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ABSTRACT:

In the last decades it often has been shown that Multilayer Perceptrons (MLPs) are powerful function approximators. They were
successfully applied to a lot of different classification problems. However, originally they only deal with real valued numbers. Since
PolSAR data is a complex valued signal this paper propose the usage of Complex Valued Neural Networks (CVNNs), which are an
extension of MLPs to the complex domain. The paper provides a generalized derivation of the complex backpropagation algorithm,
mentions regarding problems and possible solutions and evaluate the performance of CVNNs by a classification task of different
landuses in PolSAR images.

1 INTRODUCTION

Synthetic Aperture Radar (SAR) achieved more and more impor-
tance in remote sensing within the last years. Nowadays a great
amount of SAR data is provided by a lot of air- and spaceborne
sensors. SAR represents an important source of remote sensing
data, since the image acquisition is independent from daylight
and less influenced by weather conditions. Polarimetric SAR
(PolSAR) possesses all those advantages, but also add polarime-
try as a further very meaningful information. Several scattering
mechanisms can be better or even only distinguished by usage of
polarimetry. Therefore, most contemporary sensors are able to
provide PolSAR data.

The increasing amount of remote sensing images available nowa-
days requires automatic methods, which robustly analyse those
data. Especially segmentation and classication of PolSAR im-
ages are of high interest as a first step to a more general image
interpretation. However, this aim is very challenging due to the
difficult characteristics of SAR imagery.

In supervised learning schemes the user provides a training set,
consisting of the wanted system output for several given system
inputs. There are a lot of different supervised learning meth-
ods, such as support vector machines, linear regression, radial ba-
sis function networks and multilayer perceptrons (MLPs). Some
of those have been already applied to classication of SAR or
PolSAR images (Fukuda and Hirosawa, 2001). However, all
of them are designed for real valued data, which makes prepro-
cessing steps necessary, when dealing with complex valued Pol-
SAR data. This leads to a loss of available information. Fur-
thermore, a lot of classification schemes for PolSAR data make
parametric assumptions about the underlying distributions, which
tend to fail with contemporary high-resolution SAR data. There-
fore, this paper evaluates the usage of complex valued neural net-
works (CVNNs), which are an extension of well studied MLPs to
the complex domain. MLPs are known to be powerful function
approximators with good convergence and classification perfor-
mance. CVNNs have already shown their applicability to SAR
data (Hirose, 2006), but by the best of the authors knowledge
have been never used in classication of PolSAR data.

In contrast to MLPs, which are real functions of real arguments
with real coefficients, CVNNs deal with complex valued inputs
by using complex weights. This extension seems to be straight-
forward, but is complicated by restrictions of derivatives in the
complex domain.

The next chapter describes the dynamics of a CVNN. Problems
and solutions regarding the extension to the complex domain are
discussed and the used variation of the backpropagation algo-
rithm is explained. In Chapter 3 the performance of CVNNs is
evaluated by a classification task.

2 COMPLEX VALUED NEURAL NETWORKS

2.1 Dynamics

Figure 1: CVNN

Similar to MLPs a CVNN consists of several simple units, called
neurons, which are ordered in a certain number L of different lay-
ers (see Fig.1). The first layer is called input layer (l = 0), the last
one output layer (l = L) and all layers in between hidden layers.
Only neurons in subsequent layers are connected and a weight w
is associated with each of those connections. The activation yl
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of the i-th neuron in layer l in terms of the net input hl
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where hl
i, yl

i, zi, wl
ji ∈ C, Nl−1 is the number of neurons in the

previous layer and (·)∗ means complex conjugation. The func-
tion f l

i (·) is called activation function and is mostly chosen to
perform a nonlinear transformation of the weighted input. The
sigmoid functions given by Eq.3,4 are the most common choice
for MLPs, since they are differentialable in every point (analytic)
and bounded.

f(x) = tanh(x) (3)

f(x) =
1

1 + e−x
(4)

Possible activation functions for CVNNs are discussed in section
2.3
As CVNNs are supervised learning schemes, a user provided data
set D exists:
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z ∈ CN0 , ỹ ∈ CNL (6)

The goal is to find a specific set of weights {wl
ji} for which

the system output yL for a given input z equals the target value
ỹ(α). Therefore the minimum of an error function E{w}(D) is
searched:
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where err(·) is the individual error of each data point.

