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ABSTRACT: 
The article presents a conceptual framework for formal geometric reasoning with extended objects in the context of vernacular 
geography. Vernacular geography is concerned with place names and their relations as they are used in people's everyday vernacular 
language.  Commonly used place names include names of land formations, landmarks, woods, water bodies or streets. Unlike single 
points that are given in Cartesian coordinates, these geographic entities are extended in space and often vaguely defined. 
Nevertheless people perform spatial reasoning with extended geographic entities “as if they were points”: Expressions like “Prague 
lies half-way between Vienna and Berlin” or “The apartment is located quite between a train station, a tram stop, and a bus stop” 
involve not only topological relations, but also approximate geometric constructions that use extended geographic entities in the role 
of points. With the rise of ubiquitous computing, the ability to represent and query textual descriptions of spatial configurations in a 
GIS becomes increasingly important. To achieve this, it is necessary to formalize topologic and geometric reasoning with extended 
and vaguely defined objects. While much research has been done on topological reasoning with extended objects, geometric 
reasoning with extended objects has rarely been addressed.  
The paper describes difficulties that arise from approximate geometric reasoning with extended objects and proposes to use a 
fuzzified version of David Hilbert’s axiomatic logical calculus for Euclidean geometry as a way to cope with these difficulties. 
Based on the idea that extended objects may be seen as location constraints to coordinate points, the geometric primitives point, line, 
incidence and equality are interpreted as fuzzy predicates of a first order language. An additional predicate for the “distinctness” of 
pointlike objects is added. We confine ourselves to crisp extended objects like buildings or areas with official boundary definitions; 
vaguely defined geographic entities like mountains or places such as “downtown” are excluded in this paper. A fuzzification of the 
axioms of incidence geometry is given, which is based on the proposed fuzzy predicates. Rational Pavelka Logic is discussed as a 
reasoning system for a geometry of extended objects: Once a model of Euclidean geometry is found, which is based on Rational 
Pavelka Logic, worst-case values for the ill-posedness or well-posedness of a geometric construction can be derived.  Reasoning 
with Rational Pavelka Logic has the advantage of being computationally less expensive and thus faster than a detailed analysis of a 
given spatial constellation.  
 
 

1. INTRODUCTION 

1.1 Spatial analysis with extended objects 

In vernacular speech, place names and landmarks are often used 
to describe the approximate location of geographic entities. For 
example, the statement “The apartment is located between 
Vienna Western station, tram stop Stollgasse and bus stop 
Zieglergasse” is a textual description of the apartment’s 
location and might be found in an advertisement. With the rise 
of ubiquitous computing, the automation of spatial reasoning 
calculi that can deal with textual descriptions and approximate 
location information becomes increasingly important. The 
simplest version of approximate location information is a crisp 
extended region, which can be seen as a constraint to the space 
an object possibly or actually occupies (Gerla, 2008). Up to 
date, geographic information systems (GIS) have the ability to 
perform topological reasoning with extended geographic 
objects (e.g. Dilo, 2006). Yet, the capability of geometric 
reasoning with extended objects is still missing. The aim of the 
present work is to lay a foundation for geometric reasoning with 
extended objects that is usable in GIS. 
As an example of a geometric construction with extended 
objects consider again the above statement “The apartment is 
located between Vienna Western station, tram stop Stollgasse 
and bus stop Zieglergasse” and suppose it is a GIS query with 
the goal to represent the approximate location of the apartment 
in a map. Suppose the train station, the tram stop and the bus 

stop are known and represented in the GIS by polygons, 
whereas the location of the apartment is unknown.  
A heuristic solution to the above problem could be to represent 
the three landmarks by their centroids, construct a triangle from 
the three coordinate points, calculate the centroid of the 
resulting triangle and output it as the approximate location of 
the apartment (Figure 1).  
 

 
Figure 1. Three extended objects: a train station, a tram stop 
and a bus stop. The approximate location of the apartment is 
derived heuristically from a textual description. 



