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ABSTRACT:

The application of three dimensional building maedehs become more and more important for urbampignenhanced navigation
and visualization of touristy or historic objec3® models can be used to describe complex urbaresc&he automatic generation
of 3D models using elevation data is a challengeatdual research. Especially extracting planesegdgnd corners of man made
objects is of great interest. This paper deals Withautomatic classification of points by utiligithe eigenvalues of the covariance
within the close neighbourhood. The method is basethe analysis of 3D point clouds derived fronsdrascanner data. For each
3D point additional structural features by consiugithe neighbourhood are calculated. Invariandd véspect to position, scale
and rotation is achieved by normalization of thatdees. For classification the derived features ammpared with analytical
calculated as well as trained feature values fpict} object structures. For the generation ofaining data set several point sets
with different density and varying noise are getetaand exploited. The result of the investigatimshat the quality of the
classification using the analytical eigenvaluegedsrence is not harmful in comparison to the #dimata set for a small noise.
Therefore for all structures presented here ibisnecessary to use training data sets instead ohaupervised classification based
on the analytical eigenvalues. Weighting the calimd distances in the eigenvalue space dependeheairucture type improves
the classification result. Due to this classifioatiall points which may belong to a building edge selected. Assembling these
points to lines the 3D borders of the objects wahieved. The algorithm is tested for several urbzemes and the results are
discussed.

In Section 2 the calculation of additional poinatigres is
described. The features are normalized with respect
translation, scale and rotation. In Section 3 tgpic
constellations of points are discussed and disoatmg
features are presented. Examples for the combmatd
eigenvalues and structure tensor are shown. Foicatyp

1. INTRODUCTION

Three-dimensional building models have become itamor
during the past for various applications like urbalanning,
enhanced navigation or visualization of touristy lastoric
objects. They can increase the understanding goldreation of

complex scenes and support the decision procespartion
planning. The benefit for several applications bifizing

LIDAR data was demonstrated for instance by Brenteal.e
(2001). For decision support and operation planrthng real
urban environment should be available. In mosts#se object
models of interest are not obtainable and espgcialltime

critical situations the 3D models must be generatedast and
accurate as possible.

Different approaches to generate the 3D modelshEruscenes
are discussed in the literature (Shan & Toth, 20@8)ilding

models are typically acquired by (semi-) automatiocessing
of Laser scanner elevation data or aerial imageaylliérd et al.,

1999; Geibel & Stilla, 2000). LIDAR data can be ia8d for

large urban scenes (Gross & Thoennessen, 2005).

processing of raw full-waveform data to gain objstuctures
of buildings was investigated by Jutzi et al. (20@5d the
iterative processing to increase the set of 3Dtgadh buildings

by Kirchhof et al. (2008). Pollefeys (1999) use®jgctive

geometry for a 3D reconstruction from image segesnEraser
et al. (2002) use stereo approaches for
reconstruction. Vosselman et al. (2004) describesam line

segmentation method grouping points in a 3D prayimi
Airborne systems are widely used but also terastraser

scanners are increasingly available. The latteis qgrevide a
much higher geometrical resolution and accuracy @mndm)

and they are able to acquire fine building facadtits which

are an essential requirement for a realistic virtisualization.

3D buildin

situations analytical feature values are derivedr Fhe

classification procedure the results of the traifesdure values
are discussed in Section 4 and the trained valteesampared
with the analytical values. The generation of lileslescribed
in Section 5. Points with the same eigenvectorsaasembled
and approximated by lines. The resulting 3D stmestu
(boundaries) of objects are shown for the seletdsdr point

cloud. In Section 6 the possibilities using additibfeatures are
summarized. Outstanding topics and aspects of ¢adized

method are discussed.

2. EIGENVALUE ESTIMATION TO GAIN OBJECT
STRUCTURES

The Laserscanning device delivers 3D point measurésnienan

Euclidian coordinate system. For airborne systerostiy the
height information is stored in a raster grid wéthpredefined
resolution. Image cells without a measurement r@terpolated
by considering their neighbourhood.

@n example data set gathered by an airborne Lasmmner
ystem (TopoSys®) as 3D points is shown in Figuae The
color corresponds to the height. A transformationat raster
image, selecting the highest value for each pirdlater filling
missing pixels with a Median operation, yields tgufe 1b.
Due to the filtering the image does not represeatariginal 3D
information anymore. The horizontal position is gklly
different and some of the height values are intetpd to fill
the gaps even if there was no measured value bimila



Additionally, sometimes more than one measurement af
resolution cell exists considering first and lasth@ or
combining data of several measurement campaigns.