2.2 Complex Valued Backpropagation Algorithm

The mostly used method for adjusting the free parameters of a
MLP, named backpropagation, relies on the gradient of the error
function. The same idea is utilized for CVNNs. The following
derivative of the complex backpropagation algorithm is geared
to the derivation given in (Yang and Bose, 2005), but does not
require a specific activation or error function. Therefore, it results
in a more general learning rule, which can easily be adapted to
different choices of those functions.
The derivatives of complex functions are obtained according to
the complex chain rule
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and the Conjugate Complex Derivative (equals zero if g(z) is an-
alytic)
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where j =
√
−1 is the imaginary unit.

For more detailed information about analysis of complex func-
tion see (Haykin, 2002).

Given a specific data set as in Eq.5 the minimum of the error
function is searched by iteratively adjusting the weights accord-
ing to:
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ji(t) + µ̃∆wl
ji(t) (11)

where µ̃ is the learning rate and the current change of the weights
∆wl

ji(t) depends on the negative gradient of the error function.
As stated by (Haykin, 2002) this can be calculated as:
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If the current layer l is the output layer (l = L) only δL
i is needed

and can be directly calculated if the complex derivatives of the ac-

tivation function of the output layer
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If the current layer l is one of the hidden layers (0 < l < L) the
error is backpropagated by:
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According to Eq.2 one obtains:
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Using Eq.19-25 Eq.17 and 18 become to:
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Using Eq.13-18 and Eq.26,27 the learning rule in Eq.11 becomes
to:
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2.3 Activation Function

To apply the learning rule given by Eq.28 the derivatives of the
activation functions are needed. As stated above the activation
functions should be bounded and differentiable in every point.
However, in the complex domain only constant functions fulfill
both criteria as stated by Liouville’s theorem. Due to this fact
CVNNs were not considered as robust and well performing learn-
ing methods until few years ago.

One of the first ideas to deal with complex information was to
use two different MLPs, which were separably trained on real
and imaginary parts or amplitude and phase. Obviously this ap-
proach cannot use the full complex information available in Pol-
SAR data.

Recently more sophisticated ideas have been published, which
make use of either bounded but not analytic or analytic but not
bounded activation functions (Yang and Bose, 2005, Kim and
Adali, 2003). The complex tanh-function for example (see Fig.2)
is analytic, but not bounded since it has singularities at every
( 1
2
+n)πi ,n ∈ N. However, if the input was properly scaled, the

weights were initilized with small enough values and one takes
care that they do not exceed a certain bound during training, the
net-input of an neuron will not approach this critical areas.

Figure 2: real (left) and imaginary (right) part of tanh(z)

On the other side if the saturation properties of real valued ac-

tivation functions are considered, a function like shown in Fig.3
seems to be a more reasonable extension of real valued sigmoidal
functions in the complex domain, since it shows a similar satura-
tion.

Figure 3: real (left) and imaginary (right) part of split- tanh(z)

This function is called split-tanh and is defined by:

f(z) = tanh(<z) + i tanh(=z ) (32)

It is bounded everywhere in C. Although it is not analytic the
Generalized Complex Derivative (Eq.9) and Conjugate Complex
Derivative (Eq.10) exist. Therefore it was used in this paper.

2.4 Error Functions

The other derivatives needed by Eq.28 are the complex deriva-
tives of the error function. In the most cases the quadratic error
defined by Eq.33 is used when learning with backpropagation.
However, it was reported in (Prashanth et.all, 2002) that other er-
ror functions can significantly improve the classification result.
The error functions err
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tested within this pa-
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where c is a constant which was set to unity.

• Complex Log-Cosh Error Function CLCErr:
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3 RESULTS AND DISCUSSION

To determine the performance of CVNNs they were utilized to
solve a classification task in this paper.

