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ABSTRACT: 
 
In order to generate complex virtual cities, models of buildings have to be defined in advance. A common approach describes 
individual components of these buildings, which are in turn restricted by geometric constraints such as orthogonality, parallelity or 
symmetry of building parts. A major challenge is to ensure consistency and avoid redundancy. Tools are needed which support 
geometric reasoning and thus the modelling of buildings. This leads to the theory of automatic theorem proving. By using this theory 
it can be shown that a constraint is deducible from a set of axioms that can be realized by using multivariate polynomials. We draw 
upon Wu’s method and claim that 3D reasoning for building models is feasible.  
 
 

1. INTRODUCTION 

3D building modelling has become increasingly important due 
to a high demand in the context of navigation systems or virtual 
city tours. The use of city models for noise mapping, disaster 
management or the calculation of escape routes requires even 
exact knowledge about the structure of buildings. Building 
construction and reconstruction and its automatization is 
therefore an essential task. Hence, it is necessary to give 
detailed descriptions of models that represent houses, for 
instance.  
 

 
Figure 1. Parallelity and orthogonality are main  

organizing principles in streets and buildings 
(aerial image taken from GoogleEarth) 

 
Definitions of models can be built up of primitives, e.g. points 
or planes that represent walls or roof halves, and therefore their 
position and their relations have to be restricted by constraints. 
Since most man-made objects have a regular structure, 
geometric constraints in 3D mainly include parallelity, 
orthogonality and symmetry. We focus on analyzing existing 
city models - the mapping of measured data onto 3D buildings 
and their constraints is beyond the scope of this paper (the 
interested reader is referred e.g. to Schmittwilken (2009)). As 
these constraints have fundamental correlations, geometric 
reasoning, i.e. deducing properties, can be used to determine 
which constraints are subsumed by others and therefore can be 

declared equivalent or rather be eliminated. But how can we 
show that different constraint sets express the same or how can 
a consistent and non-redundant model be developed? 
Consequently, it is of great interest to have feasible methods for 
interactive systems which meet the requirements of an efficient 
implementation. 
 
Geometric constraints can be expressed by algebraic equations. 
As in many cases these constraints contain several parameters, 
the polynomials are often not linear or even quadratic. While 
2D models are easy to cope with, in the transition to the three 
dimensional space a substantial increase in complexity can be 
observed, which has to be overcome by the modeller. While 
there are efficient methods to solve non-linear equation systems 
numerically, we have to cope with the general validity, in other 
words, the interest does not lie in finding specific values but in 
proving theorems on a symbolic level. Against this background, 
various approaches for automatic theorem proving have been 
developed in the last three decades which among others are 
based on multivariate polynomials. A way forward to solve this 
problem is the construction of the Groebner Bases that leads 
back to the work of Buchberger (1988). 
 
So far, these approaches have hardly been noticed in the context 
of computer vision and building modelling. A notable extension 
is the work of Brenner and Sester (2005) who, however, restrict 
to the 2D space and emphasize the complexity of the problem. 
In this paper we use a related approach, namely Wu’s method, 
which is based on characteristic sets. Our main contribution is a 
method that discovers redundancy and consistency. Thus, we 
claim that geometric reasoning for buildings and building parts 
in 3D space is feasible.  
 
This paper is structured as follows: An overview of related 
work in the area of geometric representations and theorem 
proving is given in the next section. Section 3 introduces the 
mathematical foundations, in particular two of the algebraic 
approaches, and illustrates the constraints that have been used 
in the context of this paper. Section 4 presents our results and 
shows that the method is feasible. The paper ends with our 
conclusions in section 5. 
 



 

2. RELATED WORK 

Automatic theorem proving became popular in the late 70’s by 
the work of Wu (1978,1986), who was able to proof numerous 
theorems automatically. Various approaches were developed in 
the last three decades that were applied to perspective viewing 
(Kapur, 1988) or formula derivation (Chou, 1989). 
 