Figure 1. Point clouds measured with TopoSys® Lasanner

a) colored by height, b) raster image based ontpoin

clouds with interpolated values.

An example of data received by a terrestrial Lasanner (Z+F
sensor) for a dense point cloud colored by intgrisishown in
Figure 2.

In contrary to the airborne data the projectiontefrestrial
Laser data along any direction is not very reasendspecially
the combination of airborne (Figure 1) and teriak{Figure 2)
Laserscanning data requires directly the analysiké 3D data.

Figure 2. Point clouds of a Z+F sensor coloreéhisnsity.

2.1 Calculation of the covariance matrix utilizing a 3D
spherical volume cell

A 3D spherical volume cell with radiuR is assigned to each
point of the cloud. All points in a spherical cailill be
analyzed. The 3D covariance matrix as described/bgs &
Vosselman (1999) are discussed and further improasd
described in Gross & Thoennessen (2006).

In a continuous domain, moments are defined by:

mikzjx‘y‘zkf(x,y,z)dv, 1)

where i, j,kON, and i+ j+k is the order of the moments
integrated over a predefined volume weightedﬂ()x, y,z) . As

weighting function the mass density can be useekdtices to a
constant value if homogeneous material is assurhAedther
possibility is to use the measured intensity asghtiig
function as discussed in earlier works. To norneatize terms
they have to divide by the volumemm:jf (xy.z)av .
\Z
Considering only surfaces of objects all momenteehtn be
calculated with a constant but small thicknesstfa volume
vanishing by the normalization. After discretizatiof the

integrand and settingf (x,y,z)=1 O pointthe integral is
approximated by a sum. The mean valiey,Z and the
moments of the second ordeet j +k =2 have been calculated.

The normalized and dimensionless moments of seocoatet for
discrete points are given by

> (5= (v =) (2 -2
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Neither the number of points nor the chosen physio& for
the coordinates, the radius and the weighting factituences
the values of the covariance matrix.

For each point of the whole data set a symmetdoshriance
matrix is calculated by
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The calculation of the eigenvalue)s and eigenvectors, with

i=1,2,3 delivers additional features for each poiffthe
eigenvalues are invariant concerning translatiotation, and
scaling.

2.2 Poaint distribution in 3D space

In this section the influence of the measuremedtthe related
point distribution on the investigated structuresléscribed.

Figure 3. lllustration of a point cloud captured dyerrestrial
Laser scanner with typical
indicates the reflected intensity).

Figure 3 shows as an example for the point distidnuderived

by a terrestrial Laser scanner (Zoller+FroéhlichheTpoint

density depends on the distance of the objectecsémsor and
also on the incidence angle between laser beamnanual

vector onto the object surface. For the airbornsetacanner
(TopoSys®) mounted on an aircraft the point densdy be
much higher in flight direction than perpendicularthe flight

direction. In both cases there is no uniform disttion of the
measured points.

The investigations show that an inhomogeneous ilgiigion
does not influence the eigenvalues essentiallyoag bs the
radius of the neighbourhood is large enough. Tréams points
inside a plane are characterized as plane pointghéf
neighbourhood encloses at least five points imliadictions and
the rate of the point distances for any two differéirections is
smaller than 5:1.

2.3 Analytical eigenvaluesfor object structures

For specific object structures analytical eigengalican be
determined. Table 1 show some typical object stingst with
their corresponding eigenvalues, where all valuee a
determined by utilizing all required integratiorffarmula (1).
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Table 1. Eigenvalues for some selected objecttsires.

For all possible values of the roof slope the eigdumes are
drawn in Figure 4. The greatest eigenvalue is @rbconstant.
The second eigenvalue starts from 0.125 and ineseasth
increasing slope until 0.25. The smallest eigervalacreases
from 0.03 to zero. For a slope of 30° the eigeresiteaches the
mean values for a flat roof and a plane. Therefor®wn class
for this structure is defined.

eigenvalues
0.25

x ;,1=0.25/
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Figure 4. Eigenvalues of the eave points for défier roof
slopes (0°, 30°, and 90°); the colored arrows Vizea
the direction of the eigenvectors.

3. MONTE CARLO SIMULATION

The analytical calculated values in Table 1 doaustespond to
the statistical averages, which can be expectethforelevant
structures of real data. Usually, for an examphe $mallest
eigenvalue of points belonging to a plane do naiveoge to
A, =0. Already very small deviations of points from atfl

surface vyield to A, >0. Therefore for all the structures in

Table 1 inside a spherical neighbourhood with radupoints

with the different distances, normalized by theiuadof the
sphere dx/R0{0.03,0.1,0.2,0.3,0}« are generated. Each

coordinate of the position of the points is modifiby a
Gaussian distributed noise with the normalized ddeth
deviationo/R{0.0,0.01,0.02,0.03,0.p.

