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ABSTRACT: 
 
In this work we present the first results of an analysis applied to detection of landslides features using remote sensing techniques in 
rock masses at the Betic Cordilleras (southern Spain). After geometric and radiometric corrections, several techniques are used to 
facilitate a first visual approach to landslide identification, from enhancement and filtering (laplacian and textural) of panchromatic 
images, to colour compositions and fusions, vegetation index (NDVI) calculus and principal component analysis of multi-spectral 
imagery, corresponding to different sensors (Landsat ETM, Spot 5 and Ikonos). By means a GIS analysis, we compute basic 
statistics of whole images and pixels corresponding to different landslides typologies (rock falls, rock slides and debris flows) and in 
addition Kolmogorov-Smirnov coefficient to estimate the correlation between images and movements. In general terms, original 
panchromatic and multi-spectral bands present better correlations than processed images (filters, NDVI and PC bands), being the 
spectral signature different depending on landslides typology. Rock falls appear in darker zones of images while rock slides and 
especially debris flows appear in clearer zones. In this way, digital classification allows identify mobilized areas by typologies, but 
partially mixed with other land-uses such as soils, fresh rock and alluvial materials. The employment of textural filters (variance, 
mean euclidean distance and GLCM entropy) that present higher values in landslides zones permit the discrimination among 
landslides and other land-uses. The conclusion is the need of combining digital classification and textural analysis to identify 
landslide features or mobilized areas. 
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1. INTRODUCTION 

Remote sensing techniques have been widely used from 1990 
years in landslide research and for this purpose different spatial 
and spectral resolution imagery have been employed. This 
research includes photo-interpretation and inventory of large 
landslides, determinant factors analysis, stereoplotting of 
movements, and automatic detection by textural analysis.  
 
The irregular boundaries and surface textures of landslides 
mean that they often produce characteristic features that can be 
enhanced in remote sensing imagery through textural analysis. 
In this sense different edge enhancement filters such as Sobel 
and laplacian (Eyers et al., 1995; Mason et al., 1995) have been 
applied to identify the hummocky main body, the accumulation 
toe, and the crown and back scarp of the landslides. More 
sophisticated statistical methods such as grey level co-
ocurrence and textural spectrum (Wang and He, 1990) are able 
to discriminate between rough and smooth surfaces and to 
landslide detection in different environments (Hervás and Rosin, 
1996, 2001; Hervás et al, 1996, Whitworth et al., 2001, 2005). 
These techniques have been applied to high resolution imagery 
(ATM, Ikonos and Quickbird) and to medium resolution 
imagery (Landsat, Spot and Aster), with a less detailed features 
detection but with a lower noise (Hervás and Rosin, 2001). 
These textural analyses are usually a good approach to landslide 
detection, discriminating between unstable and stable zones.  
 
Other approaches to landslide research consist in image 
enhancement techniques, especially colour compositions (false 

colour, FCC or real colour, RCC). In this sense, different image 
compositions and fusions (pan-sharpening) have been made, 
taking advantage of the higher spectral resolution of multi-
spectral imagery and the higher spatial resolution of 
panchromatic imagery (Nichol and Wong, 2005; Nichol et al., 
2006). The best results are obtained in zones with a closed 
vegetation cover and affected by debris flows or debris slides, 
where a strong contrast between mobilized zones (with a loss of 
vegetation cover) and non-mobilized zones (that conserve the 
vegetation cover) takes place, especially in NIR band. 
Nevertheless, features with a similar spectral properties to 
landslides scarps, such as roads, ways, channels, etc. have to be 
eliminated through corridor filters along linear features and 
slope filters (Haeberling et al., 2004).  
 
The determination of vegetation index NDVI (Chang and Liu, 
2004) or other index between image bands such as NDMIDIR  
(Vohora & Donohue, 2004; Zhang et al., 2005) between near 
and middle infrared and the analysis of spectral signatures 
produce similar results that false color compositions. In this 
way, the NDVI index has been very useful to identify debris 
flows in zones with a dense vegetation cover. Principal 
components analysis (PCA) has also been used to intervene in 
classifications (Whitworth et al., 2005) and in visual 
interpretation by means of false colour compositions. 
 
3D and stereoscopic analyses allow a good interpretation of 
landslides through recognition of morphological features such 
as scarps, accumulation zones, etc., not easily identifiable in 2D 
views. From 3D image views over a DTM (Hervás and Rosin, 
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2001; Haeberling et al., 2004) to photogrammetric techniques 
such as stereoscopic viewing or DTM extraction (Zhihua, 2005; 
Weirich and Blesius, 2006), these methodologies have been 
used in landslides studies when data are available. Finally, 
multi-temporal imagery has been used to study landslide 
activity from pixel change detection techniques (Rosin and 
Hervás, 2003) to quantitative 3D analysis of landslides 
displacement.  
 
