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ABSTRACT:

In this paper we propose a new method to detect and track multiple moving targets on image sequences recorded by Unmanned Aerial
Vehicles (UAVs). Our approach focuses on challenging urban scenarios, where several object are simultaneously moving in various
directions, and we must expect frequent occlusions caused by other moving vehicles or static scene objects such as buildings and
bridges. In addition, since the UAVs are flying at relatively low altitude, the 3D-ness of the scene affects strongly the camera motion
compensation process, and the independent object motions may be often confused by artifacts of frame registration. Our method
enables real time operation, processing 320x240 frames at around 15 fps and 640x480 frames at 5 fps.

1 INTRODUCTION

Nowadays Unmanned Aerial Vehicles (UAVs) are becoming more
and more important in military operations (Kumar et al., 2001).
Since there is no pilot in such aerial vehicles, they can be sent to
missions without endangering human life. The lack of personnel
has several other benefits, e.g. reduced weight, the mission length
is not a function of pilot fatigue, and the planes can achieve better
maneuverability since the human tolerance to acceleration is not
a limitation anymore.

Detecting objects of interest is a key task in reconnaissance and
surveillance applications and also on the combat field. The mov-
ing objects are in most cases relevant, since they are frequently
vehicles or persons. The automatic detection of these moving
objects can help the operator by giving a caution to them. The
tracking of the moving objects can also give useful informations
i.e. a vehicle is moving toward the defended camp.

Change detection in video sequences can also reduce the size of
the data to be transmitted to the control station. To avoid re-
dundancy, there is no need to transmit the pixels belonging to an
unchanged area.

In this paper we introduce a method which deals with the above
subtasks. The main steps of the proposed approach are demon-
strated in Figure 1:

(i) video stabilization

(ii) foreground extraction

(iii) moving object detection

e (iv) tracking

The first step is the compensation of the camera’s ego-motion
(Benedek et al., 2009). This can be achieved by warping the
frames to a common coordinate system, where the images can
be considered still. This step can also provide a better visual in-
formation to the operator by avoiding the shaking of the camera.
The images in the common coordinate system can be handled by

similar algorithms to ones developed for fixed cameras. However,
we must consider that ego-motion compensation is not totally ac-
curate, thus efficient filtering of the registration noise is needed.
The tracking also needs the world coordinate system, where the
position of an object in the image refers to it’s real position in the
world. The transformation to the world coordinate system needs
additional information, i.e. global position, camera parameters.

In the image warped into the common coordinate-system, the mo-
tion detection is done by background subtraction. Then we ob-
tain a foreground mask, which shows the moving pixels. The
moving objects are blobs on the mask, which can be detected and
tracked. Note that foreground detection may contain errors, €.g.
some blobs can be split, or only parts of a given moving object
are covered by its blob. Therefore, some a priori knowledge is
needed about the objects of interest. In aerial videos the size of
the objects is a good feature, because it can be easily estimated
for several targets such as cars or pedestrian, using the camera
parameters (camera altitude, angles, focal length).

In the final step, the detection results from the separate frames
are assigned to each other by applying Kalman filtering for the
consecutive positions and considering the object histograms. The
assigned object positions on the frames yield the track.

2 VIDEO STABILIZATION

The ego-motion compensation is achieved by calculating an opti-
mized homogen linear transform between the frames, and warp-
ing the images to a common coordinate system.

The applied image registration and alignment techniques are de-
tailed in (Szeliski, 2006).

The perspective transformation between two images taken of a

plane surface can described by the homography matrix H. One
point po is transformed to p; by the following equation:
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Figure 1: Process overview
The pixel coordinates are:

Yi
Ypiz = o (3)

This H matrix can be calculated for every image pair taken over
the same scene, but it will give an accurate transformation only
if the scene is a planar surface. This constraint cannot be met
in general, but for aerial images it is a good assumption, since
the surface of the earth from low altitudes is approximately a
plane. This assumption in not met perfectly in the presence of
relatively high buildings and considerable relief. In this situa-
tions the points emerging from the ground plane surface cause
parallax errors in the registration procedure.

In special cases special homography matrices can be used. These
are when there is only translation or rotation between two images,
or affine transformation. On the considered videos the camera’s
ego motion is arbitrary, thus we describe the transformation by
the most general homography matrix.

To warp one image to the other we need to calculate the H ho-
mography matrix. We mention here two approaches to calculate
this matrix:

e Direct (pixel) based

e Feature based

2.1 Direct (pixel) based registration

These approaches define an error metric which shows how much
the corresponding pixel values agree after the warping transform.
Then the transformation which warps the images with a mini-
mum error is searched, which needs a computationally suitable
searching technique.