 

  
The solution usually works fine if performed by an individual, 
who checks if the problem statement makes sense: "Are the 
involved objects approximately of the same size or do the sizes 
differ too much?", "Can the distances between the involved 
objects be displayed in the same map scale?", "Is it possible to 
determine an approximate line from any two input objects or is, 
e.g., one of them enclosing the other?", etc. If the process is 
automated, a calculus is needed that decides on the ill-
posedness or well-posedness of the configuration. 
As an example of an ill-posed problem consider the case that 
the polygon representing “Vienna Western Station” as stored in 
the GIS comprises not only the station’s main entrance – which 
is the intended meaning of the textual description –, but with it 
the whole rail yard of the station. Figure 2 sketches the resulting 
geometrical configuration: The three extended objects that are 
used as input to the heuristic differ too much in their sizes to 
allow a meaningful result in the given context. The reason for 
the heuristic to fail is that the centroids, being Cartesian 
coordinate points, do not take into account the spatial extent of 
the involved polygons and provide a too rough approximation 
of the objects in the given geometric context.  
 

 
Figure 2.  Ill-defined constellation of extended objects: The 
applied heuristic fails in the given geometric context. 
 
The present paper proposes to tackle this problem by applying a 
geometry that takes the extended objects themselves as 
geometric primitives: a geometry of “extended points” and 
“extended lines” is proposed. Figure 3 shows an ad-hoc 
example of a construction process involving extended 
primitives. We show that the question of a geometric 
construction query being well-posed or ill-posed in the context 
of a specific geometric constellation is a matter of degree. 
Fuzzy approximate reasoning provides an instrument to define a 
measure of well-posedness of a geometric query and it’s value 
can be derived for any specific geometric constellation in 
question. As a consequence, it is possible to suppress an 
automatically generated output in case the problem statement 
does not make sense from a geometrical point of view. The 
fuzzy approximate calculus proposed is Rational Pavelka logic, 
based on a fuzzyfication of David Hilbert’s axiom system for 
Euclidean geometry. Since most tests and operations for spatial 
analysis in a vector based GIS are based on the algebra of 
Cartesian coordinate geometry, and thus on the axioms of 
Euclidean geometry, a fuzzyfication of the Euclidean axiomatic 
system provides an extension of the Cartesian algebra rather 
than a new calculus. Existing algorithms can be reused.  As an 
illustration of the framework, we look at the axioms of 

incidence geometry, which is a subset of the Euclidean 
axiomatic system.  
The remainder of the article is structured as follows: Chapter 2 
briefly introduces the incidence axioms of Hilbert’s axiomatic 
system for Euclidean geometry; Examples of possible 
interpretations of extended geometric primitives are given and 
arising problems are illustrated and formalized. In chapter 3 
fuzzy predicates for geometric primitives are defined and an 
axiomatization of incidence geometry on the basis of these 
primitives is proposed. Rational Pavelka Logic is discussed as a 
possibility to formalize approximate deduction based on 
extended primitives. The article concludes with a discussion 
and with an outlook to further work. 

 
Figure 3.  Ad-hoc example of a geometric construction based on 
the extended geometric primitives “extended point” and 
“extended line”. 
 
1.2 Related Work 

Most of the literature on qualitative spatial reasoning in the 
context of GIS is either topological or metrical in nature 
(Freksa, 1991; Frank, 1992; Dilo, 2006; Renz and Nebel,2007). 
Many of these approaches use fuzzy set theory to represent 
uncertain or incomplete information. The reasoning mechanism 
itself usually employs crisp calculi. It is rarely the case that 
fuzzy logic is utilised as a reasoning technique.  
One of the approaches that use fuzzy theory for spatial 
reasoning has been introduced by S. Dutta (1990) for geometric 



 

and metric concepts. Dutta uses fuzzy approximate reasoning to 
propagate positional, metrical, propositional, and range 
constraints through the steps of a geometric construction 
process. His approach is conceptually similar to the present 
work, but does not develop a systematic approximate calculus 
based on axiomatic geometry. H. Schmidtke (2005) provides an 
axiomatic geometric approach to spatial reasoning, but focuses 
more on granularity issues than on geometric constructions. S. 
Schockaert (Schockaert et al., 2008) employs fuzzy reasoning 
techniques to define metrical relations like near and far 
between extended geographic entities, but does not address 
geometric constructions. E. Clementini (2005) proposes a 
geometric model for uncertain lines, but does not treat lines as 
geometric primitives. 
There are numerous approaches by mathematicians to restore 
Euclidean Geometry from a different set of axioms, based on 
primitives that have extension in space: (Tarski, 1956) 
developed a Geometry Of Solids based on the notions of sphere 
and inclusion between spheres. (Schmidt, 1979) starts off with 
regions, an inclusion relation for regions, translations and 
rotations. The primitives in Gerla’s Point-Free Geometry 
(Gerla, 1990; Gerla, 1995) are regions. Extensionless points are 
defined by a suitable sequence of regions, called abstraction 
process. Bennett (Bennett et. al., 2000; Bennett, 2001) 
continues on Tarski’s Geometry of Solids with Region Based 
Geometry. Region Based Geometry is based on a congruency 
relation and is formalized exclusively in first order logic. These 
approaches aim at restoring Euclidean geometry, including the 
concepts of crisp points and lines, starting from different 
primitive objects and relations. In contrast to this, the present 
approach aims at augmenting an existent axiomatization of 
Euclidean geometry with grades of validity for axioms. The 
concept of a graded validity of axioms admits models of partial 
truth, allowing for primitives that have uncertainty in location. 
A parallel calculus has the advantage of enabling GIS users to 
use the classical tools of spatial analysis without learning new 
and fundamentally different concepts.  
 