 

2. STUDY AREA AND IMAGE DATA 

This is an area prone to terrain instability, because of a 
combination of an abrupt relief and a geological setting with a 
high susceptibility to landslides. 
 
 

 

 
 

Figure 1. Geographic location. 
 
 
2.1 Geographical location and relief description 

The study area is located in a region of about 600 Km2, located 
in Granada province (Southern Spain) at the South of Sierra 
Nevada, between this range and the coast of Mediterranean Sea. 
This is a rural area with small villages disseminated overall the 
region and communicated by secondary roads. The relief is 
abrupt with a vertical interval near 3000 meters with steep 
slopes. Drainage network is very dense and organized, with a 
lot of ravines tributaries of Guadalfeo River. 
 
2.2 Geology, climate and vegetation 

From the geological point of view, the area is located within 
Internal Zones of Betic Cordilleras, between Alpujárride and 
Nevado-Filabride Domains. Alpujárride Domain is formed by 
metapelitic and carbonate rock masses, while Nevado-Filabride 
Domain is formed mainly by metapelitic rock masses. In 
between them, Neogene and Quaternary materials 
(conglomerate, sands clays and marls) outcrop. 
 
The climate is typically Mediterranean except in higher zones 
over 1800 meters. Mean temperatures vary from 12ºC in winter 
to 18ºC in summer. Annual mean precipitation is about 600-800 
mm, but in an irregular regime with wet years over 1000 mm 
and dry years below 500 mm. Vegetation is variable with zones 
well vegetated (pine and oak forests, dense brush, grass) and 
arid zones with scarce vegetation (brush and waste lands). 
 

2.3 Image data 

High to medium resolution remote sensing imagery from 
different satellites in panchromatic and multi-spectral modes 
have been used. Images properties are summarized in table 1. 
Spot 5 and Landsat ETM+ images cover the whole zone while 
Ikonos is available only in the central sector. In Figure 1 we 
also show the distribution of satellite images. 
 

Resolution Satellite/
Sensor Bands Spa Band Rad.

Panchromatic 1 1 2048Ikonos Vis(RGB)-NIR 4 4 2048
Panchromatic 2,5 1 256
Vis(GB)-NIR 10 3 256Spot 5 
SWIR 20 1 256
Panchromatic 15 1 256
Vis(RGB)-NIR-
SWIR 

30 6 256Landsat 7
ETM + 

TIR 60 1 256
 
Table 1.  Images properties. Vis: Visible; R: Red; G: Green; B: 
Blue; NIR: Near Infrared; SWIR: Short-wave (middle) Infrared; 

TIR: Thermal Infrared 
 
 

3. IMAGE PROCESSING 

Image processing employed in this work includes several 
techniques, from image pre-processing to digital classification 
that can be seen in figure 2. 
 
3.1 Pre-processing 

Here, we talk about techniques to converting original images to 
cartographic products and to preparing image to other analysis. 
First, images have been geometrically corrected and 
georeferenced in the UTM projection. Correction has been 
made by means control points and models implemented in 
ERDAS software for different sensors (Ikonos, Spot, etc.), over 
a DTM of 10 m resolution. Second, we have applied single 
Chavez radiometric correction to eliminate atmospheric effects. 
 
3.2 Enhancement and colour compositions 

After pre-processing, image bands are enhanced by means of 
lineal stretch of histograms (figure 2 c), except in Ikonos 
images where square-root and logarithmic stretch are also 
applied. The available Ikonos images have wide shaded zones 
and in this case this non-lineal stretch are recommended 
(Roberts, 2005). 
 
Different colour compositions have been made from corrected 
image bands. Apart from RCC, FCC with inclusion of NIR 
band allow to distinguish between zones covered or non-
covered by vegetation, a factor which can show the presence of 
landslide scarps. Other colour compositions with inclusion of 
SWIR are useful to show lithological changes or boundaries, 
frequently related to landslides. 
 
Finally, in those image compositions where Visible and NIR 
bands intervene, fusion of multi-spectral and panchromatic (that 
cover VNIR spectrum region) images have been made. These 
fusion or pan-sharpening techniques provide both RCC and 
FCC with the higher spatial resolution of panchromatic images 
(Nichol and Wang, 2005). 
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Figure 2. Spot 5 Image: A. Location; C: Panchromatic corrected 
image; E: NDVI vegetation index; G: Supervised classification. 

