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Geographic gazetteers are now commonly utilised to enrich dig-
ital photographs, and to make these photographs easier to lo-
cate within vast online collections. However, such gazetteers use
two-dimensional data, and thus enrichment based upon complex
building geometry, taking into account the high levels of occlu-
sion within a city, is not possible. Modern cameras often pro-
vide accurate camera geometry and location, and thus 3D models
are being popularised to achieve robust and accurate photograph
enrichment. However, the semantic attribution within existing
models is either poor or non-existent. In this work, we describe a
novel and robust approach for the combination and enrichment of
existing city models. We first describe the automated registration
process of detailed, hand generated, 3D models to accurate 2D
city ground plans, and the geometric enrichment of the output.
We then describe a novel mapping function that adds existing
knowledge of name and function to each building in the model
using freely available web 2.0 information sources, and demon-
strate the accuracy of our method.

1 INTRODUCTION

Online digital photograph collections are now widely available,
and the retrieval of specific images, or sets of images, that fo-
cus on a particular subject within such collections remains an
ongoing research topic (Edwardes and Purves, 2008, Purves et
al., 2008). Popular existing search engines are not capable of
searching image content, hence searches rely on key-word re-
trieval techniques from image titles and captions. However, the
content of user-contributed photograph titles and captions are not
usually suitable for robust geographic retrieval. Titles and cap-
tions tend to be ambiguous or colloquial and suffer from an un-
structured and inconsistent vocabulary.

Recent developments in consumer level photographic devices al-
low positional information to be stored alongside the photograph,
typically consisting of GPS positional data and camera geometry,
such as pitch, roll and yaw. Information about the location can
be retrieved from Web 2.0 sources, allowing the use of such geo-
graphical data sources to generate a description of the surround-
ing area and context. For urban environments, very rich models
are appearing which can provide detailed information about the
subject and geographic context of the photograph.

In practice, the level of detail of geo-data on the web is often
insufficiently detailed for the scale of object that is commonly
photographed within a city. In addition, where data at this scale
is available, it is commonly based on 2D rather than 3D datasets.
This lack of 3D geometry greatly reduces the possible accuracy
of information retrieval in a dense city environment. In particular
the absence of fine-grain geometric and descriptive data, in com-
bination with what may be inappropriate assumptions about the
nature of occlusion, may result in a high degree of error with re-
spect to the actual image content when constructing photograph
captions from 2D datasets.

To generate captions with high quality geographical contextual
information it is desirable therefore to generate geometrically de-
tailed and well annotated 3D city models. This process is how-
ever subject to a number of limiting factors:

• Many available, detailed, 3D building models are hand de-
signed. In practice, whilst often highly detailed, such mod-
els are not always robustly created (e.g. geometric and topo-
logical inconsistencies, non-affine transformations, and un-
knowns due to a lack of design intent knowledge).

• City models may exist from a wide variety of providers, in
different formats, co-ordinate spaces and at varying levels
of detail and accuracy.

• Models extruded from satellite or ground plans lack fine-
grain detail and building facet information.

• Currently, some grounded city models exist, for example,
those on Google Earth. However, the current accuracy of
such models, their placement, and level of detail can vary
greatly. In addition, the hand registration of such models is
very time consuming.

• Some popular modelling languages used to describe such
city models i.e. KML, do not include any intricate semantic
attribution about buildings and their parts, and thus building
models come with little or no attribution.

In order to produce a fully annotated, accurate, 3D city model, in
Section 2 we describe an approach for the combination - through
robust shape matching, registration, and transformation methods
- of accurate city planning data, detailed hand-designed building
models, satellite imagery, and a digital elevation model (DEM).
In this work, we use datasets from the city of Bamberg. Further
to this, we describe web-mining methods in Section 3 for the re-
trieval and attribution of building data, with the aim of producing
a highly detailed, accurate, and annotated 3D city model that can
be used for high-fidelity photograph content retrieval.

2 MODEL REGISTRATION

In this section, we describe our approach for generating an en-
riched city model, by combining multiple commonly available
datasets. These sources are: A 2D city ground plan, a set of high-
quality triangulated 3D models of various cultural or significant
parts of a city, a DEM, and satellite imagery of the city.

