

A FRAMEWORK FOR GENERALIZATION OF 3D CITY MODELS

BASED ON CITYGML AND X3D

Bo Mao a, *, Yifang Ban a, Lars Harrie b

a Geoinformatics, KTH, Drottning Kristinas vag 30, SE-100 44 Stockholm, Sweden - (mao2, yifang)@infra.kth.se

b GIS-centre, Lund University, Solvegatan 12, SE-223 62 Lund, Sweden - Lars.Harrie@nateko.lu.se

Commission VI, WG II/2

KEY WORDS: CityGML, X3D, Generalization, CityTree, Visualization, Aggregation, City model, Multiple representation data

structure

ABSTRACT:

In this paper, a novel framework for generalization of 3D city models based on CityGML and X3D is proposed. In the proposed
framework, the CityGML files are first parsed into a Java environment to acquire the city model information using Citygml4j, an
open source Java API. Generalization is then performed in the Java environment. The outcome of the generalisation is CityTree, a
multiple representation data structure of the objects, based on which we can effectively realize the continual scaling and
dramatically reduce the load time of 3D models. Finally, the X3D representation is generated from the CityTree Model and is
displayed by Xj3D viewer. By utilising CityTree, the multiple representation data structure, it is possible to have dynamic zoom
functionality in real time. The paper describes the general framework and an implementation using this framework on the
aggregation of 3D building objects. The implementation confirms the applicability of the framework for generalization of 3D city
models.

* Corresponding author. Bo Mao; mao2@infra.kth.se; phone 46 8 790-7676; fax 46 8 790-8580

1. INTRODUCTION

With an increasing number of people living in or moving to
cities, cities are growing and sprawling. Thus, development of
effective 3D visualization tools is of critical importance for
sustainable urban planning as well as effective communications
to the general public. The fundamentals of these kinds of tools
are the 3D city object models. In addition, it is important for the
public to be able to view the 3D city scenes from the most
commonly used browsers such as Microsoft IE or Mozilla
Firefox, thus can tremendously increase the accessibility of the
online city models.

In August 2008, OGC launched the specification CityGML
(OGC, 2009) as a common information model for the
representation of 3D urban objects. It defines the classes and
relations for the most relevant topographic objects in cities and
regional models with respect to their geometrical, topological,
semantic and appearance properties. It is a trend to integrate the
information about a city into CityGML which can be extended
by users according to their application requirement (Plümer et
al., 2005).

However, CityGML is made for geometric, topologic and
semantic representation, but not for presentation and
visualization. It is not a good idea to render the 3D scenes
directly from the CityGML files. Furthermore, the CityGML
models are often very detailed and should be simplified
(generalized) to enable efficient and readable presentations. Our
approach is hence to convert the CityGML data to a
presentation format X3D (Web3D 2009) and during this
converting process also simplify the model. The rest of the

paper is structured as follows. Related works are given in
section 2. Section 3 mainly introduces CityGML and X3D. Our
framework is proposed in section 4. The generalization
algorithm is specified in section 5 and experiment results are
given in section 6. Section 7 summarizes whole paper.

2. RELATED WORKS

The problem of handling several level of details (LODs) in city
models has been acknowledged for a long time (e.g. Köninger
and Bartel, 1998) and the CityGML standard also specifies five
level of details (OGC, 2009). To obtain this several level of
details, which is required for efficient visualization, several
methodologies have been proposed. Kolbe and Gröger (2003)
proposed an MRDB-model for obtaining consistency between
the different level of details where one object become a part of
an object in the adjacent LoD. Other researchers have
concentrated on establishing generalization methods to change
the representation between different LoD (see Meng and
Forberg, 2007, for an overview). Mayer (2005) and Forberg
(2007) developed a scale-space technique for simplifying
buildings, partly based on the morphological operators opening
and closing. Kada (2006) used vertical half spaces to model the
main outline of a building that were then used to simplify the
building. Later, he extended the approach by also handling roof
structures with using best fitting primitive roof types (Kada,
2007). Fan et al. (2009) proposed a methodology for efficient
handling of 3D building modelled in CityGML LOD3
(corresponding to a detailed architecture model). Their research
showed that good visualisation properties could be obtained by
only using the exterior shell of the building model that

drastically decreases the required number of polygons.
However, few of these studies explicitly discuss the framework
in which the generalisation process should be executed. This
issue has been extensively discussed in 2D cartographic
generalisation with a common research framework (Burghardt
et al., 2003). The framework proposed in this paper has
similarities with earlier work by Lehto and Sarjakoski (2005),
who performs generalisation by an XSLT process where they
translated 2D data from GML to SVG.