 

 

 
 
Figure 2. B. Rock slides location; D: Variance texture filter; F: 

PC band 1; H: Modified supervised classification. 

353



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B8. Beijing 2008 

3.3 Filters  

Different filters have been applied mainly to panchromatic 
images. First, we use convolution edge-enhancement filters 
(3x3) such as laplacian and Sobel to find landslides lineal 
features: scarps, crown, limits, etc. Second, we apply textural 
filters such as variance (figure 2 d), mean euclidean distance 
(MEUC) and grey-level co-ocurrence matrix (GCLM) entropy 
to calculate the variability of one pixel to its neighbourhoods. 
Nevertheless, these textural filters, especially when they are 
applied to thermal bands allow detect irregular morphologies as 
those in landslides (Whitworth et al., 2003, 2005).  
 
3.4 Indexes and transformations 

Vegetation indexes are very useful to identify landslide and 
debris flow scarps, especially in zones with a dense vegetation 
cover (Chang an Liu, 2004). Besides, they decrease the 
differences between shaded and sunned areas, as those we can 
find in Ikonos images of the study zone (figure 2 e).  
 
PCA allow transform original (corrected) image bands in new 
uncorrelated bands. By this reason, single bands and FCC 
elaborated from PCA show a higher variability than original 
bands and allow detect features more clearly. In this study, we 
have obtained a number of PC bands equal to original bands. In 
figure 2 f, PC 1 band is shown. 
 
3.5 Digital classification 

Digital supervised classification has been made from multi-
spectral imagery (figure 2 g-h), discriminating between four 
basic land-uses and materials: urbanised-waste lands, vegetation 
(from grass to cultivations to forest), soils-brush cover, and 
fresh rock masses-alluvial deposits. Apart of these, landslides in 
their different typologies have been established as fifth class. In 
this way, three classified images for each sensor have been 
elaborated. An analysis of separability of spectral signatures 
will be done to decide if it is possible to distinguish between 
landslide typologies and between landslides and stable terrain. 
 
 

4. GIS ANALYSIS 

Two approaches have been made: first, visual interpretation 
from enhanced images, filters, colour compositions and 
classifications (figure 2); second, a GIS statistical analysis. 
 
4.1 Zone statistical analysis 

In this analysis, a frequency distribution or histogram of an 
image in the zone defined by other image o vector feature is 
obtained. In our case, we determine the histogram of the 
different image bands in a pixel sample of different typologies 
of landslides (rock falls, rockslides and debris flows) and 
compare this with the histogram of whole image. 
 
4.2 Correlation coefficients 

To determine if an image can be useful to discriminate between 
landslides and stable zones Kolmogorov-Smirnov coefficient 
(KS) is calculated. This coefficient shows the differences 
between whole image histogram and landslide samples 
histograms. KS coefficient is higher as the difference between 
histograms or distributions. Results are shown in table 2. 
 
 

Sensor Image Rock falls Slides Debris flows
Band Me St Me St KS Me St K Me St KS
Ikonos 
Pan 