2.1 Approach

The 2D city data-set, P , is a set of M buildings, where each
building is represented as a single, planar, polygon pi, and P :
{p1, · · · , pM} ⊂ R2. The dataset P in this work is typical for
that available from a city or council for planning applications



development, and is assumed to be the most accurate represen-
tation of the ground plans of the buildings within the city. The
original data also contains roads, described piece-wise, as a set
of adjacent polygons, but is not included in P (although can be
re-introduced after the registration process). Each polygon pi is
also associated with an address. The 3D data-set consists of L
arbitrary groups of buildings from within the city, referred to as
scenes, S1 · · ·SL. Each scene, Si, is assumed to be modelled as a
set ofN polygons Si : {s1, · · · , sN} ⊂ R3, which may be either
connected or disjoint, i.e. no assumption is made regarding which
polygons belong to which buildings, or any internal segmentation
within a building. The quality of the geometry of Si is also not
assumed to be good; the topology of the scene is entirely arbi-
trary, holes may exist, polygons si may intersect, be incorrectly
aligned, etc. Each polygon may be associated with one or more
textures, which, if no parameterisation is supplied, is assumed to
be uniformly parameterised. Each scene is therefore treated as
the sort of data typically available from user-contributed services
such as Google 3D Warehouse1, being generally created by hand
and not assumed to be created by a professional designer.

Due to the inaccuracy and limited coverage of the 3D scenes, Si,
and their ungrounded co-ordinate system, we wish to automati-
cally register them to the accurate 2D data-set P . In order to reg-
ister the 3D data to the 2D data, we wish to construct an injective
mapping f : S → P . The process of computing the mapping
f involves two main steps: 1) Shape matching to find the best
match in the 2D data for each 3D scene Si, 2) Registration to find
the correct transformation T for the 3D scene Si onto it’s image
in the 2D data P . Once computed, the transformation is then
applied to each scene, T (Si). This mapping transforms each Si
into its correct position relative to the 2D data-set P . The output
of this registration is an enriched city model C, combining the
available 3D data and the remainder of the 2D data.

In an effort to improve robustness, due to the unreliable quality
and topology of each Si, we compute this mapping f by regis-
tering 2D, rasterised, versions of P and Si. Whilst varying be-
tween architectural styles, the 2D footprint of a single building
is generally rectilinear, and often rectangular. This sort of shape
is not ideal for shape matching within the large sets of buildings
present in a city. Thus, in order to improve the chances of a cor-
rect match, we compute a binary rasterisation of Si, and select the
largest (based on area) contiguous cluster of buildings Gi ⊂ Si,
resulting in a far more unique shape. We perform this for all 3D
scenes S, resulting in a set of rasterised scenes from the 3D data,
G (see Figure 1). We then select all contiguous polygon clusters
from the 2D data P and rasterise them individually, Ji ⊂ P , re-
sulting in a set of high-resolution, binary, rasterised scenes J(see
Figure 1). Contiguous regions in the 2D dataset P are defined
by polygons p that are connected by shared points or edges. A
fuzzy definition could be used if adjacent buildings in a particu-
lar dataset do not share points or edges.

Some of the 3D scenes contained arbitrary sections of terrain
data. To ensure that Gi is an accurate projection of the buildings,
any terrain objects described in a scene Si should be removed be-
fore rasterisation. The area is computed for each set of connected
triangles in Si. Normals are then computed for each triangle face,
and the average angle between each pair of adjacent normals,
translated to the origin, is computed. Terrain sections tend to have
significantly larger areas, and significantly smaller normal varia-
tion when compared to man-made structures. A Gaussian is then
fitted to this data, and the outlying terrain sections are removed.

1http://sketchup.google.com/3dwarehouse/
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Figure 1: Rasterised building scenes; left images, 3D models
(Gi), right images, 2D models (Ji)

2.1.1 Shape Matching The first step in the registration pro-
cess involves finding the best match for each rasterised 3D scene
Ji within the set of all rasterised 2D scenesG. We compute prop-
erties that describe the shape of each Ji and Gi well, whilst be-
ing invariant to translation, scale, and rotation. We first compute
the geometric moments for each shape (Sonka et al., 1993). We
also compute the circularity of the shape (Sonka et al., 1993).
A description vector d is computed for each shape, representing
translation, rotation and scale invariant moments, and the circu-
larity of the shape. Due to the large discrepancy between the
shapes Ji and Gi, we discard all but the first and second moment
characteristics, as they reduce the accuracy of the matching pro-
cess. The shapes are converted to binary images, where a pixel
with a value of 1 belongs to the shape, and a pixel of value 0 is
the background.