Constraints play an important role in the representation of man-
made objects. Brenner (2004) introduces weak primitives that 
allow for a relaxation of constraints between geometric 
primitives. Brenner (2005) also uses multivariate polynomials 
to recognize redundancy of constraints. In contrast to our 
approach, Brenner’s approach is based on the Groebner Bases 
(Buchberger, 1988), which will be shortly described later.  
Brenner’s approach is restricted to the 2D case and may not be 
feasible for interactive systems due to efficiency problems. 
 
Constraint graphs for geometric objects represent the geometric 
and topological relations between different primitives, such as 
parallelity between planes. Kolbe (2000) deals with these 
spatial relations between primitives. He describes roofs by 
geometric constraints and compares them to observations from 
aerial images to reconstruct buildings. 
 
Schmittwilken (2007) proposes an ontology and grammar based 
approach for semantic building modelling. Ontologies defined 
by UML (Unified Model Language) diagrams and OCL (Object 
Constraint Language) diagrams are mapped to attribute 
grammars in order to express semantic constraints. 
 
Various implementations of automatic theorem proving 
techniques have been developed which partly support graphical 
sketches but are in turn restricted to the 2D case (Gao, 2004). In 
order to perform the computational tasks which are part of the 
algorithms we make use of the software package Epsilon that 
was implemented by Wang (2004) for the mathematical tool 
Maple. Beside other functions, it also allows for polynomial 
eliminations or the proving of theorems. 
 
 

 
Figure 2. Components of a gable roof house 

 
 

3. BACKGROUND 

This paper describes a method for 3D geometric reasoning with 
multivariate polynomials. Therefore, geometric constraints have 
to be defined which are the basis of reasoning methods that use 
automatic theorem proving. In the following subsections we 
illustrate the geometric constraints that are necessary for a gable 

roof house and explain two methods of automatic theorem 
proving, namely the Groebner Base Method as well as Wu’s 
method of characteristic sets.  
 
3.1 Geometric Constraints 

Before we are able to perform geometric reasoning, we have to 
define a house by its constraints. Figure 2 identifies the 
components that characterize a gable roof house.  
 
Using a cuboid and a prism, the definition of a house includes 
basic constraints between planes and points, such as parallelity 
or orthogonality. The following constraints, which are still 
regarded independent from their actual representation, are 
common for man-made objects and describe a gable roof house: 
 

▶ 2 x parallelity of walls: 
left wall || right wall, front || back  

▶ 13 x orthogonality of walls/roof: 
bottom ⊥ right wall, bottom ⊥ left wall, bottom ⊥ front,  
bottom ⊥ back, right wall ⊥ front, right wall ⊥ back,  
left wall ⊥ front, left wall ⊥ back, 
back ⊥ right roof, back ⊥ left roof,  
front ⊥ right roof, front ⊥ left roof 
 

There are further constraints necessary to restrict the position of 
the roof: 

▶ 1 x incidence: 
roof meets house block 

▶ 1 x symmetry of roof: 
symmetrical slope in roof (equal angles of roof areas) 

▶ 1 x oppositional position  
ridge line is at the top of the house 

 
Altogether, the constraint set contains 17 geometric constraints. 
However, it is questionable whether all these constraints are 
needed or if a subset is sufficient to express the same 
conditions. In fact, in our example in figure 2 we only need 8 of 
17 constraints to ensure that the planes forming the house have 
the intended position. The property, for example, that the right 
wall is perpendicular to the bottom has already been fulfilled by 
demanding that the right wall is parallel to the left wall, which 
is in turn perpendicular to the bottom. Hence, we have several 
statements of the form A and B  C. Therefore, we want to 
deduce the redundant constraints automatically by using 
multivariate polynomials which leads to symbolic approaches 
of automatic theorem proving. In the following, we give a short 
example to illustrate the connection between geometric 
constraints and multivariate polynomials. 
 
In order to avoid the complexity of 3D reasoning we will 
present a first example in the 2D space. Figure 3 shows a 
constellation of three lines where the following theorem should 
hold true:  
 
If line l1 is perpendicular to line l2 and line l2 is perpendicular to 
line l3, then l1 is parallel to l3. 
 