25 13 18 13 -28 26 14 04 23 15 -14

Laplacian 41 24 42 23 03 41 25 02 41 24 02
Variance 117 26 106 34 -21 120 27 07 115 33 -10
Mean Eu. 35 12 31 14 -18 37 12 06 35 14 -08
GLCM E. 139 60 128 58 -17 145 56 06 146 56 07
M-Blue 10 6 8 5 -24 12 7 07 11 8 10
M-Green 17 10 13 10 -27 19 12 06 18 13 -10
M-Red 17 11 13 12 -28 19 13 05 18 14 -11
M-NIR 35 19 24 18 -27 37 20 04 32 21 -13
NDVI 171 22 166 22 -12 168 21 -05 164 23 -14
PC-1 30 15 21 16 -27 32 17 05 29 19 -12
PC-2 178 11 176 8 -18 177 12 -08 175 11 -17
PC-3 155 5 154 5 -18 154 5 -13 154 5 -11
PC-4 119 4 120 3 12 119 4 04 119 4 03
Classific. - - - - 22 - - 19 - - 13
Final im. - - - - 25 - - 25 - - 18
Spot 5 Pan 31 10 27 8 -20 32 9 08 30 9 -04
Laplacian 40 23 40 21 02 40 26 02 40 25 02
Variance 135 47 131 47 -07 139 47 07 139 47 08
Mean Euc. 57 24 53 24 -06 60 23 06 60 23 07
GLCM E. 142 60 132 61 -07 151 58 06 153 56 07
M-Green 29 8 27 7 -13 31 8 11 30 8 04
M-Red 35 11 30 9 -19 35 10 07 34 10 -03
M-NIR 50 11 42 11 -26 48 12 -10 47 11 -11
M-SWIR 42 9 37 8 -23 42 8 04 41 9 -8
NDVI 118 32 115 24 -10 112 30 -11 112 26 -08
PC-1 76 17 67 16 -22 77 15 05 74 17 -05
PC-2 21 9 17 7 -19 19 10 -19 19 8 -15
PC-3 0 1 0 1 -04 0 1 -02 0 1 -02
PC-4 5 1 5 1 22 5 1 23 5 1 17
Classific. - - - - 38 - - 25 - - 26
Final im. - - - - 42 - - 31 - - 34
LSat-Pan 56 12 51 12 -21 58 12 05 55 13 -09
Laplacian 42 24 42 23 02 43 25 03 42 25 02
Variance 141 28 149 30 13 148 26 11 152 30 17
Mean Euc. 75 43 87 48 13 84 46 10 91 51 15
GLCM E. 186 57 201 47 11 199 50 10 205 48 16
M-Blue 50 12 48 9 -09 51 10 11 50 11 02
M-Green 54 14 50 13 -14 56 12 07 54 14 -02
M-Red 69 23 62 21 -17 70 20 05 68 23 -04
M-NIR 66 13 58 11 -25 67 16 10 63 15 -11
M-SW1 101 25 92 27 -17 101 23 -03 97 27 -08
M-SW2 70 20 66 22 -14 69 18 -03 68 21 -05
NDVI 101 31 100 21 10 99 30 -04 100 28 -03
PC-1 166 39 153 43 -18 167 36 04 161 43 -06
PC-2 18 12 15 9 -12 16 12 -09 15 11 -11
PC-3 0 0 0 0 0 0 0 0 0 0 0
PC-4 22 5 23 3 14 24 5 12 23 4 09
Classific. - - - - 15 - - 8 - - 7
Final im. - - - - 16 - - 10 - - 11
 
Table 2. Statistical analysis: Me: Mean; St: Standard deviation; 

KS: Kolmogorov-Smirnov coefficient (normalized to 100). 
 
 

5. RESULTS 

From the statistics of table 2 and visual interpretation of 
enhanced images and colour compositions, we can conclude 
that, in absolute terms, values of KS coefficient are low in all 
the cases although, in relative terms, some remarks can be 
outlined. 
First, rock falls are the typology that shows higher radiometric 
differences regarding to the whole image, generally with lower 
DN values in rock falls scarps (darker) than the whole image. 
These differences can be observed in panchromatic and multi-
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spectral images, as in derivatives (filters, NDVI and PC bands), 
although differences are higher in original corrected and 
enhanced images. Filters and NDVI present DN values lower 
(darker) in rock falls sample than the whole image and a more 
irregular behaviour of PC images. By sensors, the best results 
can be observed in Ikonos, while in this case, Spot 5 y Landsat 
7 show similar results. 
 
Rock slides have very poor correlations (near to 0) in most of 
cases. Usually, DN values of rock slides sample are relatively 
higher (clearer) than the whole image in panchromatic image, 
its filters, the visible bands and some PC bands. However, NIR 
band, NDVI and some PC bands show lower values than the 
whole image.  
 
Debris flows present the more irregular results. Regarding to 
panchromatic image, values are clearly lower than the whole 
image in Ikonos, but it become similar in images corresponding 
to Spot 5. On his hand, filters corresponding to Landsat image 
present higher values in debris flows zones than in the whole 
image. Regarding to multi-spectral image, most of bands 
present DN values lower in landslides sample, but in some 
visible bands can become higher. However, NIR band and 
NDVI always appear in debris flows with lower DN values than 
whole image.  
 
Finally, in all the movements, KS coefficients calculated in 
classified images are higher that those obtained in original and 
derivative bands. 
 
 

6. DISCUSSION 

In spite of low Kolmogorov-Smirnov coefficient, the results of 
GIS analysis allow extract the following observations, 
regarding enhanced original, filtering and classification images. 
 