For an binary image of width w and height h, where a pixel co-
ordinate is defined as (i, j), we first define the standard shape



moments:

µpq =

wX
i=0

hX
j=0

(i− xc)p(j − yc)qf(i, j)

where xc and yc define the centroid of the shape. We then define
the normalised un-scaled central moments ϑpq:

ϑpq =
µpq

(µ00)γ

where µ00 represents the area of the shape, and γ = (p+q)/2+1.
From these moments, we then define the following two moment
characteristics:

ϕ1 = ϑ20 + ϑ02

ϕ2 = (ϑ20 − ϑ02)2 + 4ϑ2
11

We then compute the circularity c of each shape, which can be
defined with respect to the shape moments:

c =

√
µ00/(µ20 + µ02)

2π

We then construct a shape description vector:

d =

0@ ϕ1

ϕ2

c

1A
The shape description vector d is computed for each Ji and Gi,
and closest match in G is found for each Ji by simply choos-
ing the smallest Euclidean distance

pPn
i=1(di − d′i)

2, where
d′ describes a target shape in G, and n the length of the descrip-
tion vector.

2.1.2 Registration Once the closest match, Gi, for the ras-
terised image of a 3D scene Ji has been found, the centroids for
both shapes are computed, and, Ji, is translated onto Gi. This
position is used as the initialisation for the registration process.
The feature based registration method introduced by (Borgefors,
1988) is used to register the models. The approach is appropriate
for the images used in this work, relying on the matching of line
features within the target and query images.

The output of each registration process is a general transforma-
tion matrix T , which describes the translation, rotation, and scale.
For each mapping Gi → Ji, the corresponding polygons in P
that represent the rasterised set Ji are deleted. The transforma-
tion T is then applied to each Si, which are now aligned to the
2D dataset P . Following this, each scene Si is segmented into
individual buildings according to P . A set of rules is applied to
determine basic assignment of polygons s within Si to a building
b, where a b consists of a set of polygons (possibly with textures)
within R3:

1. A disconnected 3D polygon si that lies entirely within a
polygon pi is assigned to a building bi

2. A vertex lying close to the boundary of two polygons pi
and pj is translated along the internal normal of the bound-
ary edge of the containing polygon, onto the boundary. If
the vertex is a member of polygons in both buildings, it is
duplicated, with one vertex assigned to bi and one to bj .
We define close by extending the original internal polygon
edge normal, and computing the point of intersection with
the polygon pi. Close is then defined as 10% of the distance
between the polygon edge and the point of intersection.

3. If a polygon si is shared between two buildings, but vertices
in si are not determined to be close to the boundary, then
the polygon is clipped according to a vertical clipping plane
defined by the intersecting polygon boundary edge. Vertices
are added at the point of intersection for both polygon seg-
ments, and assigned to their containing buildings.

The above three rules results in a well-segmented set of build-
ings that conforms to the building segmentation determined by
the accurate 2D ground plan dataset P , which is important for
the building annotation discussed in Section ??. It does not, how-
ever, necessarily result in an improvement in the quality of the
original 3D geometry. Finally, a set of buildings is defined as
B : {b1, · · · , bm} ⊂ R3, constructed from the application of the
above rules to each registered 3D scene Si. B forms part of the
enriched city model C.

2.2 Further Enhancement

The 3D data-set used in this work provides only limited coverage
of the city. The remaining buildings that do not have detailed 3D
models are therefore extruded from the 2D data-set P . The 2D
modelP is projected into DHDN / Gauss Kruger Zone 4, aligning
it with a satellite imagery data-set of the city. For each building,
we then approximate a height h using the algorithm described
in (Willneff et al., 2005). Each remaining polygon within P is
then extruded according to the height h, and a roof mesh is fitted,
resulting in a building b, which is added to the set of buildings B
belonging to the enriched city model. Rivers and roads removed
from the 2D dataset P are then added to the enriched model C
(see Figure 2). Finally, a terrain mesh is generated from the digi-
tal elevation model, and each building within B is projected onto
it.