To keep track of the constraints we use the following 
abbreviation: l1 ⊥ l2 and l2 ⊥ l3  l1 || l3. The same theorem 
can now be expressed with multivariate polynomials. A line li 
can be represented by its normal form ai·x + bi·y + ci = 0. Thus, 



 

orthogonality as well as parallelity in 2D have their polynomial 
counterpart as follows: 
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Accordingly, our theorem which consists of two hypotheses h1 
and h2 and one conclusion c can now be stated with 
polynomials: 
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Figure 3. Deduction of parallelity in 2D 

 
With this new representation it is possible to answer the 
questions of consistency and redundancy by algebraic methods. 
We consider a model of a complex geometric object that has to 
satisfy the constraints h1,…, hs, that is, the model is given by the 
zeros of the set of polynomials representing the constraints. As 
a consequence, the key observation is that the satisfaction of 
geometric relations and therefore the possible positions of the 
geometric objects can be reduced to finding common zeros of 
the polynomials. This leads to the theory of a variety which is a 
set of n-tuples serving as roots of a conjunctive set of different 
polynomials: 
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Figure 4. Relation between varieties 
 
Redundancy can simply be identified by a relation between two 
varieties. Assuming we have a constraint set {h1,…,hs} and a 
possibly redundant constraint c, the aim is to show that the 
zeros of {h1,…,hs} are a subset of the zeros of 
c: V({h1,…, hs})  V(c). Figure 4 illustrates this fact by the 
given 2D example of three lines. The set of zeros 
V({h1,h2})=V({a1a2+b1b2, a2a3+b2b3}), which is determined by 
the two orthogonality constraints, will not be restricted further 
if we add the constraint of parallelity because of its containment 

relation (V({a1a2+b1b2, a2a3+b2b3})  V({a1b3−b1a3})). The 
parallelity constraint does not add any new information. 
 
In order to compute with these varieties the concept of ideals is 
needed (Cox, 2007). A subset I of a polynomial ring k[x1,…,xn] 
is called an ideal if 
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Indeed, a variety is not defined by its equations but by the ideal 
generated by these. The ideal generated by polynomials h1,…,hs 

is defined as 
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That is, all polynomial consequences of the hi’s are elements of 
this ideal and define together the same variety. Referring to the 
2D example the ideal is defined by 
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Thus, also the conclusion c mentioned above can be obtained 
by some multiplication and an addition of the two hypotheses h1 
and h2. 
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The constraint c is therefore part of the ideal and if added to the 
constraint set {h1, h2} does not change the variety. If the 
conclusion has more than one polynomial, they can be handled 
separately. 
 
Before the two methods can be described in the next sections 
some more definitions are needed. A multivariate polynomial is 
a polynomial in more than one variable. The unknowns in the 
multivariate polynomials can be divided into independent and 
dependent variables. That is, on the one hand, we have 
parameters that can be chosen arbitrarily, and on the other hand, 
we are interested in the indeterminates that are dependent from 
other values for constraint satisfaction. Given an ordering on 
the variables x1 < … < xc < … < xn, the class c of a polynomial 
(class(h)=c) is the smallest index so that the polynomial h is 
element of the ring k[x1,…,xc]. This index c also defines the 
leading variable LV(h) = xc and consequently its leading 
coefficient LC(h), the so-called initial of h. Every polynomial 
can be expressed with respect to its leading variable xc where 
the ai’s are themselves polynomials not containing xc: 
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In this case LC(h) = am. The leading degree of a polynomial h is 
defined by the degree of h in xc (deg(h, xc) = m). There is an 
important relation concerning the occurrence of variables that 
exists between two polynomials: h is reduced with respect to f 
if the degree of h in its leading variable xc is smaller than the 
degree of f in xc (deg(h, xc) < deg(f, xc)), where the index c is 
the class of the polynomial f (c = class(f) > 0). 
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3.2 Groebner Bases 

One way of looking at redundancy and consistency of 
constraints is the Groebner Base Method (Buchberger, 1988). 
The idea is to solve the ideal membership problem by using 
polynomial long division of multivariate polynomials. A 
remainder of zero indicates that the polynomial is in the ideal 
and thus redundant. Applying the algorithm to the basis set the 
result of the division algorithm is not unique but depends on the 
order of monomials and the divisibility of the leading terms. 
 
