectance in 2006 (Ref06), that in 2005 (Ref05), and 
all environmental indices and variables in 2005 (ALL05) make 
the most improvement in classification accuracy. It should be 
noted that even in a place where the water level fluctuates 
seasonally like our study area, the combination of multi-
temporal ASTER inputs significantly improves the 
classification accuracy. The addition of ALL05 improves the 
classification accuracy more than that of ALL06. It is possible 
that ALL06 contains more noise than ALL05. Atmospheric 
correction and topographic correction could reduce the noise in 
these inputs and consequently improve the classification 
accuracy. In addition, mis-classification can be reduced through 
the precise geometric correction between ASTER inputs in 
2006 and those in 2005, because GCP sets assorted with 
ASTER products might include enough errors to affect the 
classification results. The inter-scope registration accuracy also 
might need to be examined. Finally, the improvement in 
classification accuracy of wetland vegetation at plant family 
level can be archived through other techniques, such as bagging 
and random forest, as well. 
 
 

7. CONCLUSIONS 

 
This study has revealed the applicability of ASTER data for the 
classification of wetland vegetation at plant family level using 
DT. Our results indicated that the performance of DT classifier 
is poorer than those of MLC and SVM classifiers when using 
the reflectance of VNIR and SWIR bands. By adding 
environmental indices and variables derived from ASTER 
products, the classification accuracy was slightly improved. The 
classification accuracy is dramatically refined with the 
combination of multi date ASTER inputs. However, overall and 
individual class accuracies remain low mainly due to the 
problems with the training pixels for each class.  

ASTER is a unique sensor which provides us a variety of 
products that can be used for environmental analysis, 
particularly as the inputs for DT classifier, without the heavy 
burden of collecting different kinds of datasets from multiple 
data gateways. DT classifier can accommodate data with 
different scales and does not need any distributional 
assumptions. DT classifier is generally fast and insensitive to 
noise in inputs. Although there is still room for improvement, 
we believe that our approach is applicable to other remote 
sensing application fields as well.  
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