3 SEMANTIC ENRICHMENT

The process of generating image captions require that thematic
attributes, even at a basic level e.g. a name, need to be added to
each building. The Keyhole Markup Language (KML) along with
most 3D computer graphics formats (VRML, 3D studio Max etc)
are only intended to represent 3D objects for visualisation pro-
poses, where detailed semantics of building parts is not catered
for. CityGML (Kolbe et al., 2005) however, a relatively new stan-
dard, provides an urban landscape ontology suitable to represent
the geometry of our city model C alongside thematic attributes
about each building and their parts.

Importantly then, a method of adding thematic knowledge about
each building and its parts is needed. In (Kumke, 2003) and (Hoeg-
ner et al., 2007) 3D models are matched to facts in underlying
official municipal and cadastral datasets. However, to the best of
our knowledge, no previous work has attempted to automatically
enrich a 3D city model (in any format) from freely available Web
2.0 information sources.

3.1 Approach

Our aim in this section is to enhance the city model C with the-
matic information about each building where available (see Fig-
ure 2). The techniques developed are general and applicable to
any city model which has been registered to some real world co-
ordinate system.

To find thematic information for buildings bi, the polygons pi ∈
P (in the 2D ground-plan) are matched to point referenced places
(or buildings) in Wikipedia, Open Street Maps and the free web
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Figure 2: 3D scene registered with 2D ground plan data and annotated using Web 2.0 sources. (a) St. Stephan (church), (b) Obere
Pfarre (place of worship), (c) Klosterbrau (pub), (d) Battingerhaus (attraction). 3D model is shown positioned above the 2D ground
plan for visualisation purposes.

gazetteer Geonames. Our technique uses each source to deter-
mine the name and type of each building e.g. Altes Rathaus
which is-a city hall.

Information from georeferenced Wikipedia articles is extracted
as RDF2 triples by the DBPedia project and exposed through a
public API. Wikipedia articles are then extracted from DBPedia
by querying their SPARQL endpoint. The name of buildings is
implied by both the name of the matching entry in DBPedia as
well as the title of the corresponding Wikipedia article.

Furthermore, building polygons bi are matched to building en-
tries in the free online collaborative mapping service Open Street
Maps, as well as the free online gazetteer Geonames. These
sources do not contain detailed knowledge about building parts,
only allowing the acquisition of knowledge about building name
and function.

3.2 Matching Issues

Matching building polygons bi to point referenced locations in ν
ranges from simple containment queries (point in polygon check-

2The Resource Description Framework - see
http://www.w3.org/TR/REC-rdf-syntax/

ing), to non-trivial cases that involve mapping a single point refer-
enced location to a number of spatially disjoint buildings. These
cases, in order of increasing complexity, are now described. From
this point onward, the complete set of point referenced building
locations ν from Wikipedia / DBpedia (W ), Geonames (G) and
Open Street Maps (O) is defined as:

ν = {W,G,O}

Case 1 - Direct Containment In the simplest case, point ref-
erenced locations of buildings in ν lie directly inside a polygon
bi. Hence, a simple point in polygon match is applicable, see for
example the Cathedral de Bamberg example in Figure 3(a).

Case 2 - One to One Matching Point referenced locations of
buildings in ν do not always lie inside a polygon bi in P as in case
1. Figure 3(b) shows how the Alte Hofhaltung Wikipedia article
has been geo-referenced outside of its actual building polygon.

Case 3 - One to Many Matching In a slight alteration to case 2,
certain locations in ν can refer to a number of separate buildings.
Figure 3(c) shows a Wikipedia reference that refers to a block
of 17 separate buildings referred to as part of Small Venice, a
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Figure 4: Possible inaccuracies of nearest building match (St.
Jakob). The dotting lines represent example distances between
the Wikipedia location for St. Jakob and some of the buildings in
the ground plan P

former Fischer settlement on the eastern bank of the river Regnitz
in Bamberg.

