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ABSTRACT: 
 
As a developing country, China is now undergoing a quick process of urbanization. Therefore, understanding and managing the 
urban environment is a prerequisite for addressing sustainability, which is an increasingly important issue need a range of discipline 
to cope with. This paper explored extraction of impervious surface information from Landsat ETM+ data with the integration of 
fraction images from linear spectral mixture analysis based upon Ridd’s vegetation-impervious surface-soil (V-I-S) model. A new 
approach for urban land-use classification, based on the combined use of impervious surface and spectral mixture analysis (SMA) 
were applied in this paper. The minimum noise fraction transform (MNF) procedure was applied to transform the six reflective 
bands into a new coordinate set to select the four endmebers, e.g. high-albedo surface, low-albedo surface, soil and vegetation.. 
Results showed that the integration of faction images improved urban impervious surface estimation. The impervious surface in the 
urban area were derived from high-albedo surface and low-albedo surface. Accuracy assessment indicated that the root-mean-square 
error is less than 10.2% for the impervious surface image. The main factors that affect the accuracy are the reflectance variation 
caused by atmospheric factors, sun-sensor-target geometry. How to deal with these factors to minimize reflectance variation will be 
the future study topics. Also water body and shade were not addressed in this paper, which also need to be considered in the future 
study. 
 
 

1. INTRODUCTION 

Urbanization is perhaps one the most important human 
activities, creating enormous impacts on the environment at the 
local, regional and global scales (Turner et al., 1990). Although 
urbanization, the form of land cover (built-up or impervious 
surface) occupies less than 2% of the global land surface, many 
evidence show that human disturbance due to urbanization has 
significantly altered the natural landscape (Grubler, 1994). 
Therefore, understanding and managing the urban environment 
is a prerequisite for addressing sustainability, an increasingly 
important issue across a range of disciplines (Newman & 
Kenworthy, 1999). Improving urban land-use/cover 
classification accuracy has been an important issue in remote 
sensing literature (Liu and Wen, 2004). Different approaches 
have been applied, which include incorporation of geographic 
data, census data, texture feature and structure or contextual 
information into remote sensing spectral data. Furthermore, 
expert systems, fuzzy classification, and merged multi-sensor 
data for improving spatial resolution have been applied. 
However, urban land-use/cover classification is still a challenge 
with medium or coarse spatial resolution remotely sensed data 
due to the large number of mixed pixels and the spectral 
confusions among different land-use/cover types. 

Recent institutional changes, marketization and globalization 
combined together have bought about new processes of rural-
urban interaction, giving rise to new forms of human 
settlements in china, especially after Chinese reform and open 
policies were carried out since 1978. The latest national 
population census conducted in 2000, revealed an accelerated 
rate of urbanization, characterized both by its scale and change 

speed that have no parallel elsewhere in the world (Tian et al., 
2005). China owns the largest population (1.265 billion) in the 
world, of which 456 million (36%) live in cities and towns 
(State Council of China Office of Population Census 2001). 
Urbanization in China has speeded up, urban population only 
comprise 20% of the whole country population in 1982, while it 
has reached 36% in year 2000. A net gain of 16% took place in 
less than 20 years, which cause a sharp contrast o the pre-
reform era, when the urban population only increased 7.1% 
over 30 year period (Zhang and Zhao, 1998; Tian et al., 2005). 
Rapid urban growth was mainly attributed to migration form the 
countryside to cities and town, the conversion from rural 
administrative units to city units, and the natural urban 
population increase, and all the driving force can be traced from 
economic development. 
    The focus of this study is to examine urban LULC patterns 
by SMA method based upon V-I-S model. Changchun (Jilin 
provincial Capital city), the third largest city in northeast China, 
has been chosen as the area of study. With over 3.58 million 
populations live in the urban area, the city is the nation’s 
automobile capital of the nation. 3 scenes Landsat TM and 
ETM+ image since 1993 that covers the City were used in 
conjunction with other types of spatial data for the analysis city 
LULC for city expansion study. Specific objectives of this 
research are: (1) employing V-I-S model to derive landscape 
fractional components, and to apply them to characterize the 
urban expansion; (2) exploring the urban area expansion 
process from 1993 to 2004 based upon V-I-S model and 
analyzed the possible driving forces. 
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2. STUDY AREA 