For each parameter combination and structure 100@t p
clouds have been generated by random 3D points.niden

value and the standard deviation of every 3 eigeegawere

determined. The histograms of one test set for sacleture are
drawn in Figure 5. The distribution of the eigennad seems to
be Gaussian with center near by the analyticaleslu
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Figure 5. Histograms of the eigenvalues and corsparivith
the analytical values (dashed lines) fix=0.4R and
0=0.04R for all structures (red: first, green:
second, blue: third eigenvalue).
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Figure 6. Eigenvalue point cloud projection alahg axis of
the smallest eigenvalue.

In the next steps the 3 eigenvalues are consideredpoint of a
3D space. For a small standard deviaiothe point cloud of
eigenvalues results in a small accumulation of {oiif ¢ is

increasing the clusters are extending and neanstess may
overlap. Figure 6 shows the 2D-projection alongdkis of the

matrix ;=Y (4,-1)(4,-1)" can be calculated, whef is the
poS

number of eigenvalue-points of the structure. Tigtadce of
any test pointd of the eigenvalue space is determined by using
the Mahalanobis-distance d(1,5)=(1-4) c(1-4). This

measure gives a distance for any test eigenvalig-po the
different structures. These eight distances ofyepeint against
their own and all other structures (except forased point) are
listed in the Figure 7. The points of a structure plotted and
colored in accordance to their membersBipnd drawn in the
interval [s-1,5] (horizontal axis). The vertical axis represents

the logarithm of the distance of each eigenvaluatpm each
structure. In the 1st picture the distances betwélea
eigenvectors of all test records of all structuegminst the
structure "End of line" are drawn. The remainingtyies show
the respective distance of all test points to tteiostructures.
The green line mark the value of the Chi-squares tg%,, ,. The

eigenvalue A,. Projections along the two other eigenvaluespercentage number of points of each structure wittmaller

demonstrate the separability of the cluster fohestructure.
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Figure 7. Distances of the eigenvalue pointsltolasses.

The eigenvalues of the points for each structuréneea
training record from which the three mean
Ao=YN ¥ 2
S pos P

distance has been indicated. With increasing nibisedistance
of a point of a structure to a different structutecreases.
Therefore false classification increases.

Figure 8 shows the mean value and the standardtéw®viof the
eigenvalues of the training set for a plane dependa the
point density and the noise. The mean values appet& the
analytical eigenvalues with a very small standardation.

Figure 8. Mean value and standard deviation of theee
eigenvalues of the training set for a plane.

A comparison between the mean value of the eigeasadf the
training set for a plane and the analytical valissshown in
Figure 9. The differences depend on the point demsid the
noise. A high point density delivers nearly the lgtizal
eigenvalues. The non monotonic behaviour of theetor A,

may be caused by the approximation of a plane rlyne
equidistant points (discretization effects). Theamgalue of the
third eigenvalues is positive but very small.

Plane: diferences to analytical values

mean(i. ),

Figure 9. Differences between the mean value of digen-
values of the training set for a plane and the
analytical values.

For the same points the Euclidean distances ireitpenvalue
space against the analytical eigenvalues were leédcl Within
the tested mean point intervals and the investigatése all the
points were assigned to the correct structure. dase this
investigation the classification of elevation psintan be
realized by nearest neighbour classification in digenvalue
space of the structures of Table 1. This is poss#id far the

valuesnoise is lower than 4% of the radius of the neighthood
as well as the associated eigenvalue-covarianceenvironment.
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After calculating the covariance matrix for eachinpdn the
data set by considering the local environment eefitby a
sphere additional features for each point are ddrivihese
features are the centre of gravity, the geometritiatance
between centre of gravity to the point, the eigetwes, the
eigenvalues and the number of points inside thesrgphirhe
same features can be used to determinate the object
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Table 1 shows the eigenvalues of the covariancexmatsome Figure 10..Equipotential surface between line arahelin the
special point configurations. The first six rowegent 2D and eigenvalue space.

the last three rows 3D object structures. The eigleses for the  ag an exampleFigure 10 illustrates the situation between the
typical object structures are calculated analyiyc&lor an ideal gy cturesline and plane with weighted distances. Al test

line two eigenvalues are zero and one of it istgredan zero.  oints with eigenvalues inside the red region dassified as
If test points inside a plane are of interest tiee@@envalues have |ie points meanwhile all points in the grey regime classified

to be compared with the analytical eigenvaluesyg points belonging to a plane. Without weightihg tyan
A=A, =025 0O A,= (foracorrect plane. marked horizontal line (hyper plane) separateswioeclasses.
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The eigenvalues in Table 1 are considered as refergoints in
the 3D eigenvalue space for each structure. Tssifilzation of
any test point by the nearest neighbour methodpeaformed,
were all distances were measured in the eigenspaee.
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For the following steps we define the dimensioyatiim(S)

for each structure, which means the dimension bfpaints
belonging to the same structure of a contiguougaibjThe
dimensionalities for each structure are given ibl&&. Corner
like points have the dimensionality 0, edge likenp® 1 and
plane like points 2.
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Table 2. Dimensionality for each structure.