Case 4 - One to One With Many Disjoint Buildings A single
building location in ν may map to more than one disjoint building
bi in P that belongs to the same set of buildings. For example,
University of Bamberg is comprised of 4 spatially disjoint build-
ings in this area of the city, see Figure 3(d).

Outcomes: Case 1 is easy to solve with a point in polygon
check. Clearly it is possible that, even though the point location is
contained inside a single building, it actually maps to more than
one building. However, our approach aims to be conservative,
where the precision of mapping is more important than recall. In
other words, we would rather map to one correct building, than
map to many buildings where only a subset are correct. Case 2
could be solved by finding the nearest (in terms of Euclidean dis-
tance) building, however in some cases, the nearest building may
not always be the correct building - see Figure 4, where build-
ing 126 is closer than its correct mapping, building 151. Cases
3 and 4 are, with the information we have, non-trivial. Case 3
would require associating 17 buildings to the same Wikipedia ar-
ticle, while not associating any of the other, often still connected,
buildings. An obvious approach here would be to use the reg-
istered 3D model to consider occlusion. However, from manual
investigation it appears users do not themselves consider occlu-
sion when tagging articles in Wikipedia, or when adding loca-
tions in Open Street Maps or Geonames i.e. some references are
to occluded buildings, hence this approach would not apply to all
cases. Case 4 is a specialization of case 3, which also requires
associating a number of nearby buildings to a single wikipedia
article, however these spatially disjoint set of buildings are all
(semantically) part of the same building.

In this paper we develop two fuzzy mapping function that asso-
ciates, to a certain degree, each georeferenced information source
(the points in ν) with buildings in the 2D ground planP . By using
a fuzzy mapping we hope to overcome some of the issues previ-
ously described. The fuzzy mapping functions are described in
the sections to follow.

3.3 Fuzzy Mapping Function

In this section we describe the process of linking points in ν to
building polygons bi in P using one of two different fuzzy map-
ping functions. Once linked to the joined 2D ground plan, this
information can be added to the registered 3D city model C.

Here we use the notions of fuzzy relations (Zadeh, 1965) to map
locations to buildings. More specifically, we use a fuzzy rela-
tion R : ν × P 7→ [0,1] to map points from ν to buildings
in P , where the degree of truth in [0,1] to which the mapping
holds is determined using two different fuzzy mapping functions
R as described in sections 3.3.1 and 3.3.2. The fuzzy relation
R forms a new fuzzy set Ω, which is a list containing element
and membership degree pairs; Ω ={{x, y},R1}, {{x, y},R2},
. . . , {{x, y},Rnm}, where x is a point from the set ν, y is a
building from the set P , n is the size of the ν and m the size of
P , and R is their membership degree in [0,1], e.g {{Cathedral
de Bamberg, 1191},1}, {{Alte Hofhaltung, 479},0.9}, {{Alte
Hofhaltung, 495},0.87}}.

3.3.1 Baseline Fuzzy Mapping The Euclidean distance, d,
from point locations in ν to building bi polygons in P is based on
the distance from the point to either, the nearest edge of the build-
ing, or to the nearest vertex of the building, depending on which
is closer. The baseline fuzzy relationship R between a point pi
from the set ν, and building bi from the set P is then computed
using a normalised distance measure in [0,1]. That is, by nor-
malising the computed distance d against the maximal distance
between the point p and all buildings bi in P :

R(p, b) = 1−
„
d(p, b)

dmax(p)

«
dmax(p) = maxbi∈P (d(p, bi))

Relations closer to 1 represent better mappings. All directly con-
tained points (points that lie inside building polygons) have a dis-
tance of 0 and hence a degree of membership R of 1.

Considering multiple evidence across sources: Many points
in ν may link to the same building in P . A many-to-one linking
can be added as extra evidence for the fuzzy relation R. For
example, Figure 5 shows both the Wikipedia point reference and
Open Street Maps point reference to the same building (building
151 or St. Jakob’s church).