To tackle this problem the polynomial set used during division 
has to hold a special structure. With regard to the solution of a 
constraint system, the variety is independent of the actual 
polynomials which the constraint set is composed of. Instead, it 
only depends on the ideal generated by these constraints. The 
property that the original constraint set can be replaced by a set 
of polynomials generating the same ideal leads to the following 
statement:  
 
V({h1,…,hs}) = V({<h1,…,hs>}) =  

                                                 V({<g1,…,gt>}) = V({g1,…,gt }) 
 
Thus, in order to have the special property that the polynomial 
reduction is unique the canonical set used in Buchberger’s 
approach is the Groebner Basis. A Groebner Basis is a subset  
G = {g1, …, gt} of an ideal I where 
<LT(h1),...,LT(hs)> = <LT(I)>, with LT(I) denoting all the 
leading terms of polynomials that are part of the ideal I. A 
Groebner Basis can be computed by Buchberger’s algorithm 
(Buchberger, 1988). 
 
Returning to our problem of redundancy, in order to check 
whether a geometrical conclusion c is deducible from a set of 
hypotheses h1,…, hs the following steps are necessary: 
 
1. Definition: Translate the geometric constraints into 

polynomial equations: a set of hypotheses {h1,…, hs} and a 
conclusion c 

 
2. Groebner Basis: Construct a Groebner Basis G of the set of 

hypotheses h1,…, hs 
 
3. Proof: To show that V({h1,…, hs})  V(c), it is necessary to 

check c is in the ideal generated by h1,…, hs. This is realized 
by dividing the conclusion by the polynomials of the 
Groebner Basis G. If the remainder rem(c, G) = 0 the 
theorem is true, that is, the constraint c is redundant. 

 
Brenner (2005) observes that the computation of the Groebner 
Bases can take substantial time so that the method may not be 
feasible for interactive systems. Alternatively, it has been 
shown that Wu’s method, which is presented in the next 
section, can be more efficient in geometric theorems and is also 
able to solve more complex problems (Cox, 2007). The 
feasibility still depends on how constraints are represented by 
polynomials, but together with a suitable representation Wu’s 
method proves to be applicable for user interactivity. 
 
3.3 Wu’s Method 

Wu’s method was first stated in the late 70’s. Similar to the 
Groebner Basis Method, a statement H  C can be proven. In 
contrast, the method uses the so-called pseudodivision and the 
output answers the question whether the theorem is generically 

true, that is, true under some degenerate conditions, the so-
called subsidiary conditions. In conventional proofs in 
Euclidean geometry it is often assumed that geometric objects 
are in a general position without specifying further details. 
Thus, in many textbooks subsidiary conditions needed for the 
validity of a theorem remain implicit. The advantage of Wu’s 
method is that these implicit subsidiary conditions are generated 
and made explicit by the theorem prover. The theorem, for 
instance, that three points P1, P2 and P3 define a plane unique 
is false. Only by adding the condition that P1, P2 and P3 are not 
collinear the theorem will be true. In contrast to conventional 
proofs, the defective theorem in Wu’s method will be true under 
the subsidiary condition that P1, P2 and P3 are not collinear.  
 
