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ABSTRACT: 
 
Here we describe an efficient mathematical model of polarized radiation transfer for the purposes of passive polarimeters operation. 
The model is built upon a new approach to the solution of a vectorial radiation transfer equation (VRTE) boundary problem based 
on the subtraction of VRTE solution’s spatial singularities by means of the vectorial small angle modification of spherical harmonics 
method (VMSH) with the subsequent determination of the solution’s smooth part. The atmosphere is considered as a slab of an 
arbitrary thickness. The angle of irradiance is arbitrary and a diffusely reflecting bottom boundary with variable reflectance was 
admitted. We explore the influence of the turbid media upon the spatial distribution of the polarization state of reflected or 
transmitted radiation by both changing of scalar parameters (single scattering albedo, optical thickness of a slab, average scattering 
cosine or the maximum degree of polarization state and elasticity within single scattering act for Heneye-Greenstein (HG) scattering 
model) and the substitution of different scattering matrix models: HG, Rayleigh, Mie. 
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1. INTRODUCTION 

The polarization state of scattered radiation is the only and the 
most complete information source about a microstructure of a 
scattering turbid media (atmosphere, natural waters or even 
solid bodies if particles spin-depended scattering is considered) 
available for optical methods. The modern level of development 
of electro-optical systems (EOS) design allows constructing 
different types of polarimeters with a high degree of 
polarization state’s measurement accuracy. But for the purposes 
of effective construction of such systems a reliable 
mathematical model of polarized radiation transfer (RT) is 
necessary. Such model together with the system construction 
parameters allow to obtain the signal-to-noise ratio in order to 
get the adequate system accuracy for observing the required 
polarization effects. 
 
We consider the RT boundary problem (BP) for the vectorial 
radiative transfer equation (VRTE) in a slab written in usual 
form 
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The following notation is used here and further on: L

r
- Stokes 

vector (SV) depended on the optical thickness τ and an arbitrary 

unit direction { }2 2ˆ 1 cos ; 1 sin ;= − μ ϕ − μ ϕ μl  where μ = 

acosθ; θ, ϕ  - zenith and azimuth angles respectively,  - the 
direction of irradiance of the slab by an infinitely wide 
unidirectional beam with initial SV set of parameters given by 

0l̂
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r

, p, q, ϕ0– the linear 
polarization degree, the ellipticity and the reference plane 
position of the incident radiation respectively, δ  - Dirac’s 
delta-function that describes the point unidirectional source of 
light. We mark all vector columns by “→” and matrices are 
marked by “↔”. The total optical depth of the slab is 0τ (it is 
assumed to be arbitrary) and the single scattering albedo is Λ. 

2R( ), R( )1
′ ′χ χ

t t
 are angle-depended rotation matrices (rotators) 

that serve to rotate the frame of reference within scattering act 
described by scattering matrix . We assumed the bottom 
boundary to be a Lambertian one with the reflectance ρ and the 
irradiance vector 

垐( )x ′llt

E
r

. 
 
The described delta-function, singularity in other words, 
prevents one from the direct calculation of radiation field for 
this singularity has the infinity spatial spectrum. That is why 
only scattered radiation can be computed but only after the 
procedure of singularity subtraction – the well known standard 
approach (Chandrasekhar, 1960). The obtained difference field 
can be computed by finite expansion series but for the case of 
real scattering media with a high degree of scattering anisotropy 
the expansion series may occur too long. This fact will cause 
numerous calculations and may even result in the ill-
conditionality of the VRTE BP solution. Further on we give the 
approach that will help to eliminate the described problem 
(Budak, 2004). 
 
 