2. AXIOMATIC GEOMETRY AND EXTENDED 
OBJECTS 

2.1 2.2 Geometric primitives and incidence 

Euclidean geometry in its axiomatic form was introduced by 
Euclid in 300BC in his famous book Elements. In 1899 David 
Hilbert gave a complete and consistent formulation of an 
axiomatic system of Euclidean geometry (Hilbert 1962). The 
primitive objects in the two dimensional version of his 
formulation are points and lines. The most basic primitive 
relation between points and lines is the on-relation, usually 
called incidence. The following four axioms formalize the 
behaviour of points and lines with respect to incidence: 
 
(I1) For every two distinct points p and q, at least one line l            
       exists that is incident with p and q.  
(I2) Such a line is unique. 
(I3) Every line is incident with at least two points. 
(I4) At least three points exist that are not incident with the  
       same line. 
 
Whenever a set of objects called points, another set of objects 
called lines, and a relation called incidence comply with these 
four axioms, the structure is called a (model of) incidence 
geometry. Points, lines and incidence are called primitives of 
the theory. The underlying predicate logic provides a deduction 
system, which allows deriving theorems from the axioms I1-I4. 

An example of a theorem of incidence geometry is the 
statement “For every two distinct lines at most one point exists, 
such that both lines are incident with that point.” In other 
words, two distinct lines are either parallel or intersect in 
exactly one point.  
The uniqueness axiom I2 ensures that geometrical constructions 
are possible. Geometric constructions are sequential 
applications of construction operators. An example of a 
construction operator is , taking 
two points as an input and returning the line through them. For 
connect to be a well defined mathematical function, the 
resulting line needs always to exist and needs to be unique. 
Other examples of geometric construction operators of 2D 
incidence geometry are 

:  point × point  lineconnect →

 
              (1) :  line × line  point,

 :  line × point  line.
intersect
parallel through point

→
→

 
For the successful implementation of geometric algorithms in 
GIS, like for example a point-in-polygon-test, the construction 
of a Voronoi-diagram, or polygon-overlay, the existence of 
well-defined constructions operators is obligatory. 
The axioms of incidence geometry form a proper subset of the 
axioms of Euclidean geometry. Incidence geometry allows for 
defining the notion of parallelism of two lines as a derived 
concept, but does not permit to express betweenness or 
congruency relations, which are assumed primitives in Hilbert’s 
system. The complete axiom set of Euclidean geometry 
provides a greater number of construction operators than 
incidence geometry. Incidence geometry has very limited 
expressive power when compared with the full axiom system. 
Due to its small number of axioms incidence geometry is well 
suited for demonstrating the proposed framework. 
The following subchapter focuses on the discussion of a well-
defined connect operator for extended objects. We give five 
examples of possible interpretations of the geometric primitives 
point, line, and incidence by extended objects, test them for 
compliance with the axioms I1-I4, and discuss their usefulness 
in a GIS-context.  
 