3.1 Used Data

PolSAR uses microwaves with different polarisations to measure
the distance to ground and the reflectance of a target. The most
common choice are two orthogonal linear polarisations, namely
horizontal (H) and verticular (V ) polarisation. Those settings re-
sult in a four dimensional vector, that can be reduced to a three
dimensional vector k under the assumption of reciprocity of nat-
ural targets:

k = (SHH , SHV , SV V ) (37)

where STR is the complex valued measurement of the signal
backscattered from the surface using the indicated polarisation
during transmitting (T ) and receiving (R).

There are several targets, which cannot be fully described by a
single scattering vector. Therefore, the complex sample covari-
ance matrix given by

C =
1

n

nX
i=1

ki (38)

is often a better description of PolSAR data and was used as input
to all CVNNs in the following analysis.

Figure 4: ESAR image over Oberpfaffenhofen with marked train-
ing areas

The image in Fig.4 is a color representation of the PolSAR data
used by the following analysis. It was taken by E-SAR sen-
sor over Oberpfaffenhofen at L-band and consists of regions of
forests and fields as well as urban areas. The trained CVNNs
have to distinguish between those three types of landcover. Train-
ing areas, which were labelled manually, are marked by colored
rectangles within the image.

The target value ỹ of class c is a three dimensional complex vec-
tor whose i-th component is defined by:

ỹi = (−1)d · (1 + j ) (39)
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(40)

3.2 Performance regarding to different Error Functions

Table1 summarizes the achieved classification accuracy. Each
column shows the average percentage of misclassification on pre-
vious unseen data using different error functions given by Eq.33-
36. Different net architectures are orderd in different rows, be-
ginning with the most simple case of only one layer at the top of
Table1 to a three layer architecture (9 input neurons, 10 neurons
for each of the hidden layers and 3 output neurons) at the bottom.

CQErr CFPErr CCErr CLCErr
9-3 13.29% 47.70% 14.57% 21.03%

9-5-3 12.40% 41.63% 15.68% 12.19%

9-10-3 11.23% 24.17% 15.68% 13.05%

9-10-10-3 9.41% 14.67% 9.87% 10.82%

Table 1: CVNN classification error for different error functions
and net architectures

Although the results are very similar for more complex architec-
tures, the CVNNs using the Complex Quadratic Error Function
and the Complex Cauchy Error Function were able to achieve
good classifications with only one layer.

3.3 Comparison with MLP

As MLPs cannot deal with the original complex signal different
sets of features have to be chosen. Two different features were
used to train MLPs and to compare their classification perfor-
mance with those of CVNNs:

• amplitudes of the complex components of the sample co-
variance matrix C:

f1 = |C| (41)

• eigenvalues ei and diagonal elements cii of the sample co-
variance matrix C (both are real valued, since C is hermi-
tian):

f2 = (e1, e2, e3, c11, c22, c33) (42)

The quadratic error function was used together with a tanh-activation
function. The MLP consisted of one hidden layer with ten neu-
rons.

f1 f2

N0-10-3 54.86% 57.13%

Table 2: MLP classification errors for different features

The classification results as average percentage of misclassifica-
tion are summarized in Table2. They clearly show that an MLP
trained with the features above is unable to solve the classifica-
tion task. Note that they differ only slightly from a random label
assignment to all data points.



4 CONCLUSIONS

The paper provides a generalized derivation of the backpropaga-
tion algorithm in the complex domain. The derived learning rule
can easily adapted to different activation and error functions. The
performance of CVNNs was evaluated. They appear to be supe-
rior to real valued MLPs regarding the specific classification task,
since they achieved a good performance on average where MLPs
nearly completely fail. Although the split-tanh activation func-
tion is non-analytic it is possible to obtain a meaningful gradient
using Complex Generalized Derivative and Complex Conjugate
Derivative. However, the behavior of CVNNs under the usage of
different activation functions should be investigated, what will be
part of the future work of the authors.
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