3. CITYGML AND X3D

3.1 CityGML

CityGML is a common information model for the
representation of 3D urban objects (OGC, 2009). It is realised
as an open data model and XML-based format for the storage
and exchange of virtual 3D city models.

CityGML defines five levels of detail (LOD), where objects
become more detailed with increasing LOD. Meanwhile, the
CityGML files can contain multiple representations for each
object in different LOD simultaneously and show the
generalized objects over different scales.

CityGML files are very large, often several GB for the big
cities. Even though file sizes can be effectively reduced by
compression method such as gzip (≈10%) the XML validation
and processing can be a problem (classical DOM parsing are
generally not feasible due to main memory limitations) and
WFS access might have to be realized in an asynchronous way
in order to avoid timeouts. Another problem with a cityGML
model is the complexity. A city in itself is very complex and
CityGML allow modelling of much of this complexity. This is
of course nice for many applications, but it also stresses the
need for efficient visualization techniques of CityGML.

3.2 X3D

X3D is an XML-based ISO standard for visualisation of 3D
models in computers, the successor of Virtual Reality Modeling
Language (VRML). X3D supports several pre-defined
geometry objects such as box, cone, cylinder and so on, which
can be used to represent CityGML models in X3D (X3D, 2009).

There are several toolkits available for X3D. Xj3D, for example,
is an open source toolkit for X3D manipulation and
visualization. Xj3D creates 3D scenes not only in Java
application viewer but also in Java applet viewer embedded in
web pages. It renders the 3D scenes with Java bindings for
OpenGL (JOGL) and supports real time interaction with users.
Xj3D supplies Scene Access Interface (SAI) to change or build
X3D worlds. For details see web3D (2009).

In order to add a 3D window to an application, an X3D
component should be created and added to the application.
Today there are free X3D components available, e.g. the Java
class X3DScene. Now we can dynamically build an X3D world
by creating new X3DScene. Each X3DScene must pre-declare
what Profile and X3D Components it will use. Profile is a
shortcut mechanism to reduce the amount of text needed to be
typed by the end user, and to also specify a set of known
functionality. Once we have the Profile and Component
instance, an X3DScene can be created accordingly and
visualised in the application.

4. OUR FRAMEWORK

The basic framework of the proposed generalization structure is
shown in Figure 1. The CityGML dataset can be stored both in
files and in databases. CityGML dataset is parsed with
CityGML4j (CityGML4j, 2009) and converted into Java objects
representing City Objects like buildings, roads which may
contain both geometry and semantic information from the input
dataset. CityGML4j can directly deal with the CityGML file
and if the dataset comes from a database, some extra import
tools like 3DcityDBv2 (Claus, 2009) may be required.

Figure 1. Framework of the 3D city model generalization.

The next step is to convert the original Java classes to one or
several X3D Scenes, which are instances of the Java class
X3DScene. To perform this conversion the standard Java
classes, JAXB is used; for the geometrical and topological
operation we utilise the open source library JTS Topology Suite
(JTS, 2009). The outcome of this conversion process is the
proposed multiple representation data structure, CityTree. An
option to CityGML would be to perform the conversion using
XSLT, which is a general tool for converting XML documents.
However, because of difference between the geometry
representations in CityGML and X3D, and the visualization of
semantic information, complex calculates would be required;
this implies that such a conversion would be difficult to
implement using XSLT.

In the final step the 3D City view is generated from the City
tree (stored as X3DScene Java objects). This is performed with
a Xj3D viewer. Since all generalisations are already performed
and the different levels of details are stored in the multiple
representation data structure CityTree, the visualisation process
can be performed dynamically in real time.

Meanwhile, the Xj3D supports Java Applet which could be
used to visualize 3D City Model through Internet. Besides Java
applet, Internet Brower plug-in X3D viewers such as BS
Contact could also be used for online 3D City Model
visualization. However, Java applet is recommended because of
its standardization and smooth integration with the whole
framework

5. GENERALIZATION

An implementation of the proposed framework was carried out
by aggregation of buildings. The framework could be used,
however, for other data types and generalisation operators.