Connecting extended points 

The combined incidence axioms I1 and I2 state that it is always 
possible to connect two distinct points by a unique line. In case 
of coordinate points p and q, Cartesian geometry provides a 
formula for constructing this unique line: The parametric form 
reads 
 
  { }( ) |l p t q p t= + − ∈ .     (2) 
 
When we want to connect two extended geographic objects in a 
similar way, there is no canonical way of doing so. We can not 
refer to an existing model like the Cartesian algebra. Instead, a 
new way of interpreting geometric primitives must be found, 
such that the interpretation of the incidence relation respects the 
uniqueness property I2. In the following we will show that such 
an interpretation cannot be found without imposing too 
restricting conditions on the interpretation of extended 
primitives to be useful in a GIS context.  
We will refer to extended objects that play the geometric role of 
points and lines by extended points and extended lines, 
respectively. In contrast, the extensionless coordinate points 
and lines of Cartesian geometry will be denoted by Cartesian 
points and Cartesian lines.  



 

Interpretation 1 (Figure 4a): As a first attempt to find an 
interpretation of I1-I4 with extended primitives, we interpret 
extended points as discs in the Cartesian plane  with a fixed 
diameter

2

φ . Extended lines are read as parallel stripes 2L ⊂  
of fixed widthφ . A stripe L is taken to be incident with a point 
P, if . With these definitions, a unique connection 
operation is defined: It is clear that, for any two distinct points 
P and Q, a parallel stripe L of width 

P L P∩ =

φ  exists that is incident 
with both, P and Q. Such a stripe is unique, and thus axioms 1 
and 2 hold. The third and fourth axioms hold trivially, as long 
as the workspace is big enough. This interpretation is 
isomorphic to the Cartesian model. It’s applicability to 
reasoning with extended geographic objects in a GIS is limited, 
since it can not handle objects of different size and shape.  
Interpretation 2 (Figures 4b, 4c): In the case that P and Q are 
disc-shaped, but are allowed to have varying diameters 

,P Qφ φ ∈  the above interpretation of connection loses the 
uniqueness property (Figures 4b, 4c). 
Figures 4d-4f sketch two possibilities to restore uniqueness by 
changing the interpretations of extended lines and the incidence. 
In all cases, there seems to be a trade-off between uniqueness 
and usefulness for GIS purposes:  
Interpretation 3 (Figure 4d): Extended lines  are 
interpreted as the Cartesian convex hull of pairs of extended 
points P and Q. An extended point R is taken to be incident 
with , if R=P or R=Q. As a result, the connection 
operation exists and is unique. Yet, every extended line so 
defined contains two points at maximum, which is not an 
intended understanding of “extended line” for GIS purposes. 
E.g. the continuation of  to the left of P and to the right of Q 
is not defined.  

3 ( , )L P Q=

3 ( , )L P Q=

3L

 

 
Figure 4.  Different interpretations of the connection of two 
extended points.  
 
 
Interpretations 4 and 5 (Figures 4e, 4f) : Figures 4e and 4f 
propose two possibilities of continuation of the convex hull. 
Both variants impose additional constraints on extended lines 
that are not derived from the data. These artificially added 
constraints create new constraints on subsequently constructed 
objects. For instance, the extended point R in Figure 4e is a 
translation of Q in the “main direction” of . Intuitively, R 

should be incident with , which it is not. Only if we shrink R 
to a Cartesian point, the incidence relation is satisfied. 

5L

5L

 

 
Figure 5.  Convex-hull interpretation of the connection of two 
extended points (a) for arbitrary shapes, (b) for overlapping 
Cartesian point sets.  
 
In case we additionally allow arbitrary shapes and drop the 
condition that extended points must not overlap, the different 
interpretations of connection can become even less useful: 
Figure 5 shows two constellations where the connection of P 
and Q by interpretation 3 seems to result in a new extended 
point rather than in an object that represents an extended linear 
feature. 
The above considerations suggest that an interpretation that is 
based on extended primitives and complies with the axioms I1-
I4 cannot be found, if we demand a definition of extended 
primitives that is flexible enough to be useful for GIS purposes.  
Yet, since interpretation 1 is based on extended primitives and 
complies with the incidence axioms, we conclude that the 
difficulties we encountered above do not arise from the absolute 
sizes of extended geometric objects involved or from the 
absolute distances between them. Instead, problems seem to 
stem from differences in size and distance of the involved 
objects relative to each other.   
 