The main idea is to show that the zeros of one set of 
polynomials which do not vanish on the degenerated cases are 
included in another set of zeros. To achieve this, the 
polynomials are divided by each other like in the one-variable 
case. Therefore, a special form of triangulated structure of the 
equation system is needed, a so-called characteristic set. For a 
given ordering of the variables x1 < … < xs each of its 
polynomials hi can be expressed as a polynomial in its highest 
dependent variable yi. 
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Here ui are independent variables, xi are ordered indeterminates 
(i.e. dependent variables) and ai are themselves polynomials 
which do not include the highest dependent variable (e.g. x1 in 
h1). In addition to an ordinary triangulated equation system, a 
characteristic set is a minimal ascending chain. An ascending 
chain requires that for all indices i < j class(hi) < class(hj) and 
furthermore hj is reduced with respect to hi (deg(hj, xclass(hi))< 
deg(hi, xclass(hi))). The constraint set {h1 = x1

2, h2 = x1
4 + x2} 

with x1 < x2, for example, is a triangular set but not an 
ascending chain because the degree of x1 is lower in h1 than in 
h2. In contrast, {h1 = x1

2, h2 = x1 + x2} has this special property.  
The characteristic set is computed by pseudodivision that will 
be described later. An algorithm for this computation can be 
found in Buchberger (1988). 
 
Wu’s method can be outlined in three steps: 
 
1. Definition: Define the theorem Hyp  Con in form of 

multivariate polynomial equations hi = 0 where Hyp is the 
hypothesis and Con the conclusion. Optionally, add 
subsidiary conditions di ≠ 0 to the hypothesis. 

 
2. Characteristic Set: Transform the hypothesis into a 

triangulated equation system subject to the dependent 
variables of the geometric constraints. While the conclusion 
with c(u1,…,ud,x1,…,xs) = 0 remains unchanged, we obtain a 
new constraint set Hyp‘ with x1<…<xs that fulfills the 
properties of a characteristic set. 
 

3. Proof: Prove Hyp‘  Con, that is realized by showing 
V({h1,…,hs / d1 · … · dt})  V(c). This proof is also done by 
pseudodivision. If the final pseudoremainder equals zero, 
the zeros of Hyp’ are also zeros of Con except from 
degenerated cases d1,…,dt, i.e. the theorem is generically 
proven true. 

 



 

Pseudodivision 
 
The crucial operation in Wu’s method is the pseudodivision. In 
some sense Wu’s method resembles the triangulation algorithm 
of linear systems. The main difference is the replacement of 
division of real numbers by pseudodivision of multivariate 
polynomials. Pseudodivision of two multivariate polynomials c 
and h is considered as a division between univariate 
polynomials, e.g. in the highest variable x of the divisor h. It 
differs from the polynomial long division in that it is allowed to 
multiply the dividend c with a factor d(h)k, k > 0: 
 

 r  h  q  c  hd k )(                                                             (6) 
 

d(h) equals the initial of h defined in section 3.1, whereas q 
denotes the quotient and r the remainder. For our purposes 
pseudodivision can be extended to more than one dividend: 
 

 r       h q   h qc hdhd ss
k

s
k s   111 )()( 1            (7) 

 
In the context of theorem proving, c is identified as conclusion 
and [h1,…, hs] denoted as hypothesis. In particular, we are 
interested in the remainder r that shows whether our theorem is 
true. Referring to equation (6) and (7) we can now define the 
computation of the pseudoremainder recursively:   
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Therefore, against the background of equation (7), the theorem 
[h1,…, hs]  c is generically true if, first, we obtain a zero 
remainder, and second, the initials d(hi)’s which correspond to 
the undegenerated conditions do not equal zero. The algorithm 
of Wu’s method and the pseudodivision have been implemented 
in Maple by Wang (2004). 
 
2D example  
 
We demonstrate the procedure of Wu’s method by the 
introductory example in section 3.1. Although Wu’s method 
originally is a point coordinate based method we stick to the 
pointless representation that we will also use in 3D. Given three 
lines in 2D space, that is, li: ai·x + bi·y + ci = 0, i = 1,2,3, we 
would like to prove that two orthogonalities imply a parallelity. 
Therefore, the set of hypotheses is: 
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whereas the conclusion to deduce is 
 

 0 :l || l  c) 313131  abba . 