2. METHOD OF SOLUTION  

2.1 The anisotropic part determination 

The singularity we are having a deal with and physically natural 
ray approximation widely used in optics of turbid media cause 
the smoothness of spatial spectrum of the desired vectorial light 
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field given in the known circular basis (CP) (Kuščer, 
1959) as the series 
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and  is the generalized spherical function (harmonic – 
GSH) depended on the zenith index (the order) k, the index of 
azimuth expansion m and polarization index n. The singularity 
together with the significant scattering anisotropy degree of 
phase functions of real media which can also be represented on 
the GSH expansion as (r, s = 2, 0, – 0, – 2) 
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allow one to restrict the number of SV GSH expansion terms in 
Taylor series to two terms. The expansion of the spatial 
spectrum is obtained with respect to GSH order k provided this 
order to be a continuous one. This gives comparatively simple 
expression for spatial spectrum amplitudes (i.e. the GSH 
expansion coefficients) as exponential matrix. This form of 
approximate solution is called the vectorial small-angle 
modification of spherical harmonics method (VMSH) 
(Astakhov, 1994). It has an analytical form, describes all VRTE 
solution’s singularities, gives the most anisotropic part of light 
field quite accurately (almost the whole forward hemisphere for 
many real cases (Budak, 2008)) and can be computed fast using 
simple PC (some seconds).  The VMSH has the following form 
in the Stokes polarization (SP) basis after the eliminating of 
complex components  
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We use the following notation in (3) 
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We note here that (3) is written in the incident ray frame of 
reference: the “zenith” angle with its cosine  is counted 

off from the direction of irradiance  and azimuth angle ψ is 

counted off in the plane being perpendicular to . So the 
equations μ = ν and ϕ = ψ are true only for normal irradiance of 
the slab. The scattering matrix spatial spectrum is .  

0
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We give an example of VMSH calculation itself. Here and 
further on we use the polarization degree defined with respect 
to parallel ( l ) and perpendicular ( r ) components as 
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Heneye-Greenstein (HG) scattering matrix was used with 
maximum linear polarization degree within single scattering act 
Pm = 0.5 and the same for ellipticity Qm = 0.5, Λ = 0.9, τ = 5. 
Different average scattering cosine g = 0.97 and 0.7 was used. 
The result obtained by VMSH is compared with standard 
discrete ordinates method (DOM). The angle of irradiance θo = 
30o. 
 

 
 

Figure 1. Polarization degree with respect to different average 
scattering cosine g. VMSH and DOM results. 

  
 

;
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One can see from Figure 1 that the greater is the scattering 
anisotropy – the larger is the area of VMSH validity. This are of 
validity is always called “the small angle area”. But these small 
angles spread within the area approximately ± tens of degrees 
( ± 30o for considered case of oceanic scattering g = 0.97 that 
needs 350 harmonics for VMSH and less than 7 seconds of 
computation time) and within the desirable accuracy – and so 
the VMSH itself can serve for analyse the descending (from the 
Sun to the Earth) radiation’s polarization properties. 
 
But for the case of wide-angles scattering and ascending from 
the Earth radiation (diffusely reflected from the slab) a 
discrepancy between the VMSH and the exact solution must be 
obtained. The VMSH being the source function for VRTE’s 
boundary problem (with boundary conditions modified 
accordingly to the new source function) allows to obtain a 
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smooth (regular or non-small angle) part which enlarge the 
VMSH to the complete VRTE analytical solution. The 
smoothness of the regular part allows not to produce numerous 
calculations. This fact together with fast computing of the 
VMSH and the known scale transformation operation (Karp, 
1980) determines the computation efficiency and the solution’s 
stability of the described method. Boundary conditions in the 
form of Mark allows to consider an arbitrary reflecting 
properties of the bottom of a scattered media especially if 
matrix discrete ordinates method is used. The important 
advantage of the VMSH as a source function concludes in the 
fact that the VRTE boundary problem does not change its form 
and the smooth part can be efficiently evaluated by means of 
well known and deeply investigated methods such as discrete 
ordinates (DOM) or spherical harmonics methods (SHM), 
Monte-Carlo simulation an so on. The regular part will be found 
in the next part of the paper. 
 
2.2 The regular part’s boundary problem 

Let’s represent the complete solution of (1) as the superposition 
of the VMSH (marked with index S – singular part) and 
discrepancy (marked with index R – regular part) 
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The source function has the form based on the VMSH 
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We’ll seek for solution of (6) similar to the solution of (1) 
represented as the following (Siewert, 2000) 
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In order to do this we must transform VMSH (3) from the {ν, ψ} 
frame of reference to {μ, ϕ} one using the rotator. We have 
after this (δ0, m is the Kronecker symbol) 
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Having substituted (9) into (7) and using the recurrence formula 
for new basic matrix Π-polynomials 
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which one can easily prove using the recurrence formulas for 
ordinary GSH (Gelfand, 1963) and after the eliminating of 
complex terms (see (2)) we obtain the following expression for 
the source function in energetic SP basis 
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And finally after evaluating the scattering integral the BP for 
regular part can be solved using any of the known methods – 
discrete ordinates method (DOM), spherical harmonics method, 
Monte-Carlo simulation and so on. DOM together with the 
boundary conditions written in the form of Mark allows to 
consider an arbitrary spatial distribution of the reflecting 
properties of the bottom bound easily. For the case of DOM the 
VRTE is reduced to the set of differential equations  – 
independent for each mth azimuth harmonic and for each of the 
two terms of (8) 
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The VMSH in the form of (9) allows to obtain the boundary 
conditions for each m and to obtain the source function in the 
appropriate frame of reference. But we note that the anisotropic 
part itself must be computed using(3). And only to (3) one 
should add the solution of (11). 
 