Open Street 
Maps

Wikipedia

d

d

d

d

151

126

Figure 5: Improving matching by considering multiple evidence
(St. Jakob). The dotting lines represent example distances be-
tween each location and some of the buildings in the ground plan
P

Consequently, the normalised distance fuzzy relationship func-
tion is extended to include mappings that consider more than
one identical point reference. To identify identical point refer-
ences in ν, standard and alternative names of each article or POI
are matched, using a combined soundex and edit distance fuzzy
string similarity measure. Sets of identical references ν1 = · · · =
νn are then removed from ν and added to a new set ν= as tuples
t = {ν1, · · · , νn} where, for the set ν= , n ≥ 2. For simplicity,



Alte Hofhaltung
 (Bamberg)

Catedral de Bamberg

Klein-Venedig 
(Bamberg)

Otto-Friedrich-
Universität Bamberg
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c) d)
Figure 3: Example mappings between Wikipedia georeferenced articles and buildings in P

we also assume from this point onward that remaining elements
of ν are actually tuples t but with only one element i.e. n = 1.
Hence the total combined set of point references V is then formed
from entries in ν and entries in ν= e.g. V = ν= ∪ ν.

Once V has been established, membership degrees R in Ω relat-
ing point references in V to buildings in P are computed using
the normalised mean distance between each evidence point νi in
a tuple ti in V (where 0 < i < |ti|), and each building. More for-
mally, the relation R is computed for a tuple t in V and a building
b in P as:

R(t, b) = 1−
„
d(vi, b) + · · ·+ d(vn, b)

dmax(t)× n

«
, where n ≥ 1

Where in this case dmax is used to find the maximum distance
between the mean distance of points in a tuple t and all building
bi in P e.g.

dmax(t) = maxbi∈P

„
d(v1, bi) + · · ·+ d(vn, bi)

n

«
An element membership degree pair {{x, y},R} is then added to
the set Ω for each tuple ti and building bi by taking the computed
degree as the element , the point vi with minimum distance as
element x, and the building bi as the element y.

Finally, the fuzzy relation function R(t, b) can be further im-
proved by introducing a common sense heuristic that point ref-
erences in V will not be over 100 meters from the building(s)
they refer to. Hence the function final baseline function Rb re-
turns a membership degree of 0 for all those buildings outside a

100 meter radius from the minimum distance point vn in a tuple
tj :

dt(t, b) =
d(v1, b) + · · ·+ d(vn, b)

n

Rb(t, b) =

(
1−

“
dt(t,b)
dmax(t)

”
if dt(t, b) < 100

0 otherwise

where n ≥ 1.

3.3.2 Prominent Building Fuzzy Mapping We have also de-
veloped an alternative fuzzy membership function which boosts
degrees of membership for prominent building shapes. A build-
ing classifier is built to detect prominent buildings. Again we
build a shape description vector S for a sample set of buildings
from the ground plan P , based on the buildings elongation ε
(from (Stojmenović and Žunić, 2008)), compactness C (see for
example (Lee et al., 2004)) and area A (scale). More formally, a
shape description for a building bi is the vector:

S =

0@ ε
C
A

1A
Shape vectors were learnt for 20 buildings in the ground plan that
represented walls, 20 that represented terraced or small buildings
and 20 that represented large prominent buildings (0.016% of all
buildings in P ). The set of learned shapes where added to the
training set Lv. The cosine similarity measure is used to match
and classify shape vectors for new building shapes against those
in Lv.



The new fuzzy membership function denote Ralt(t, b) is then a
function of both distance and building shape. More formally, for
a tuple t in V and building b in P :

Ralt(t, b) =

8><>:
W

“
dt(t,b)

dmax(t)

”2

Wmax(t)
if Pb(b) = true“

dt(t,b)
dmax(t)

”2

Wmax(t)
if Pb(b) = false

where dt(t, b) < 100, and n ≥ 1. Note that if dt(t, b) ≥ 100,
Ralt(t, b) = 0.

Where Pb(b) is a function that takes a building bi and determines
if it is a prominent building by matching its shape description
vector against the set of learned shape vectors Lv (as discussed
previously). Wmax is the maximum value (for normalisation)
taken from the mean distance of a tuple of points t from V and
all buildings bi in P squared and multiplied with a weighting W
if the building bi is a prominent building.