Changchun is the capital and largest city of Jilin province, 
located in the northeast of China. It is the largest centre for 
China's automotive industry. As of 2007, Changchun has a 
population of 7.45 million, including counties and county-level 
cities. The urban districts have a total population of 3.58 
million. Changchun has incredibly cold, long winters with the 
temperature dropping as low as -30°C; and the temperature 
sometimes goes up 35 °C in late July in summer. Changchun in 
its present form is a new city with only about 200 years of 
history. Figure.1 showed the urban expansion from 1905 to 
1993. It expanded rapidly as the junction between the Japanese-
owned South Manchurian Railway and the Russian-owned 
Chinese Eastern Railway from 1905-1935. In 1932, Changchun 
became the capital of Manchukuo, which existed from 1931 to 
1945. The city underwent rapid expansion in both its economy 
and infrastructure. Changchun became the capital of Jilin 
Province, P.R China in 1954. As Changchun's main industry, 
the manufacturing of transportation facilities and machinery 
such as those of automobile, passenger train, and tractor has 
developed very well. Industries such as machinery, electronics, 
optics, chemistry, medicine, textile, metallurgy, building 
materials and foodstuffs all assume their own features and 
advantages. 
 

 
 

Figure.1 The expansion of Changchun urban area from 1905 to 
1993 

 
 

3. MATERIAL AND METHODOLOGIES 

3.1 Landsat image processing 

3 sub-scenes of Landsat 5 TM and Landsat 7 ETM+ image 
(path 118/row 28, 29) of Changchun, China, which acquired on 
the 23 August 1993, the 18 September 2000 and 23 August 
2003, were used in this research. Images were processed by 
Remote Sensing Ground Station, Chinese Academy of Sciences 
(RSGS). Possible geo-position errors due to terrain effects were 
corrected using the ortho-correction method based on DEM, 
which derived from digitized topographic map with 1:5,000 
scales. All images were rectified to a common Universal 
Transverse Mercator coordinate system. Bands 1 through 5 and 
band 7 were utilized at a spatial resolution of 30 m. 

3.2 Determination of reflectance from TM and ETM+ 

The digital numbers (DNs) of the TM image were converted to 
normalized exo-atmospheric reflectance measures following the 
methods proposed by Markham and Barker (1987). The 
calibration parameters for Landsat-7 ETM+ were obtained from 
the ETM+ data header (Irish, 1998). We assumed homogeneous 
atmospheric conditions within the image, so no atmospheric 
corrections were performed. 
 
3.3 Spectral mixture analysis   

Spectral mixture analysis (SMA) was utilized for calculating 
land cover fractions within a pixel and involves modeling a 
mixed spectrum as a combination of spectra for pure land cover 
types, called endmembers (Roberts et al., 1998). The linear 
spectral mixture model describes the surface composition in 
each pixel of an image using two to six endmembers (for an 
ETM+ image). Each endmember represents a pure land cover 
type. The linear mixture model is: 
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where Rj is the reflectance for each band j in the ETM+ image, 
N is the number of endmembers, fi is the fraction of endmember 
i, Rij is the reflectance of endmember i in band j, and ej is the 
unmodeled residual. Model fitness is normally assessed by the 
residual term ej or the RMS over all image bands (M): 
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The fraction of each endmember can be obtained by applying a 
least squares technique in order to minimize the unmodeled 
residual error ej, given the constraints on fi. As stated by Small 
(2001), the linear mixture model may not be appropriate for 
applications in which only subtle spectral differences exist in all 
sampled bands. In many applications, about three to four 
endmembers are chosen for simple linear mixture models 
(Roberts et al., 1993; Small, 2001). 
 