2.3 Approximating incidence geometry 

To escape the dilemma encountered in the forgoing subchapter 
we propose to fuzzify the Cartesian model of incidence 
geometry. This can be done in three steps: First, we interpret 
the geometric primitives point, line and incidence as logical 
predicates and fuzzify their Cartesian interpretation. Secondly 
we fuzzify the background language of predicate logic, in 
which the incidence axioms are expressed. And thirdly the 
associated deduction system itself is fuzzified.  
For the first step, to define a fuzzification of a Cartesian point 
w.r. to its geometric characteristics, we start from the 
observation that an extended object P always comprises a set of 
Cartesian points, and consequently may be seen as a set of 
possible or actual locations of a single Cartesian point as 
permitted by the location constraint P. Baring this viewpoint in 
mind, we may interpret both, extended points and extended 
lines by arbitrary Cartesian subsets of the real plane , and 
assign to each of them a degree which expresses how much they 
“resemble” a Cartesian point or a Cartesian line w.r. to 
geometric constructions. In this understanding, every Cartesian 
point set is at the same time a - more or less good - 
approximation of an extensionless Cartesian point and a - more 
or less good - approximation of an extensionless Cartesian line.  

2

For the second step, the fuzzification of Boolean predicate 
logic, note that Boolean predicate logic assumes that predicates 
can assume either the truth value true (“1”), or the truth value 
false (“0”). To fuzzify Boolean predicate logic we use infinite 
valued Łukasiewicz predicate logic, which allows for truth 
values in the interval [0,1].   
Despite the fact that Łukasiewicz logic allows for fuzzy 
predicates assuming truth values in [0,1], but its deduction 
system only propagates absolute truth. To implement the third 



 

step, Rational Pavelka Logic (RPL) is proposed. RPL provides 
an extension of Łukasiewicz logic that allows for deducing 
partially true conclusions from partially true premises (Hajek, 
1998). In this sense, it is a fuzzification of the deduction 
apparatus of Boolean predicate logic. 
The following chapter 3 gives a brief introduction in fuzzy logic 
and discusses possible interpretations of fuzzy predicates for  
extended geometric primitives. Based on these primitives an 
fuzzification of the incidence axioms I1-I4 is proposed and  
Rational Pavelka logic is introduced as a possible formalism for 
approximate geometric reasoning with extended objects. 
 

3. FUZZIFICATION OF INCIDENCE GEOMETRY 

3.1 Fuzzy logic  

Fuzzy logic is derived from fuzzy set theory, which was 
introduced 1965 in the seminal paper (Zadeh, 1961) by Lotfi 
Zadeh. In a narrow sense, fuzzy logic is a form of multi-valued 
logic: Łukasiewicz fuzzy logic was originally defined as early 
as 1917 by Jan Łukasiewicz as a three valued propositional 
calculus. It was the first axiomatization of a non-classical 
logical system. In contrast to that, infinite valued Łukasiewicz 
fuzzy predicate logic is a multi-valued predicate logic that 
allows for not only three truth values, but for truth values in the 
whole range of real numbers of the interval [0, 1]. It belongs to 
the class of t-norm fuzzy logics: a t-norm is a generalization of 
the AND connective of classical Boolean logics and can be 
used to define other logical connectives in an appropriate way.   
In Łukasiewicz predicate logic the connectives negation¬ , 
strong conjunction , and implication  are evaluated by     ⊗ →
  
                1x x¬ = − ,     (3) 
                { }max 0, 1x y x y⊗ = + − , and    (4) 

                { }min 1,1x y x→ = − + y

]

,   (5) 
 
for . The quantifiers for all  and exists , [0,1x y∈ ∀ ∃  are 
evaluated by the infimum inf and the supremum sup, 
respectively. For the implication  the following relation 
holds: 

→

                   1    x y x→ = ⇔ ≤ y

3.2 

0,1}

.                                       (6) 
The narrow understanding of fuzzy logic, indicating different 
forms of multi-valued logical systems, is contrasted by fuzzy 
logic in the broader sense. In the latter understanding, fuzzy 
logic comprises diverse tools for approximate reasoning 
(Zadeh, 1975). Rational Pavelka Logic provides a strictly 
logical formal deduction system. Yet, within the system, a 
syntactically derived truth value of a formula can be less than 
the “real” truth value of the formula, which is defined by 
semantic entailment. So we may interpret the syntactically 
derived truth value as information on a worst case scenario for 
the given formula.  
Once an RPL-model of Euclidean geometry is found, the   
deduction system provides a computationally inexpensive 
extension of Cartesian geometry: Every formula is augmented 
by a rational number indicating the formula’s worst case truth 
value. In the spirit of approximate reasoning and fuzzy logic in 
the broader sense, accurate, but often too complex information 
on the well-definedness of a geometric formula is traded against 
an approximate, but slim calculus, which can be easily 
implemented by augmenting existing algorithms for Cartesian 
geometry. 
In the next subchapter we propose a fuzzy interpretation of the 
geometric primitives point, line, incidence and equality. Since 

the geometric behaviour of extended objects depend on the 
relative sizes and distances of the involved objects, an 
additional predicate is introduced, which tries to capture this 
fact: In addition to the possible negation of equality of objects, 
a measure for the distinctness of points is given. 
 