The advantage of this approach is that it can handle blurred im-
ages, when there are no feature points and thus other, feature
based, approaches fail (see Section 2.2). On the other hand,
this method is mostly suitable for specific transformations, i.e.
translation, rotation, but it can hardly handle general homogra-
phy transformations.

2.2 Feature based registration

The feature based techniques begin with extraction of feature
points on the images. These points can be found and aligned
on the two image. This yields a points set S on one image which
is aligned to point set S’ on the other image.

S =5

By fitting a transformation to these points the transformation ma-
trix can be estimated.

S’ =HS 4)

Popular feature point detectors are the Harris corner point detec-
tor (Harris and Stephens, 1988), the SIFT detector (Lowe, 2004)
and the SURF detector (Bay et al., 2006).

In case of aerial images the transformation cannot be restricted
to translation or rotation, thus the more general affine or perspec-
tive transformation has to be used. Therefore, we use the feature
based method to find the homography matrix of the perspective
transformation.

2.3 Feature points

We use the Harris corner detector which is more suitable in man-
made environments where corners are abundant. It is also com-
putationally less expensive than the other feature point detectors
such as SIFT or SURF. Note that if there are no feature points,
like in large homogenous areas, the registration fails.

2.4 Point alignment

Corresponding points are searched on two consecutive frames
by the Lucas-Kanade pyramidal optical flow algorithm. This
step yields the positions of the feature points on the next image,
thus the transformation between the frames can be calculated.
The applied optical-flow algorithm assumes small displacement
and nearly constant pixel intensity across the consecutive frames.
This constraint is fulfilled on the considered videos. The transfor-
mation is fitted by RANSAC (Fischler and Bolles, 1981) to the
extracted point correspondences to reduce the effect of outliers.

If the transformation between two frames is available, the frames
can be warped into a common coordinate-system. The common
coordinate system is a periodically chosen reference frame. There
is a homography matrix between the two following frames n, n —
1 H, n—1, and a homography between the frame and the refer-
ence frame H,, o,

Hn,O = Hn,n—lHn—l,n—Q ce H2,1H1,0 (5)

The current image is warped into the coordinate-system of the
reference image by the Homography matrix H, I is the pixel
value in the destiny image, I, is the pixel value in the source
image.

Hsyx + Hsoy + Hss’ Hsix + Hsoy + Hss
(6)

Iy(z,y) = Is <H111: + Hi2y + Hiz Hoiz + Haoy + H23>

The warped image has artifacts, because of the unperfect estima-
tion of the transformation and discretization errors.The homogra-
phy transformation results in continuous coordinate values which
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Figure 2: Warped frames

should be discretized into pixel positions, which may be relevant
in strong perspective cases, when a given source pixel is warped
to several pixels of the output image. This reduces the effective
resolution of the image.

3 FOREGROUND EXTRACTION

The image registration yields an image that looks like a window
in a global image (see Figure 2). If the registration is optimal only
the pixels belonging to a moving object are changing, though this
cannot be fully achieved due to image registration and parallax
errors.

Working on the considered videos, these errors are typically lo-
cated along the edges and their expansion is narrow (a few pixels).

3.1 Background model

The background image is synthesized and updated in the common
coordinate system, calculating the pixel-by-pixel running average
and variance of the consecutive warped video frames. Note that
the widely used Mixture of Gaussians (MOG) approach (Stauf-
fer and Grimson, 1999) cannot be adapted to our case, since due
to the fast camera motion we can often observe only a few sam-
ples (less than 10) for each surface point, which is not enough to
describe the distribution by MOG.

We calculate the mean value Z,,, and the variance 0721 for every
pixel on-line:
Tn = (1 - O[)an71 + axn (7)

where « is a constant that gives the refresh rate.

02 =(1—a)oi_y+ a(zn — Zn)(Tn — Tn_1) ®)

3.2 Foreground detection

The pixels of the actual frame are classified either as foreground
or background based on the normalized Euclidean distance from
the background pixel values in the CIE L*u*v* color space. This
is the Mahalanobis-distance for diagonal covariance matrix.
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Figure 3: Results of background subtraction

This yields a distance image, which is noisy as one can see on
Figure 3. This noisy image is filtered by a special Difference of
Gaussians filter, applying Gaussian blur and threshold. The blur-
ring spreads the narrow pixel errors, thus the concerning values in
the difference image drop below the threshold level. The moving
objects correspond to blobs on the foreground mask, though the
mask of an object can be split and incomplete. Figure 4 shows
the foreground mask marked by red color on the image.

4 MOVING OBJECT DETECTION

The foreground detection yields a binary mask on which the mov-
ing objects, e.g. cars and pedestrians are blobs. These blobs can
be noisy, split, etc., and there can be false detected blobs which
do not belong to moving objects. So in general the blob detec-
tion is under-constrained. By using a priori knowledge the blob
detection can be restricted to special blobs, i.e. by shape or size.