2.3 The computation features of the method 

We made the comparison o the proposed approach with other 
method in (Budak, 2008b) and so for the sake of shortness we 
will not repeat that results here. Now we only give some 
computations to show some features of the described approach. 
 
We consider a slab with HG scattering (Pm = 0.5, Qm = 0 
(Hovenier, 1996)) and average scattering cosine g = 0.9, Λ = 
0.8, τ = 1. The bottom boundary is considered non reflective 
with ρ = 0. Angle of irradiance is θo = 40o, incident light is 
natural (nonpolarized). We use MDOM = 28 azimuthal harmonics 
to compute the Q-component of the SV spatial distribution 
within forward hemisphere – transmitted radiation. This amount 
of harmonics is enough for the solution does not vary for larger 
amount of them. The solution obtained with standard method 
(Chandrasekhar, 1960) is marked with circles on Figure 2. For 
our approach we need only MVMSH+DOM = 10 azimuthal 
harmonics in order to obtain the same result – solid line on the 
Figure 2 
 

 
 

Figure 2. Q-component zenith distribution for different 
azimuthal expansion orders of VMSH + DOM and DOM. 

 

 
 

Figure 3. I-component zenith distribution for different zenith 
expansion orders of VMSH + DOM and DOM. 

Let’s consider the same slab with HG scattering but for average 
scattering cosine g = 0.97, Λ = 0.9, τ = 5. The bottom boundary 
is considered non reflective again, the irradiance with natural 
light is normal. We use KDOM = 250 zenith harmonics to 
compute the I-component of the SV spatial distribution within 
backward hemisphere – the reflected radiation. Again the 
solution obtained with standard method is marked with circles 
on Figure 3 and some oscillation is still evident. For our 
approach we need only KVMSH + DOM = 150 azimuthal harmonics 
in order to obtain the same result – solid line on the Figure 3. 
The amount of 150 harmonics for standard method gives hard 
oscillations. We note here that this advantage in zenith 
expansion preserves for every of azimuth harmonics for the 
system of differential equations for them are independent but 
the zenith GSH expansion of the desired solution and the phase 
function (phase matrix in general case) are the same for each 
azimuth term. 
 
3. THE INFLUENCE OF THE BOTTOM REFLECTION 

First of all we give some results for diffusely and hence 
completely depolarized bottom boundary with the reflectance 
coefficient noted as ρ and Mueller matrix given by diagonal 
matrix of the form [ ]垐M( , ) = diag ;0;0;0′ ρl l

t
. The influence of 

the reflecting boundary can be easily investigated by applying 
boundary problem decomposition method to (1). Water Haze L 
approximation (Deirmendjian, 1969) was used as the Mie 
scattering model. 
 
 

 
 

Figure 4. p(θ) within forward hemisphere for Mie-Haze L 
scattering with different reflectance coefficients of the bottom. 

 
 

Let’s consider the following parameters for this case: Λ = 0.9 
and τ = 1. The results are shown on Figure 4 (forward 
hemisphere of bottom boundary – the radiation transmitted 
through the slab) and Figure 5 (backward hemisphere of the top 
boundary – the radiation reflected from the slab). The 
reflectance coefficients are ρ = 0 (solid line), ρ = 0.3 (dash-dot), 
ρ = 0.7 (dashed), ρ = 1 (dots). One can see that depolarization 
properties of the bottom reflectance influence greatly upon the 
polarization state of radiation – depolarization processing while 
bottom reflectance reinforce the depolarization process while 
multiple scattering inside the slab itself. 
 