 
After defining our theorem in polynomial equations, the 
dependent variables, on whose choice and ordering Wu’s 
method is based, have to be specified. We demonstrate the 
notion of dependent variables by building up a step-wise 
geometric construction of the objects of the theorem. In order to 
receive the constellation of figure 3, for instance, we start with 
the construction of line 1 so that its parameters a1, b1 and c1 are 
completely independent. While building line 2 as a second step 
it can easily be seen that one variable has to be dependent in 
order to fulfil hypothesis h1. We decide to choose a2 as 
dependent variable. Finally, the position of line 3 has to be set. 

If we choose a3 dependent, this will lead to the variable ordering 
a2 < a3, on which the construction of the characteristic set is 
based. 
 
In order to compute the characteristic set, it is necessary to 
achieve that the constraint set satisfies the properties of 
reduction and ascending classes. Because a2 is part of h1 and h2, 
h1 has to be pseudodivided by h2 with respect to the variable a2 
and h2 is replaced with the remainder of this pseudodivision.  
As a result we obtain the following triangulated equation 
system: 
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Notice that depending on the way of constructing the lines, the 
characteristic set and thus the outcome of the proof can be 
influenced. Assuming that we construct line 2 first, we could 
choose line 1 and thus constraint h1 subsequently. We decide to 
select a1 as dependent variable while a2, b2, b1 are parameters 
that can be chosen arbitrarily. Finally, we construct line 3 and 
declare a3 as dependent. The computation of the characteristic 
set is thus based on the variable ordering a1 < a3. In this case, 
there is no need to build a characteristic set H’, because the 
hypothesis H has already got the required form: H=H’ is a 
minimal ascending chain with deg(h1, a1) > deg(h2, a1): 
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Notice that h2 is reduced with respect to h1 if 
prem(h2, h1, a1) = h2. In order to prove the theorem, once again 
recursive pseudodivision is performed. 
 

0),,(

bbb+baa),,(

1110

213312321




ahRpremR

ahcpremR                                     (8) 

 
Since the pseudoremainder is zero, the theorem is true under the 
subsidiary condition that a2 ≠ 0. Having d(h1)=a2 and d(h2)= a2 
as initials of the two polynomials, Wu’s method outputs the 
degenerated condition a2 <> 0.  
 
If we look at this successive computation of pseudoremainders 
with a1 < a3 in detail, we see how the results are connected to 
pseudodivision and thus to the concept of polynomial 
consequences and ideals. With regard to (8) the first step is to 
pseudodivide the conclusion by the second hypothesis. Beside 
the pseudoremainder we obtain the quotient q1 and the 
multiplier m1 that also is the leading coefficient of h2, i.e. its 
initial (cf. equ. (6)): 
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In the second step the obtained remainder is pseudodivided by 
h1. Once more the multiplier is a2: 
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Figure 5. Increasing complexity: Deduction of parallelity in 3D 
 

Finally, step one and two can be combined by a simple 
substitution of polynomials to express the conclusion in 

pendency on the hypotheses: 
  

be preferred because 
e initials are simpler and even the same. 

ary conditions in 
rder to declare the theorem generically true. 

 

These issues will be discussed in the 
following subsections. 

de
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Notice that with a pseudoremainder of zero this equation leads 
to the same equation as the ideal based description in (5), and 
the initial a2 must not be zero. It can be seen that this second 
version of variable ordering (a1<a3) should 
th
 
Finally, the subsidiary condition can be analysed. They often 
allow for a geometric interpretation or at least have got an 
algebraic meaning. Supposed that a2 equals zero, the dependent 
variables do no longer appear in the orthogonality constraints 
and consequently the independent variables can no longer  be 
considered degrees of freedom of the geometric objects. In 
addition, a2 appears as denominator in the solution process and 
thus, it does not have to be zero. Degenerated cases can 
therefore be excluded by considering subsidi
o
 