Starting by original images, rock falls are strongly related to 
shaded zones in the study area, and because of it, they present 
lower DN values than the whole image. The higher correlations 
are found in Ikonos image, taken in winter and with a higher 
extension of shaded zones, associated frequently with rock falls. 
This is a local fact, because in this area rock falls are located in 
the northern slopes of Sierra de Lújar. In other zones, with rock 
falls in cliffs oriented to South (in northern hemisphere, of 
course), rock falls can be associated with relative higher DN 
values, as the other landslides do. 
 
Rock slides scarps are zones that appear clearer in the image 
because fresh rock (that outcrop in this zones) generally present 
a higher reflectance in visible bands than the surrounding soil 
and vegetation cover do. The lower values of KS coefficient are 
probably due to the use of the whole movement and not only 
the scarp in the cross correlation.  
 
Debris flows have complex relationships with reflectance and 
DN, depending on the soil illumination, due to these 
movements are located in ravines o steep slopes that can be 
affected irregularly by shades. By that reason, debris flows 
present lower KS coefficient values, not because they present 
similar values than surrounding terrain but they appear with DN 
values higher than the whole image (sunny zones) or with DN 
values lower than the whole image (shaded zones). Since 
images from different sensors are taken in different months, 
these images present different DN values and KS coefficients. 

Laplacian filter, as an edge-enhancement filter, highlights linear 
elements and borders, and can be used for delimitate 
movements, but DN values do not show significative 
differences regarding original image. Use of textural filters 
results more interesting in this case, because they produce 
higher differences between zones of movements and the whole 
image. In this case the image resolution and observation 
conditions become very important. In Landsat images, filters 
present higher DN values in mobilized zones, no matter the 
typology; in Ikonos slides present also higher values but rock 
falls and debris flows present lower values than the whole 
image; and finally, in Spot images DN values of mobilized 
zones are similar than the whole image.  
 
Regarding supervised classifications, in figure 3 we show the 
spectral signatures corresponding to the three classifications 
determined here. Difficulties to distinguish between landslides 
and some land-uses can be observed. Rock falls appear very 
similar to soils, rock slides is only a little darker than soils, and 
debris flows are very close to fresh rock and alluvial materials.  
 

 
 
To discriminate between the different landslide typology and 
other land-uses we can use textural filters, specifically variance 
that shows the best correlations with landslides. In this way, 
zones of rock slides present higher values of variance than soils 
do, and debris flows present values of variance clearly higher 
than fresh rock and alluvial materials do. In both cases, a single 
matrix approach between classifications and variance filter 
permits to modify the classification to obtain a final image in 
which these landslides typologies appear more clearly separate 
from other land-uses. Zones previously classified (wrongly) as 
landslides pass to soil or fresh rock, so correlation coefficients 
(of final classification) increase (table 2). 
 
Results of different sensor present some differences between 
mean DN values and KS coefficients. In general, the best final 
results are found in Spot images, following by Ikonos and 
Landsat. Perhaps, the presence of important shaded zones in 
Ikonos make the results worse regarding to Spot (image from 
summer, free of shades). However, results of filtering are 
generally better in Landsat, probably because pixel size of other 
images is enough small to detect textures in a 3x3 window. 
 
Finally, a post-processing image will be necessary to eliminate 
some elements as roads, waste mining, quarries, etc. These are 
elements clearly identifiable and consequently eliminable. To 
this purpose, corridors along linear or polygonal elements and 
slope filters can be used (Haeberling et al., 2004). 
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7. CONCLUSIONS 

There are many published approaches to the study of landslides 
by means remote sensing. Depending on the characteristics of 
study zone and the available images, the approaches may be 
different but all of them are based in multi-spectral information 
(band compositions, indexes, PCA and digital classification) 
and texture analyisis (filtering and image segmentation). 
 
In this study both approaches are combined by means digital 
classification and texture filters (variance). Previously, 
statistical and cross-analysis allow establish relative correlation 
between landslide inventories and images, and also recognize 
intervals and average DN values in which landslides occur, 
regarding to different images. In this way rock falls are related 
to lower values (darker zones) of original enhanced images 
while slides and debris flows are related to higher values 
(clearer zones).  
 
Digital classification from multi-spectral analysis has 
established a class for each type of landslide but with a certain 
mixture with other classes such as soils, fresh rock and alluvial 
materials. In this point textural analysis can solve the 
uncertainties, discriminating landslide classes from other land-
uses and making more accuracy the classification. 
 
Finally, the usability of remote sensing techniques in these 
studies has been probed once more again, and future research 
will be related with advances in enhancement of images (to 
solve problems with shades and illumination), in textural 
analysis (segmentation) and in combining these techniques with 
photogrammetry and field work at larger scales. 
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