3.4 Endmember selection methods 

One approach for choosing image endmembers is selecting 
representative homogeneous pixels from satellite images 
through visualizing spectral scatter plots of image band 
combinations (Rashed et al., 2001). In this study, the maximum 
noise fraction (MNF) transformation was applied to trace the 
endmember (Wu & Murray, 2003). The first three components 
were shown in Fig.2. Previous research has shown that use of 
MNF transform can improve the quality of fraction images (Wu 
& Murray, 2003). The first four components were retained for 
use in the LSMA models, while the last two components 
discarded due to the high proportion of noise content. Four 
endmembers were selected in this study; they are bright albedo 
surface, dark albedo surface, soil and vegetation (Fig.3). These 
endmembers were initially identified from the images based on 
ground truth and high-resolution aerial photographs, and then 
the reflectances of these initial endmembers were compared 
with the endmembers selected from the scatterplot of 
combination MNF1-3. The endmembers with similar MNF 
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spectra at the extreme vertices of the scatterplots were selected 
(see figure.3a-c). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.2a MNF component1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure.2b MNF component2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Figure.2c MNF component3 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure.3 Feature space represents the first three MNF 
components. The extreme pixel clusters which bound almost all 
other pixels in these three feature spaces were delineated as 
endmembers. High albedo (e.g. concrete, clouds, and sand), low 
albedo (e.g. water, shade and asphalt), vegetation (e.g. crop, 
grass and trees), and soil (e.g. bare soil and quarry), were 
identified according to these feature spaces and their 
corresponding features obtained from original reflectance data. 

Vegetation 

Bright-imp 
Dark-imp 

Soil 

Dark-imp 

Bright-imp 
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Dark-imp 
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4. RESULTS AND DISCUSSION 

4.1 Urban fraction mapping 

The endmember fractions were calculated by solving a fully 
constrained four-endmember linear mixing model using the 
Landsat TM or ETM+ reflectance data, and the final result were 
shown in Fig.4~6 for 1993, 2000 and 2003, respectively. The 
vegetation fraction image correlates with known vegetated areas 
within the original TM or ETM+ image. From Fig.4a it can be 
seen that bright albedo surface mainly distributed in urban 
region, especially in the CBD region, and for there was some 
haze over the urban region in 1993, which also reflected in the 
un-mixing result of impervious surface. The low albedo surface 
also mainly distributed in urban area (Fig. 4b), it included water 
bodies in this study. But it is more reasonable to mask out water 
bodies in the future study. The vegetation fraction is near zero 
in the urban region, while increasing to 10–20% in high-density 
residential areas, and 20–30% in low-density residential areas, 
and it is about 70-90% in vegetated areas, nearly 100% only in 
a small part of crop area (Fig. 4c). Moreover, the soil fraction 
image is also consistent with the soil distribution in the study 
area because the soil fraction in the CBD and residential areas 
is 10–20% but higher than 60% in some parts of the urban 
fringe (Fig. 4d), where new constructions sites located. Fraction 
images of dark albedo and high albedo cannot be directly 
interpreted from the image. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.4a Fraction image of high albedo in 1993 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.4b Fraction image of low albedo in 1993 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.4c Fraction image of vegetation in 1993 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.4d Fraction image of soil in 1993 
 
However, their relationship with impervious surfaces will be 
built using a two-endmember linear mixture model in this 
study. Fig. 4 also shows that this model performance is not as 
good for modeling some high albedo materials, such as high 
reflectance roofs, clouds, and sand 

From Fig.5, it can be seen that the four endmember 
fractions show the similar trend as that from 1993. It can be 
easily noticed that high albedo fraction is more evenly 
distributed in the urban area as no haze disturbance in the 
original image. While the low albedo surface fraction 
distributed in most parts of the city, especially in CBD and 
residential area, also included some water bodies. Most part of 
urban area is higher than 60%, some area even higher than 80%. 
This indicates that the building roof or road materials are dark 
color in Changchun. From Fig.5c, it can be seen that only some 
parks and area along Yitong River have high values, but in most 
of the urban area, it is only about 10%, but in the suburban area, 
especially in the cropping area and forest area, the vegetation 
fraction is about 70%, only a small vegetable field has high 
value. This is because the image acquired in late September, so 
most of the crop is nearly ready for harvest, only irrigated 
vegetable at their highest cover with sufficient water supply and 
no sign of chlorophyll lack. Soil fraction has high values in 
some region, including construction sites, quarries and bare soil 
regions. But in most of the region, it has a value about 30%, one 
reason is that Changchun locates in black soil region, the soil 
spectral reflectance is low compared with most of the other 
soils, so its reflectance signature is quite close to some of the 
low albedo surface, also most of the crop in their senescence 
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stage, also show dark color, that may explain why soil fraction 
have no obvious distinctive pattern.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.5a Fraction image of high albedo in 2000 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.5b Fraction image of low albedo in 2000 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.5c Fraction image of vegetation in 2000 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.5d Fraction image of soil in 2000 
 