5.1 Work flow of the generalisation

After the CityGML file is parsed by CityGML4j, all required
information is stored in Java classes. Because the city models
are in different LoDs, it is necessary to convert the model from
higher LoDs to lower LoDs. This study focuses on the building
aggregation, and therefore buildings are converted to LoD1
with only ground plan and height information in our
implementation.

Figure 2 describes the work flow of the generalisation. Firstly,
the ground plans of the buildings are generated. Then simplify
those ground plans. Next, the buildings are divided into clusters
by the road. For each building cluster, a CityTree is created for
visualization. These four steps are the pre-process. With the
CityTree, X3D nodes are created to represent the selected
buildings. The generalization information (aggregated group
buildings) is also shown in the X3D environment dynamically.

Figure 2. Work flow chat of generalization.

Next, the building clusters are generated by dividing the
Delaunay triangulation of the building ground plans. Finally,
for each block, the CityTree, a novel proposed structure
supporting real-time generalization and continued scaling of 3D
city model, is generated for visualization.

5.2 Ground plan generation

Although CityGML schema use groundsurface type to define
the ground plan of a building, there are still many models do
not have such semantic information. It is necessary to find out
method to create the ground plan from a simple surface set
without any semantic information.

Fan et al. (2009) derived the ground plan from the exterior shell
model by projecting the wall on the ground and connecting the
foot-print into a closed polygon. However, this method is based
on the exterior shell generated by their algorithm which is quite
complex and time consuming. Actually, in lots of cases like our
building group application, it is not necessary to compute the
exterior shell. Meanwhile, the wall based algorithms which
construct the ground plan from walls can not deal with the 3D
building model with wall sounded yard. Therefore, a method

that can directly derive the ground from city models and not
based on wall is required.

At this paper, every surfaces of the building is used to generate
the ground plan. The algorithm can be simplified described like
this. First, project all surfaces into the horizontal plane (xy-
plane). Then, unify the projected surfaces to the ground plan.
Finally, merge the ground plan to be one polygon.

Figure 3. Flow chart of ground plan generation.

Some buildings are made up of separated parts. Therefore, the
ground plans for those buildings are multi-polygons. In our
implementation, Ground plan gp is a multi-polygon. 3D
building b is constructed from CityGML data. Surface s is a
common surface in 3D building model b. For every surface s in
b, project it into the xy-plane and get p. If p is not a polygon
such as a line, ignore p. If p is a polygon, unify gp and p.
Finally, merge the polygons in gp to ground plan. JTS is used to
unify the polygons.

At this step, we only merge the polygons that are close enough,
otherwise, the building is considered as separated buildings.
The threshold is set to 0.5 meters. For those close polygons, the
same merger algorithm in section 6 which is applied for
different buildings is employed.

(a)

(b)

Figure 4. Generated ground plan.

5.3 Ground plan simplification

For ground plan simplification, Fan’ method (Fan and Meng
2009) is used. This method is designed for the individual
building ground plan simplification is used and adjusted
according to the needs of building group simplification.

(a)

(b)

(c)

(d)

Figure 5. cases of the ground plan simplification.

The simplification is started by selecting the shortest edge of
the ground plan Sn, and testing weather Sn is shorter than the
threshold Smin (Sester et al., 2004). If so, delete Sn and adjust
the neighbour edges. If not, the simplification process is over.
There are 4 cases as discussed by Fan as shown in Figure 5.
Figure 6 shows a flow chart of the ground plan simplify process.

Case 1: Sn-1 and Sn+1 are parallel and Sn-1 shorter than Sn+1.
Then delete Sn-1 and Sn; prolong Sn-2 and shorten Sn+1. As shown
in Figure 5(a).

Case 2: Sn-1 and Sn+1 are parallel and Sn-1 longer than Sn+1. Then
delete Sn+1 and Sn; prolong Sn+2 and shorten Sn-1. As shown in
Figure 5(b).

Case 3: Sn-1 and Sn+1 are not parallel and the intersection point
P of Sn-1 and Sn+1 is near Sn. Then delete Sn; prolong Sn-1 and
Sn+1 to P. As shown in Figure 5(c).

Case 4: Sn-1 and Sn+1 are not parallel and the intersection point
P of Sn-1 and Sn+1 is far away Sn. Then delete Sn; prolong Sn-1
and Sn+1 to the middle point of Sn. As shown in Figure 5(d).

Figure 6. Flowchart of the ground plan simplification. Modified
from Fan and Meng (2009).