3.4 Evaluation

For the area of Bamberg, the set V has 53 tuples with only one
evidence location v, and 10 tuples with evidence from multiple
sources i.e. vi where i > 1 . After applying both standard and
alternative fuzzy mappings over the grouped set P , the fuzzy set
Ω holds mappings between articles in Wikipedia, and entries in
Geonames and Open Street Maps and buildings in P . For evalu-
ation, we compare the results of the mapping after applying dif-
ferent thresholds on the fuzzy relationship R, with manual map-
pings held in a set ψ as defined by a local expert.

For comparison, we first partition the sets Ω and ψ such that each
partition ωi of Ω represents information about a single unique ref-
erence v in V , and similarly for each partition φi of ψ. For each
identical partition ωi and ψi (identical in that they are about the
same reference v in V ) we then compute the following measures
for both baseline (standard) and alternative fuzzy relation func-
tions at different threshold levels of R. The first (represented by
the columns in Figure 6) is a measure of the number of exact
matches between the machine and expert output. That is, how
many of the locations have been mapped exactly onto the same
number of buildings, without mapping onto other incorrect build-
ings, as the human expert. The second (represented by the line
graph in Figure 6) shows the average (for all v) per threshold
level of a combined measure C of mapping accuracy for each
unique point location v. More formally, C is defined as:

C(v) =
3(1−NFP (v)) + (1−NOP (v)) + 2(NA(v))

6

Agreement A is a count of the number of buildings correctly
matched in the machine output with those from the the expert out-
put. Agreement is then normalised (NA) by dividing A by the
total number of buildings in the expert output for that partition φ.
Normalised False positives (NFP ) is the count of the number of
buildings linked to point references in the machine output that are
not contained in the human output, divided by the total number of
machine buildings in ωi. Normalised Omitted Positives (NOP )
is the count of the number of buildings linked in the expert out-
put that are not contained in the machine output, divided by the
number of buildings in φ. Weightings are introduced such that
priority is placed on maximising agreement and minimising ma-
chine false positives NFP . This is because, it is assumed better
to not match all buildings in the machine output to the expert out-
put and have a low number of machine false positives, than match
to all buildings in the expert output but also many others not in

the expert output - giving erroneous linkage from buildings to a
point reference information sources

From the results shown in Figure 6, both the prominent and stan-
dard fuzzy mappings over the ground plan P follow a general
trend where increasing the threshold increases the combined mea-
sure C. The prominent fuzzy mapping has a marginally bet-
ter maximum combined measure C of 0.704 at a threshold of
0.9, compared to the maximum combined measure C of 0.701
at a threshold of 0.85 for the standard mapping. Furthermore,
at this threshold the prominent mapping has a 0.4 (40%) exact
match success rate, compared to a maximum of 0.3 (30%) for
the standard mapping. Indeed the prominent mapping provides
a far better exact match rate than the standard mapping. At the
best threshold for the prominent mapping, the average number of
NFP is 0.18, which equates to a relatively low 0.29 extra build-
ings being mapped in the machine output. The average NOP is
0.37 or an average 3.29 buildings in the expert output that were
not in the machine output, this is an increase from the best value
of 0.14 (1.8 buildings) at a threshold of 0.0. However, as previ-
ously stated, we prioritise minimising the averageNFP over the
average NOP .

Consequently, to achieve the best mappings between location and
buildings the alternative mapping Ralt at a threshold of 0.9 should
be used. Buildings in P are then linked to information sources at
a 0.9 threshold and output as an enriched ground planPE . Build-
ings in the 3D city model C that are registered to the ground plan
PE then inherit the same linkage to information sources.

4 CONCLUSIONS AND FUTURE WORK

In this abstract we have described a method to combine and anno-
tate multiple data sources, in order to produce an enriched 3D city
model for use in automatic caption generation for geo-referenced
photographs. We describe an approach to robustly register ex-
isting 2D and 3D datasets, high-resolution satellite imagery and
a digital elevation model, overcoming problems with geometric
quality. In addition, web-based methods to enrich the 3D model
have been described. Future work will focus on further enrich-
ment methods, and the segmentation of geometric and textural
building features.

Current work looks at the extraction of salient building parts, e.g.
St. Peter’s Spire, from the free text content of Wikipedia arti-
cles using natural language processing (NLP) and named entity
recognition (NER) techniques. We are also focusing on the au-
tonomous correction of inaccurate photograph GPS data using
photographic content.
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