From Fig.6a-b, it can be seen that high albedo and low 
albedo fraction have the similar distribution pattern in most 
parts of the city, especially in CBD and residential area as that 
from previous years. From Fig.5c, it can be seen that vegetation 
fraction value is about 80% in most of the cropping area and 
forest area because this image acquired in late August 2003 
when vegetation is just begin to senesce. Soil fraction has also 
have similar trend, but with low value in the croppin area and 
forest. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.6a Fraction image of high albedo in 2003 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.6b Fraction image of low albedo in 2003 
 

389



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B8. Beijing 2008 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.6c Fraction image of vegetation in 2003 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.6d Fraction image of soil in 2003 
 

4.2 Assessment if unmixing model based up V-I-S 

The RMS for every image pixel was calculated in order 
to assess the performance of LSMA model (Table.1 and 
Figure.7). The mean RMS over the image is 0.0042, 
0.0028 and 0.0034, respectively, which suggests a 
generally good fit (less than 0.015). The RMS images 
show that this model represents residential, vegetation, 
soil, and water cover types very well. However, 
performance is not as good for modeling some high 
albedo materials, such as high reflectance roofs, clouds, 
and sand. Also some dark pine forest can not modeled 
well for their spectral variation from that of deciduous 
tree (not demonstrated in this paper). Figure.7 only the 
distribution characteristics of RMS in 2003, it can be 
seen that RMS value is generally less than 0.015. 
  

Table.1 Unmixing modled RMSE values 
 

year Min Max Mean Stdev 

1993 0.0000 0.1100 0.0042 0.0022 

2000 0.0000 0.0943 0.0028 0.0018 

2003 0.0000 0.1238 0.0034 0.0025 
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Figure.7 Distribution of Unmixing RMSE 
 

4.3 Impervious surface mapping 

According to Wu and Murray’s study (2003), impervious 
surface is likely on or near the line connecting the low albedo 
and high albedo endmembers in the feature spaces. In other 
words, most impervious surfaces might be represented by low 
and high albedo endmembers as follows. 

bhighhighlowlowimp eRfRfR +×+×=            (4) 

Rimp,b is the reflectance spectra of impervious surfaces for band 
b, and flow and fhigh are the fractions of low albedo and high 
albedo, respectively. Rlow,b and Rhigh,b are the reflectance spectra 
of low albedo and high albedo for band b, and eb is the 
unmodeled residual. Associated with determining Rimp,b is the 
requirement flow + fhigh = 1 and flow , fhigh great or equal to 0. 
  In this study, we also applied this methodology proposed by 
Wu and Murray (2003) to map the impervious surface. We 
applied this model to build a relationship between 
impervious surfaces and high and low albedo materials 
with formula (4) to derive the impervious surface in the 
urban area o Changchun. Also water bodies were masked 
out in the final result. The final impervious surface in 
2000 and 2003 were shown in figure.8. It can be seen 
that in the urban area, the impervious surface is quite 
consistent, the fraction value is about 0.7 in most of the 
urban area, while in the CBD area it can reach 0.9. This 
indicates that V-I-S model with LSMA is suitable for 
urban impervious surface study. As there was some haze 
in the original image in 1993 that affected the modeling 
result, impervious surface area was not shown in the final 
result. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure.8a Impervious surface in 2000 
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Figure.8b Impervious surface in 2003 
 
 

5. CONCLUSION AND FUTURE RESEARCH 

In this paper, a LSMA method was applied to quantify urban 
composition under the framework of V–I–S model. MNF 
method was applied for the acquired image to select the 
endmembers, and a linear spectral mixture analysis method was 
developed to derive the fractions of green vegetation, high 
albedo and low albedo, and soil. The impervious surface was 
derived from high albedo and low albedo surface. It can be 
concluded that the LSMA model is reasonable to retrieve urban 
impervious surface in our study case; V-I-S model can be used 
to monitoring urban expansion, especially for city impervious 
area estimation. One future research direction could be the 
accuracy assessment of the vegetation and soil fraction. 
Contemporaneous high-resolution images, such as Quickbird or 
IKONOS imagery, should be helpful to obtain ground truthing 
information of vegetation and soil. Also, how to deal with 
spectral variation caused by sun-object-sensor geometry is not 
delivered in this paper, which needs to be coped with in future 
study, especially with consideration of urban dynamics study. 
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