4. CONSTRAINTS IN 3D  

We now turn to the constraints in 3D space as needed in 3D city 
models. There are two main problems that arise: First, we 
observe that the theorem relating to parallelity and 
orthogonality becomes more complex. The increased 
complexity evokes a prolonged running time. Whereas in the 
2D case the results were obtained after microseconds, the 
theorem prover failed in the first trials due to the complexity in 
3D. The number of constraints that are necessary to deduce 
parallelity of planes from orthogonalities, for example, 
increases. In the following, we transfer the 2D example of 
section 3 in 3D space. Since three planes can be orthogonal in 
pairs without having two of them parallel (figure 5.3a), we need 
five instead of two constraints to ensure that parallelity exists 
(figure 5.4). Thus, we are able to deduce it from orthogonalities. 
As the number of variables is increased on the one hand and the 
construction of the characteristic set does not ensure simple 
initials of the polynomials on the other, the second problem that 
occurs is that the subsidiary conditions have become more 
complex. That is why it is important to choose an appropriate 
representation of geometrical constraints and an advantageous 
order of independent variables as input of the proof in order to 
obtain feasible results. 

4.1 Representation 

Crucial for the efficiency of the procedure and the complexity 
of subsidiary conditions is the chosen polynomial 
representation for the constraints that describe a building. We 
will now discuss the method on the basis of the constellation of 
figure 2 and 6 respectively. We have to define seven planes – 
four walls, one bottom and two for the roof – and represent 
them by using the normal vector: 
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Their positions are restricted by the constraints given in 
subsection 3.1, which are translated to the following polynomial 
equations: 
 

▶ parallelity: n1 n2 = 0 (3 equations) 

▶ orthogonality: n1 · n2 = 0 (1 equation) 

▶ incidence point/plane: a1·p1+b1·p2+c1·p3+d1 = 0 
 

Although other representations are possible, the advantage of 
this representation (including the cross product and the scalar 
product) is that it does not contain any quadratic equations so 
far, but is bilinear instead. Furthermore, we were careful in 
choosing unnecessary variables. In order to express the 
parallelity, for instance, we have chosen the cross product 
instead of a linear combination of the normal vectors. 
Additionally, it is a decisive advantage to avoid point 
coordinates where possible by using e.g. the pointless normal 
forms of planes. If those steps are taken the complexity is 
reduced considerably. 
 
Because we have to consider a large set of constraints, it is of 
great benefit to find a simplification of the polynomials. 
Obviously, our theorems are invariant to translation and 
rotation. Therefore, we make the plane representing the bottom 
face without loss of generality parallel to the x-y-plane by 
setting its normal vector to (0,0,1). We have recognized that this 
does not only lead to a reduction of running time but also to 
interpretable subsidiary conditions. This is mainly due to the 
substantial reduction of the number of terms that occur in the 
constraints defined.    
 
Two other issues are worth to be mentioned for the correctness 
of the house model and thus for the input of the proof. So far we 
have considered orthogonality and parallelity that have been 
sufficient to define the house block. However, the constraints of 
the roof have to be expressed in other terms. Firstly, we have to 



 

ensure that the ridge is at the top of the house and not turned 
downwards. In contrast to the house block, this relation is 
between a line and a plane and inequations cannot be avoided. 
Besides, both roof halves should have the same slope which is 
generally not explicitly available.  
 

 
Figure 6. (Graphical) representation of a house  

by points and planes 
 
As a consequence, we choose the position of the origin of the 
coordinate system in such a manner that it supports the 
satisfaction of these two constraints. This means, that the origin 
lies in the top plane of the house block and contains the axis of 
symmetry for the roof. The resulting advantage is, that it is 
possible to express these two constraints using four points with 
the special property that two of their coordinates equal zero (see 
figure 6).  
 
The property of symmetry corresponds to the equality of 
distances from the ridge line – projected on the top of the house 
block – to each of the edges of the roofs. Therefore, referring to 
figure 6, symmetry can be translated algebraically by choosing 
three points (p1,0,0), (-p1,0,0) and (0,0,i3) which in turn 
restricts the position of the roof halves.  
 
In order to avoid the roof being oriented downwards, we require 
that point (0,0,i3) lies above the top of the house block and 
point (0,0,k3) underneath (see figure 6). Wu’s method does not 
allow strict inequations. Nevertheless, there are equivalent 
expressions which only use equations by introducing another 
variable (Kapur, 1988): 
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As a result, the constraints can as well be easily expressed in 
the calculus of Wu’s method without increasing the complexity 
significantly.  
 