We propose a fast object detection algorithm which is based on
the foreground mask; meanwhile it considers split and incomplete
object blobs. The input is the size of a car. The size of the cars
can be precisely defined. If we know the altitude, the angles (raw,
pitch) and the focus length of the camera( the airborne vehicles
have an inertial navigation system which can provide these pa-
rameters) the size of the car can be approximately calculated by
assuming that it is moving on the ground. On the videos we have
tested these parameters are unknown, thus we have estimated the
size of the cars manually.

The initial step of the object detector algorithm divides the mask
image to disjunctive rectangles with size x X z, where z is the size
of the car in pixels, and the foreground covering ratio is calculated
for each rectangle. The rectangles containing foreground pixels
above a threshold are kept as object candidates (OC).

Next, the OC-s are shifted and/or merged by an iterative algo-
rithm. An OC is shifted by mean-shift based on the binary mask



ISPRS Istanbul Workshop 2010 on Modeling of optical airborne and spaceborne Sensors, WG 1/4, Oct. 11-13, IAPRS Vol. XXXVIII-1/W17.

(b)

Figure 4: Foreground detection. Moving objects are marked by
red color on the mosaic image.

values. This shift moves the OC rectangles toward the dense fore-
ground pixel regions. Thereafter, these two OCs are merged, if in
the shifted positions their overlapping area is above a threshold.
The meanshifting and merging steps are repeated several times
till convergence.

At the end the OCs are located around areas containing large
number of foreground pixels. Since the binary meanshifting and
intersection calculations are very simple operations the detection
algorithm is significantly quicker than similar approaches, e.g.
the color and texture based methods proposed in (Yu et al., 2008).
But since it is based only on the foreground mask, it can fail in
cases when the foreground mask has errors, e.g. the large objects
e.g. buses, can be detected as more cars if their silhouette is split.

Also the pedestrians can cause false positive errors, if more mov-
ing pedestrians are close, because in this case their foreground
blob’s size is close to the size of a car. The steps of the algorithm
can be followed in Fig. 4.

5 TRACKING

The object detection is processed for each frame independently.
Thus these detections have to be assigned across the frames to
yield the tracks of the objects. The difficulty is that in general the
number of object detections for consecutive frames can vary even
in the case of perfect detection, i.e. objects enter and leave the
scene, objects are occluded by buildings or bridges. To handle
the disappearing and later reappearing objects Kalman filtering is
used.

The steps of tracking are shown in figure 6.

The steps of the detection:

1. calculate the foreground pixels 7 forc in the x X x sized rect-
angles R;

2. if ngore > BA(R,) (Where A means the area of the rectan-
gle and f is the threshold parameter) R; will be an object
candidate and the “mass center” is calculated for R;

3. Find the n closest neighbors N; for every object candidate
R;.Tusedn =4

4. Calculate the areas A;; of the cuts between the neighbors
and the object candidate A;; = A(R; N Nj)

5. if A;; > £ where € is a threshold parameter the OCs R; R;
are merged, this means that the OC with less foreground
pixels is deleted and the size of the other is increased.

6. The position of the object candidates is modified by mean
shifting it m times. m is a parameter, which is different in
the iteration steps. In the first iterations it is low (2-3), later
it is increased to 4-5. This accelerates the algorithm, since
in the first iterations when the number of OCs is high less
mean shifting is needed.

7. The steps 4 — 6 are repeated till convergence with differ-
ent £ and m parameters. Practically the convergence can be
achieved by repeating the steps several times.

8. The remaining OC rectangles are the objects, the 1 dimen-
sional histogram is calculated for every color channel in the
HSV color space for the objects.

Figure 5: Moving object detection
5.1 Kalman filter

The Kalman filter is an efficient tool for filtering a noisy dynamic
system. It predicts the new states of the system and then corrects
it by the measurements.

In tracking we do not have information about the control of the
motion, therefore the acceleration is assumed to be zero, and
the change in velocity is modeled by the process noise. Con-
sequently, we do not include the acceleration in the process equa-
tion, and the effect of the acceleration noise is described by the
velocity noise. The motion can be described by the following
equations:

Tk

1
I
—
=8
[
Il

{ - } [;;;—1 }+wk1 (10)
2k = [1 0] Tr + vk (11)

Where z, is the position coordinate in one direction, zj is the
measured position, wy—1 is the process noise, vy, is the measure-
ment noise.

5.2 Assignment

On each current frame the &k detected objects have to be assigned
to n tracked objects from the previous frames. If n = k, this can
be done in n! ways. The Hungarian method solves this in O(n?)
running time. We solve the assignment problem with a greedy
algorithm, which is computationally simple and gives good result
in most cases. The cases when the greedy algorithm fail can be
neglected, since they last only a few frames, and on a long term
the Kalman filtering corrects these errors.
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Figure 6: The steps of object assignment with Kalman-filtering

We construct a n X k score matrix, S, whose elements are cal-
culated based on the euclidean distance of the predicted and de-
tected positions and the object’s color histogram. The elements
of the matrix are fitness values which describe how good the ob-
jects from the previous frames match the objects detected on the
current frame.