However, Fan’s method is designed for signal building ground
plan simplification, but we have to deal with the aggregated
building group. Therefore, we suggest use the dynamic
thresholds instead of absolute thresholds. Along with the
aggregation of buildings, the area of the ground plan could be
changed dramatically, and the thresholds such as Smin should
change accordingly. In this paper, we mainly take the area of
the ground plan into consideration, and calculate the Smin and
other thresholds based on the area of the ground plan. Figure 7
gives an example of ground plan simplification in detail. The
original ground plan is given in figure 4(b).

Figure 7. Ground plan simplification in detail.

Figure 8 shows the simplified buildings in whole study area.
There are 5330 buildings which contain 35215 points in their
ground plans. After the simplification, 14150 points are left.
More than 60% points are deleted, while the grounds plans are
still quite similar.

Figure 8. Ground plan simplification whole area.

5.4 Building Clustering

It is reasonable to divide the buildings into groups according to
the road in the area. First, buildings in the two sides of the road
should not be aggregated as long as the road exists. Second, it
will improve the process performance by clustering buildings,
since the building number is smaller in a group than whole area,

which is essential to certain algorithm such as search and
sorting.

It seems that divided certain area by road is not a difficult test.
However, in realistic, the data about road is quite mess. A road
may be composed by several line strings which might be
connected, parallel or not related. In order to deal with this kind
of data, Delaunay triangulation of all buildings which is
represented by its centroid is generated. Then, for each edge in
the triangulation network, test if it crosses some road, if so,
delete the edge. By deleting the edges, sub graphs is generated.
Each sub graph will represent a building group.

Figure 9. Flow chart for the building clustering.

A flow chart for the building clustering is given in Figure 9.
First, create an array of Point with the centroid of ground plan.
Then, generated the Delaunay triangulation graph G(V, E) of P,
in which V is set of the vertexes and E is the set of edges. Then,
get an edge e from E, and reset the R to contain all roads. If all
edges in E have been processed (e == null) then the algorithm
finished. If not, for every road r in R, test whether r crosses e. If
so delete e from edge set E. Figure 10 shows the result of
segmentation. It is clear to see that our algorithm can perform
the building clustering effectively.

(a) Building and road data.

(b) Triangulation of the buildings (one node per building).

(c) Edges that intersects road and/or are longer than100m are

removed
Figure10. Building Clustering of whole study area.

5.5 CityTree Generation

So far we have only made a first example of implementing a
first algorithm into our framework. A novel structure CityTree
is proposed to support real-time building aggregation and
continued scaling of 3D city. This structure is based on a binary
tree in which leaf nodes represent the original 3D city objects
(mainly the buildings) and the other nodes represent the
generalization models of their children. In visualization,
selected nodes of the CityTree are shown to the user according
to his/her view point. When the view point is changed, the new
selected nodes in CityTree will replace the previous ones. With
CityTree, the real-time generalization of 3D city can be
efficiently realized.

For each building clustering, the CityTree is generated based on
“closeness value” between city objects. First, city objects like
building are represented by their centre of gravity and the
Delaunay triangulation is used to compute the neighbourhood
relations between buildings which can be directly got from
building clustering. Second, get the “closeness value” between
neighbour buildings based on not only geometry information
such as the distance, height, area, but also semantics ones like
usage, owner and so on. In this paper, we mainly consider the
distance between ground plans and the difference of height.
Third, merge the closest two nodes to create a new node and
repeat this step to create a tree—CityTree. The structure is
implemented by CityGML and X3D and the experiment shows
that the load time and space in visualization 3D city model can
dramatically reduced by using CityTree.

Figure 11 gives a demo example of the CityTree. Figure 11(a)
shows the distribution of the original city object (1~5). The
rectangle areas (A~D) are created by selecting nearby objects.
Then, the CityTree is generated as shown in Figure 11(b). The
leaf nodes (1~5) are original objects in city model. The other
nodes (A~D) are new generated middle nodes to represent their
child nodes.

1

4

5

3

2D

C
B

 A

(a)

1

D 4 53

2

C

A

B

(b)

Figure11. CityTree Model.

Each building cluster Bi is represented by triangulation sub-
graph Gi = (V, E) in which V is the set of vertexes, and E is the
set of edges. The pseudocode of creating CityTree is shown in
following steps.