 

Geometric primitives as fuzzy predicates 

In Boolean predicate logic atomic statements are formalized by 
predicates. Predicates that are used in the theory of incidence 
geometry may be denoted by p(x) (“x is a point”), l(x) (“x is a 
line”), and inc(x,y) (“x and y are incident”). The predicate 
expressing equality can be denotes by eq(x,y) (“x and y are 
equal”). Predicates are interpreted by crisp relations. For 
example,  : {eq M M× →  is a function that assigns 1 to 
every pair of equal objects and 0 to every pair of distinct 
objects from the set M. Predicates have an arity: unary 
predicates, like p(.) or l(.), accept only one symbol as an input, 
whereas binary predicates, like inc(.,.) and eq(.,.), accept pairs 
of symbols as an input. 
In a fuzzy predicate logic, predicates are interpreted by fuzzy 
relations, instead of crisp relations. For example, a binary fuzzy 
relation eq is a function , assigning a real 
number 

:eq M M× → [0,1]
[0,1]λ ∈  to every pair of objects from M. In other 

words, every two objects of M are equal to some degree. The 
degree of equality of two objects x and y may be 1 or 0 as in the 
crisp case, but may as well be 0.9, expressing that x and y are 
almost equal.  
In the following we propose a possibility to fuzzify the Boolean 
predicates point(.), line(.) inc(.,.) and eq(.,.) for GIS. We define 
a bounded subset  as the domain for our geometric 
constructions. We may restrict ourselves to a bounded domain, 
because every GIS project has a bounded domain :   
Dom represents the map or map section we are working with. 
Predicates are defined for two-dimensional subsets A,B,C,… of 
Dom, and assume values in [0,1]. We may assume two-
dimensional subsets and ignore subsets of lower dimension, 
because every measurement and every digitization introduces a 
minimum amount of location uncertainty in the data 
(Goodchild, 2000). 

2D ⊆

2Dom ⊂

For the point-predicate p(.), we start from the observation that 
the result of Cartesian geometric operations that involve a 
Cartesian point does not change when the point is rotated: 
Rotation-invariance seems to be a main characteristic of 
“pointlikeness” w.r. to geometric operations: It should be kept 
when defining a fuzzy predicate expressing the “pointlikeness” 
of extended subsets of . As a preliminary definition let         2

 

       { }min ( ) min ( ) ( ) (0,1) |T
t

A ch A c A t R tαφ = ∩ + ⋅ ⋅ ∈ , (7) 

       { }max ( ) max ( ) ( ) (0,1) |T
t

A ch A c A t R tαφ = ∩ + ⋅ ⋅ ∈ ,  (8) 

 
be the minimal and maximal diameter of the convex hull ch(A) 
of A Dom⊆ , respectively. The convex hull regularizes the sets 
A and B and eliminates irregularities.  c(A) denotes the centroid 
of ch(A), and Rα  denotes the rotation matrix by angle α  
(Figure 6a). Since A is bounded, ch(A) and c(A) exist. We can 
now define the fuzzy point-predicate p(.) by  
 

                                     min

max

( )( )
( )
Ap A
A

φ
φ

=          (9) 



 

 
for A Dom⊆ . p(.) expresses the degree to which the convex 
hull of a Cartesian point set A is rotation-invariant: If pl(A)=1,  
then ch(A) is perfectly rotation invariant; it is a disc. Here, 

 always holds, because A is assumed to be two-
dimensional.  