But if the bottom is embedded deep enough it will give notably 
weaker influence upon the polarization state of the reflected 
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radiation. Figure 6 give the result for the reflected polarization 
state of radiation for τ = 7 optical thickness. The albedo and the 
irradiance angle are the same compared with the result given 
above, and the reflecting properties of the bottom boundary are 
described by the following coefficients: ρ = 0 (solid line), ρ = 
0.5 (dash-dot), ρ = 1 (dashed). 

 
Figure 5. p(θ)within backward hemisphere for Mie-Haze L 

scattering with different reflectance coefficients of the bottom.  

 
 

Figure 6. The same as on Figure 5 but for more embedded 
diffusely reflecting bottom. 

 
Figure 7 demonstrates the influence of the reflecting bottom 
upon the Umov’s law: the module of polarization state of light 
increasing together with the decreasing of single scattering 
albedo Λ. This is true for completely absorbing bottom – solid 
and dashed lines on the figure represents the PPC for Λ = 0.9 
and Λ=0.1 respectively and for non-reflecting bottom. But for 
the case ρ = 0.5 this statement falls and a more complicated 
dependence takes place. The total optical thickness is  τ = 1 for 
the case and the PPC for transmitted radiation is shown on 
Figure 8. 
 
 

4. POLAR-PHASE CURVES 

The polar-phase curves (PPC) that we present in this chapter are 
the dependences of polarization state (4) with respect to the 
angle between the direction of slab’s irradiance  and the 

reflecting direction ˆ  with the same zenith as , i.e. 垐
0l̂

l 0l̂ R=l l  is 

the direction of “mirror” reflectance (but ˆ
Rl  is really caused by 

multiple scattering). If we note 0
垐acos( )Rφ = l l  than PPC is the 

dependence (cos )p φ . Naturally [ ]0..180φ∈ , but it is well 
known that the slab is a good approximation for a planetary 
atmosphere not for arbitrary zenith angles of observation – no 
more than 75o for zenith angle is recommended to assume 
(McCartney, 1977). That is why we’ll give PPC with respect to 

[ ]0..140φ∈  - restricted by double maximum zenith angle. 

 
 

Figure 7. The polarization state p(θ) of reflected radiation for 
different Λ and ρ simultaneously. 

 

 
 

Figure 8. The same as on Figure 7 but for transmitted radiation. 
 

 
Figure 9. PPC for HG scattering with different anisotropy. 
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First of all we consider some PPCs for HG scattering with 
different scattering properties defined by average scattering 
cosine g = 0.9 (solid line), g = 0.7 (dash-dot),  g = 0.5 (dashed) 
(Figure 9). The computation parameters, Pm = 0.8, Qm = 0, Λ = 
0.8, τ = 1.  
 
Next point – Rayleigh scattering for different optical 
thicknesses of the slab (Figure 10). We consider τ = 1, Λ = 0.9 
(solid line), Λ = 0.5 (dash-dot), Λ = 0.1 (dashed). Negative 
values for p are determined by reference plane selection. 
Umov’s  law is evident for this case. 
 

 
 

Figure 10. PPC for Rayleigh scattering and different albedo. 
 

 
 

Figure 11. PPC for Water Haze L scattering and different 
bottom’s reflecting properties. 

 
 

And finally we show Mie (Haze L) scattering for different 
bottom’s reflecting properties. We consider τ = 1, Λ = 0.9 and ρ 
= 0 (solid line), ρ = 0.1 (dashed), Λ = 0.5  (dash-dot). Diffuse 
bottom reflection gives great influence upon PPC – 
depolarization is remarkable. Figure 11 shows the results. 

 
 

5. CONCLUSION 

We would like to conclude with the following: bottom 
reflectance influence greatly upon the PPC of the reflected light. 
That is why for the sake of completeness a mathematical model 

of polarized radiative transfer must include arbitrary Mueller 
matrix to describe the reflectance more precisely.  
 
And the second point: the computational efficiency of the 
proposed method enfeebles for the simple slab geometry (one-
dimensional problem) because of more complicated form for 
the source function compared with standard method. But for the 
case of 3D scattering no “forward” or “backward” scattering 
presents– the smoothness of the computed regular part is of a 
great importance. That is why we use the slab only to test the 
model and will direct our efforts on the solution of 3D polarized 
radiative transfer problems. 
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