Step1. For every edge e composed by vertex node A and B in E,
calculate the “distance” between node A and B, set the root of
A and B to themselves, and children to null, in which A and B
represent a building respectively. A node contains 4 parts:
ground plan polygon, height, root, and children. The distance
may contain the ground plan distance, the height difference, and
other semantic difference. In this paper, we only consider the
distance between ground plans. The root is the root node in
CityTree. Children is its child-nodes.

Step2. Get the edge emin with the smallest “distance” value from
E.

Step3. Let Node A and B be the two nodes of emin. If RA the
root of A is not equal with RB the root of B. Then create a new
node C, set root of RA and root of RB to C, children of C to RA
and RB, ground plan of C to be the aggregation of RA and RB,
and the height of C to be the area weighted average of the
height RA and RB, and the root of C to C. Else set C to RA and
go to Step 4.

Step4. Delete emin from E. If E is empty set, return CityTree C
and Exit. Else, go to Step2.

We aggregate the ground plans by selecting and union the
convex hole generated from the nearest edges of the ground
plans. Figure 12 shows an example of ground plan aggregation.
G1 and G2 are ground plans Figure 12(a). First, find out the
nearest edges between them: A1B1 with A2D2, B1C1 with
A2A2 are the nearest pairs. Then create the convex holes with
the nodes of closest edges shown in Figure 12(b). Next select
the convex hole with smallest area but not zero, and union the
ground plans with the convex hole shown in Figure 12(c).

Figure 12. Aggregation of ground plans.

After the aggregation, the new generated ground plan is
simplified with the simplification method described in 5.3 with
adjusting the threshold accordingly. In this paper, we adjust the
threshold according to the area of the ground plan. Figure 13
gives a example of ground plan aggregation. From (a) to (c), the
scale is decrease and more buildings are aggregated.

 (a) (b) (c)

Figure13. Ground plan aggregation result.

5.6 CityTree Visualization

In the visualization step, the CityTree nodes are selected based
on the user’s view point and the features of the node. In this
paper, the distance between the view point and the visible area
of the node is considered.

Every node in CityTree has a function to create the X3D scene.
First, the root of the CityTree tests relationship of the ground
plan area and distance to the view point. We calculate the rate
of distance square and the area, if the rate is bigger than a
threshold, then this node is shown in the X3D scene, else we
test the children of the node to see if they should be visualize in
the X3D scene. For the leaf nodes with no children, we just
show them with out test the rate. The pseudocode of CityTree
visualization is given in Figure 13

Figure 13. Pseudocode of CityTree visualization

By invoking the createX3DScene function of a CityTree root,
the “most suitable” nodes are selected for visualization. At this
paper, we only consider the relationship between view point (vp)
and the building ground plan area.

In the Xj3D visualization environment, we can get the view
point in real time, based on that, the 3D city models are created
dynamically. Figure 14 gives some results of scaling. More 3D
buildings in detail can be seem when zoom in.

(a) CityTree visualization in higher view point

(b) CityTree visualization in closer view point

Figure 14. CityTree Visualization

6. EXPERIMENT RESULT

The framework was implemented Java application. The
platform is Eclipse 3.4.1 running on a PC with Inter 2.4GHz
Core2 Duo CPU, 2.39GHz 3.25GB RAM, and Microsoft
Window XP SP3. The CityGML data is parsed by citygml4j
0.2.0. The 3D city model is visualized with Xj3D 2.0.0. The test
datasets come from the CityGML.org (CityGML, 2009).

(a) Before Aggregation

(b) After Simplification and Aggregation

Figure 15. Experiment result

Figure 15 shows an X3D city model of an area around
Leverkusen in Germany. Figure 15 (a) is the visualized 3D city
model with out generalization, while Figure 15 (b) shows the
result of generalization with our proposed method.

7. CONCLUSION

In this paper, CityTree, a framework to support the
generalization of 3D city model, is proposed. CityTree is
implemented based on CityGML and X3D which are used to
represent and visualize the 3D city model respectively.
According to the experiment results, CityTree can effectively
realize the continual scaling and dramatically reduce the load
time of 3D models. However, it is still need to be improved in
the generalization of a group of 3D city models.

ACKNOWLEDGE

This paper is supported by the VisuCity Project funded by the
Knowledge Foundation, Swedish Foundation for Strategic
Research, Vinnova, The Swedish Foundation for Health Care
Sciences and Allergy Research, and Invest in Sweden. Bo Mao
is thankful to the Royal Institute of Technology - KTH and the
China Scholarship Council for the PhD fellowship.