1

Si; =1
! deS(Oi»Dj>

+(1- ﬁ)dhist(oi,Dj) (12)

where d,.s is the euclidean distance of the positions, dp,s; is the
histogram similarity and ¥J is a weight value.

Gpos000,) =\ Pre — D3a)? + 0y — i (13)

p; is the predicted position of object O;, p; is the position of
detected object O;.

The steps of the score table S;; calculation for every ¢, j pair:

1. Calculate the distance dyos of the predicted position p; of
object O; and the position p; of the detected object D).

2. if dpos i,; > ¢, Sij = 0 and terminate. ( is a threshold
parameter.

3. if dpos 4,5 < ( calculate S;; according to (12)

If the number of detected objects is equal or greater than the num-
ber of tracked objects from the previous frames, the assignment
is done forward, this means that the tracked objects are assigned
to the detected ones.

The steps of forward assignment:
1. i=1
2. for O; find max m; in Si1...x, M = Sij
3. if m; > (, assign D; to Oy, set the column S1..,; =0
4. 1=14+1,gotostep2untils < n
5. set the not assigned objects Oy, to passive, Oy, — passive

6. create new objects Oney for the detections which are not
assigned to an object D,,,, and assign these new objects to
them. Opnew — Dna

Detection 1

Object A

Prediction A~

Detection 4
A
Detection 2

Prediction B

Figure 7: Object assignment

The objects which are passive for more than Npqssive time are
deleted.

If the number of detected objects is less than the number of tracked
objects from the previous frames, the assignment is done back-
ward, this means that the detected objects are assigned to the
tracked ones. Distinguishing between the two assignments is
needed because the algorithm is greedy, thus the first objects in
the order have priority.

Assignment backward:
1. j=1
2. for Dj; find max m; in S1...nj, m; = Sij
3. if m; > (, assign O; to Dy, set the row S;1..,, =0
4. j=j+1,gotostep2until j <k
5. set the not assigned objects Oy, to passive, O, — passive

6. create new objects Onerw for the detections which are not
assigned to an object D4, and assign these new objects to
them. Onew — Dna

During the assignment process:

e Objects are assigned to detections.

New objects are created and assigned to detections.

Objects are set to passive. (no detections are assigned to
them)

Objects are deleted.

The figure 7 shows an assignment. A detection is assigned to an
object only if it is close enough (this is given by the threshold
parameter () to the predicted position of the object. Object A is
assigned to detection ”’3”, Object B is not assigned to a detection
thus it is set to passive. For the detections 1, 2, 4 new objects are
created.

6 RESULTS AND CONCLUSION

The algorithm was tested on various videos, taken in rural, urban
and suburban environment from plane and balloon. We evaluate
the tracking in a qualitative way.
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On the videos which contained corner points over all the image,
the registration was accurate, therefore the tracking was also ac-
curate. The videos which lacked corner points could not been
registered accurately therefore the algorithm failed.

In the urban environment the algorithm was accurate in weak and
middle traffic. Also in the presence of a bridge which occluded
the cars.

The dense traffic caused errors, because in this case the algorithm
can hardly distinguish between the background and the moving
vehicles.

The algorithm was implemented in OpenCV 2.0. The program
was tested on an Intel Core i7, 2.67 GHz processor. The execution
time per frame, for a 640 x 480 video was about 250 ms.

One of the most important input is the relative size of the car in
pixels. The blob detection on the foreground mask highly de-
pends on this. It has to be considered that the size of the cars
varies by the pixel position on the image if the camera view is not
vertical. The proposed algorithm calculates with a fixed car size
along all the image, thus in horizontal camera views it can fail.
This could be handled by a size correction based on the camera’s
view angle and altitude.

The refresh rate for the foreground detection is also crucial. The
ideal value depends on the frame rate, the ego-motion speed of
the camera and the speed of the objects. The value was set in an
experimental way.

The proposed algorithm is well suited for real-time application,
because the computational complex is kept low. The proposed de-
tection algorithm can be used in more complex, e.g. color based
object detection as a pre filtering step to reduce the needed com-
putations.

Figure 8(a) and 8(b) show the track results for urban environment
containing a bridge that occludes the cars. The whole image is
the mean value of the background, the brighter part is the current
frame, the rectangles are the objects with their IDs, the colored
dots are the tracks.
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Figure 8: Track results. The current frame is the brighter region, the objects are marked with rectangles and IDs, the colored dots are
the tracks of different cars.