4.2 Results 

Referring back to section 3.1, we have 17 geometric constraints 
that are represented by 27 equations. Our aim is to reduce this 
constraint set automatically in order to filter out the minimal set 
of constraints. Therefore, we are able to solve the problem of 
redundancy and inconsistency simultaneously. Consequently, it 
comes into question which constraints are unnecessary, and 
which dependent variables should be selected in order to reduce 
subsidiary conditions. 
 

In subsection 4.1, we have already translated our geometric 
constraints into polynomial equations. Before we are able to 
check deduction possibilities using Wu‘s Method, our 
constraint set C has to be divided into a non-redundant and a 
redundant constraint set C1  C2, that leads to a theorem of 
hypothesis and conclusion: C1  C2. Furthermore, we have to 
select dependent variables with respect to our construction 
process. We assume that 3 orthogonality constraints, 2 
parallelity constraints and 3 constraints expressing the roof 
position are satisfied by a geometric configuration. These 
requirements are sufficient to deduce the remaining 
7 constraints and thus define a gable roof house. On the whole, 
it can be proven by Wu’s method that 20 equations are 
necessary whereas the remaining 7 equations can be deduced 
from these. Indeed, only 11 equations (7 constraints) are 
required to ensure that the redundant constraints are satisfied 
automatically. Other divisions into hypothesis and conclusion 
are possible. If the constraint set were inconsistent the function 
used would give it out as inconsistent instead of proving the 
theorem. 
 
As a consequence of an appropriate representation and its 
normalization, it takes a few milliseconds to get the following 
result on the Maple’s console: 
 
The theorem is true under the following 
subsidiary conditions: 
a3 <> 0, a2 <> 0, b5 <> 0, w1 <> 0, w2 <> 0 
QED. 
 
As stated before, the list of subsidiary conditions is not unique. 
The choice of parameters depends on the choice and order of 
dependent variables which in turn depend on the step-wise 
construction of a complex object. In order to reduce the number 
and complexity of subsidiary conditions, their order and choice 
is very important. The polynomials in independent variables 
that occur in the denominators of the coefficients as well as the 
initials in the construction of the characteristic set do not have 
to equal zero and should therefore be simplified or avoided. 
 
 

5. CONCLUSION 

In this paper, we have shown that symbolic geometric reasoning 
which uses Wu’s method in combination with an appropriate 
representation can be applied to minimize constraints in 
building models successfully and thereby proven its feasibility 
for interactive systems.  
 
Semantic models are defined by constraints. We have shown 
that constraints of 3D buildings can be represented by 
multivariate polynomials, and that redundancy of constraints 
can be recognized by methods of automatic reasoning. 
  
In contrast to Brenner and Sester (2005), who restrict to 
geometric problems in 2D, we address building models and 
reasoning in 3D. Whereas their approach is based on Groebner 
bases, we have used characteristic sets to identify redundancy 
and inconsistency. However, in the beginning Wu’s method has 
not been sufficient to cope with the complexity that is increased 
in the 3D space. The key aspect was the choice of an 
appropriate representation. We reduced the number of variables 
wherever possible and used polynomials that are rather 
multilinear than quadratic. We made use of invariance with 
respect to rotation and translation and assumed that the bottom 
face is parallel to the horizontal plane. 



 

Figure 7. Prototype of our constraint proving module which supports the management and analysis of geometric constraints 
 

  
Kapur, D. , Mundy, J.L., 1988. Wu’s method and its application 
to perspective viewing. Artificial Intelligence, 1-3, pp. 15‐36 

The main contribution of this paper is to show that geometric 
reasoning in the 3D space is feasible for building models. We 
have implemented a prototype of a constraint proving module 
that supports users in managing the constraints and analyzing 
them with respect to redundancy and consistency (cf. figure 7). 
Our work is part of a larger project dealing with the interactive 
modeling of 3D building models.  
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