REFERENCE

Burghardt, D., Edwardes, A., Weibel, R., Harrie, L., and
Sester, M., 2003. Map generalisation technology:
addressing the need for a common research platform,
Proceedings of ICC 2003, Durban, South Africa

CityGML, 2009 dataset, http://www.citygml.org/1539/

CityGML4j, 2009 http://opportunity.bv.tu-
berlin.de/software/projects/show/citygml4j

Claus Nagel ， Alexandra Stadler, Gerhard Koenig,
Thomas H. Kolbe, CityDBV2, http://opportunity.bv.tu-
berlin.de/software/projects/show/3dcitydb (accessed 28
June. 2009)

Forberg, A. (2007). Generalization of 3D building data
based on scale-space approach. In: ISPRS Journal of
Photogrammetry and Remote Sensing 62 (2007), pp.
104-111.

Fan, H.; Meng, L.; Jahnke, M. (2009): Generalization of
3D buildings modeled by CityGML. In: Lecture Notes in
Geoinformation and Cartography, Advances in
GIScience. Springer Heidelberg Berlin, ISSN 1863-2246.
pp. 387-405. 12th AGILE International Conference on
Geographic Information Science. 02-05 June, 2009,
Hannover, Germany.

JTS (2009). JTS Topology Suite,
http://www.vividsolutions.com/jts/jtshome.htm.

Köninger, A., and S. Bartel, (1998). 3D-GIS for Urban
Purposes. GeoInformatica, Vol. 2, No. 1, pp. 79-103.

http://www.citygml.org/1539/�

Kada, M. (2006). 3D Building Generalization based on
Half-Space Modeling. In:Proceedings of the ISPRS
Workshop on Multiple Representation and
Interoperability of Spatial Data, Hannover.

Kada, M. (2007). Generalisation of 3D Building Models
by Cell Decomposition and Primitive Instancing. In:
Proceedings of the Joint ISPRS Workshop on
“Visualization and Exploration of Geospatial Data”,
Stuttgart, Germany.

Kolbe, T. H. and G. Gröger (2003). Towards unified 3D
city models. Proceedings of the ISPRSCommision IV
Joint Workshop on Challenges in Geospatial Analysis,
Integration and Visualization II, Stuttgart.

Lehto, L. and Sarjakoski, L. T. (2005). Real-time
generalization of XML-encoded spatial data for the Web
and mobile devices. International Journal of
Geographical Information Science, 19:8, 957 — 973.

Lutz Plümer, Thomas H. Kolbe, Gerhard Gröger.,
CityGML-Interoperable Access to 3D City Models, in
International Symposium on Geoinformation for Disaster
Management. 2005: Delft, Netherlands

Mayer, H. (2005). Scale-spaces for generalization of 3D
buildings. In: International Journal of Geographical
Information Science. Vol. 19, No. 8-9, September-
October 2005, pp. 975-997.

Meng, L. and A. Forberg (2007). 3D Building
generalisation, In: W. Mackaness, A. Ruas, and L. T.
Sarjakoski (eds.), Generalisation of Geographic
Information: Cartographic Modelling and Applications,
Elsevier, pp. 211-232.

OGC, 2009. CityGML specification.
http://www.opengeospatial.org/standards/citygml.

Web3D, 2009. X3D http://www.web3d.org/x3d/

X3D, 2009. http://www.web3d.org/x3d/specifications/

http://www.opengeospatial.org/standards/citygml�
http://www.web3d.org/x3d/�

	1. INTRODUCTION
	2. RELATED WORKS
	3. CITYGML AND X3D
	3.1 CityGML
	3.2 X3D

	4. OUR FRAMEWORK
	5. GENERALIZATION
	5.1 Work flow of the generalisation
	5.2 Ground plan generation
	5.3 Ground plan simplification
	5.4 Building Clustering
	5.5 CityTree Generation
	5.6 CityTree Visualization

	6. EXPERIMENT RESULT
	The framework was implemented Java application. The platform is Eclipse 3.4.1 running on a PC with Inter 2.4GHz Core2 Duo CPU, 2.39GHz 3.25GB RAM, and Microsoft Window XP SP3. The CityGML data is parsed by citygml4j 0.2.0. The 3D city model is visualized with Xj3D 2.0.0. The test datasets come from the CityGML.org (CityGML, 2009).

	7. CONCLUSION