By utilizing the empirically derived weighting faus

w(S)=1/(1+ dim(S)) for the distanced (S) between the test _ B _ _ _ _
Figure 11.Classified object points. a) All pointdared by their

point and the analytically calculated eigenvalugstaicture S classification, b) Points identified as plane psint
the classification result was refined. This weiggtiof the (colored by their height), c) Points with one highd
distances between test and reference points intesdunon- two small eigenvalues representing edges of objects
planar separation surfaces defined by

_ .~ By utilizing the weighted distance calculation dgyi the

d(S)w(S)—d(Sj)w(Sj) between two structures. Ignoring classification procedure for all points the derivesults are

the influence of all other structures, the separatsurface shown in Figure 1la. Figure 11b shows all pointthwi

between the structurdsand j is given by the constant ratio of eigenvalues fulfilling the criteria for planes. Toelor indicates

both distancesj(s)/d(s.):w(s. )/W(S):W... For w. =1  the object height. In Figure 11c only the edge fmiare
! ! ! ! depicted corresponding to Table 1 rows 3, 4, and 7.

we get the intermediate plane between both strestuas

separation surface. For, #1 the separation is described by a For the introduced classification further resulis ahown for
! comparison purposes of a more complex building. fdsailts

sphere. Radius and centre point depend onlyngnand the  4re depicted in Figure 12 with an oblique view tandnstrate
distance between the two structures in the 3D ewer space. the geometrical relation of the 3D points.



Figure 12.Classification result of a laser poinbud for a
complex urban building. a) with all points, b) wotit
points inside a plane.

5. LINE GENERATION

All points marked as edge point may belong to &.lifhese
points are assembled to lines by a grouping pro¢®@ssss &
Thoennessen, 2006). Therefore the greatest eigenald its
eigenvector are considered. Consecutive points witiimilar
eigenvector, lying inside a small cylinder are gred together
and approximated by a line.

The procedure starts with any arbitrary point & goint cloud
classified as edge-like pointirfe, halfplane, two_planes). This
trigger point is compared with all points which kavearly the
same or opposite eigenvector of the largest eideava
Furthermore only points with very small distancette straight
line defined by the trigger point and its first emyector are
included in the next consideration. Finally it acfised on the
first two gaps starting from the trigger point gpialong the
first eigenvector and also its opposite directi@mly points
inside these gaps and fulfilling all those conditicare selected
and used to determine a regression line and itsa@nts.

The same procedure is repeated for all points ssigaed to a
line until each point belongs to a line or can geherate an
acceptable line.

Figure 13 shows the results of the line generatiorthe data
set shown in figure 1. The color indicates the targg the lines.
The eaves as well as the ground plan of the bg&liare
approximated by lines. For the detection of thegeidf the
saddle roof a readjustment of the thresholds fereiigenvalues
might be recommended to improve the results eskhedar
roofs with small inclination.

Figure 13.Lines generated by using the classifisér elevation
points.

6. CONCLUSION AND OUTLOOK

For exploiting Laser scanning data the processifgthe
original 3D point clouds is proposed. Additionahtieres for
each point of the cloud can be calculated fromdbeariance
matrix including all neighbour points. The neighboaod can
be investigated by considering a sphere. The qualitthe
resulting eigenvalues and the eigenvectors of thatrim
strongly depend on the spatial resolution and thmber of
points inside the sphere. The new features areriantawith
respect to position, rotation and scale.

The additional features are appropriate for clasgibn of the
points as edge, corner, plane or tree points. Borestypical
situations analytically determined eigenvalues @pposed to
calculated eigenvalues of real data for compari3tie. greatest
eigenvalue can be used for filtering edge like poin

The described method for generation of lines coein
consecutive points with the same eigenvector insidesmall
cylinder without any gap. The presented resultpasenising.

Further investigations are planned concerning tis®oh of the
data on basis of the point clouds and/or on a hidgneel of
lines. Especially the construction of planes asdiegtplane
like points should be investigated in future.
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