max ( ) 0Aφ ≠

Converse to p(.), the fuzzy line-predicate  
 
                                                             (10) ( ) 1 ( )l A pl A= −
 
expresses the degree to which a Cartesian point set A Dom⊆  is 
sensitive to rotation. Since we only regard convex hulls, l(.) 
disregards the detailed shape and structure of A, but only 
measures the degree to which A is directed.    
A fuzzy version of the incidence-predicate inc(.,.) is a a binary 
fuzzy relation between Cartesian point sets ,A B Dom⊆ : 

             | ( ) ( ) | | ( ) ( ) |( , ) max ,
| ( ) | | ( ) |

ch A ch B ch A ch Binc A B
ch A ch B

⎛ ⎞∩ ∩
= ⎜ ⎟

⎝ ⎠
  (11) 

 
measures the relative overlaps of the convex hulls of A and B 
and selects the greater one. Here |ch(A)| denotes the area 
occupied by ch(A). The greater inc(A,B), “the more incident” 
are A and B:  If A B⊆  or B A⊆ , then inc(A,B)=1, and A and 
B are considered incident to degree one.  
Conversely to inc(.,.), a graduated equality predicate eq(.,.) 
between the bounded Cartesian point sets ,A B Dom⊆  can be 
defined as follows:  
 

           | ( ) ( ) | | ( ) ( ) |( , ) min , .
| ( ) | | ( ) |

ch A ch B ch A ch Beq A B
ch A ch B

⎛ ⎞∩ ∩
= ⎜ ⎟

⎝ ⎠
    (12)  

 
( , )eq A B  measures the minimal relative overlap of A and B, 

whereas  measures the degrees to which 
the two point sets do not overlap: if , then A and B 
are “almost disjoint”. 

( , ) 1 ( , )eq A B eq A B¬ = −
( , ) 0eq A B ≈

When defining p(A) and l(A) for a bounded Cartesian point set 
A, it is not necessary to take the absolute size of A into account. 
As stated at the end of chapter 2.2, only relative sizes and 
distances seem to cause ill-posed geometric constellations. The 
following measure of “distinctness of points”, dp(.,.), of two 
extended objects tries to capture this fact (Figure 6b). We 
define  
 

             ( )
( )

max max

max

max ( ), ( )
( , ) max 0,1 .  

( )
A B

dp A B
ch A B

φ φ
φ

⎛ ⎞
= −⎜ ⎟⎜ ⎟∪⎝ ⎠

      (13) 

 
dp(A,B) expresses the degree to which ch(A) and ch(B) are 
distinct: The greater dp(A,B), the more A and B behave like 
distinct Cartesian points w.r. to  connection. Indeed, for 
Cartesian points a and b,  we would have dp(a,b)=1. If the 
distance between the Cartesian point sets A and B is infinitely 
big, then dp(A,B)=1 as well. If 

, then dp(A,B)=0. ( ) (max max max( ), ( )max A B A Bφ φ φ> ∪ )
 

 
Figure 6.  (a) Minimal and maximal diameter of a set A of 
Cartesian points. (b) Grade of distinctness dc(A,B) of A and B. 
 
Example: The polygon representing the entrance of Vienna 
Western Station (E) in Figure 1 and the polygon representing 
the tram stop (T) have a degree of distinctness of points of 
dp(E,T)=0.8. In contrast to that, the polygon comprising of the 
whole rail yard (R) of Vienna Western Station in Figure 2 and T  
have a degree of distinctness of points of dp(R,T)=0. The value 
of the line-predicate of  and  amounts to  ( )ch E T∪ (ch R T∪ )

( )( ) 0l ch R T∪ = .9  and ( )(l ch R T∪ = 0.3

3.3 

, respectively. 
 

Fuzzy axiomatization of incidence geometry 

Using the fuzzy predicates defined in subchapter 3.2, we 
axiomatize a fuzzy version of incidence geometry in the 
language of Łukasiewicz logic as follows: 
 
  I1´  [ ]( , ) sup ( ) ( , ) ( , )

z
dp x y l z inc x z inc y z→ ⊗ ⊗  

  I2´   [( , ) ( ) ( , ) ( , )dp x y l z inc x z inc y z⎡ ⎡→ → →⎣⎣ →

                          [ ]  ( ') ( , ') ( , ') ( , ')l z inc x z inc y z eq z z ⎤⎤⎤⎡→ → →⎣ ⎦⎦⎦

  I3´    { }
,

( ) sup ( ) ( ) ( , ) ( , ) ( , )
x y

l z p x p y eq x y inc x z inc y z→ ⊗ ⊗¬ ⊗ ⊗  

  I4´    [
, , ,
sup ( ) ( ) ( ) ( )

u v w z
p u p v p w l z⊗ ⊗ ⊗ →  

                     ( )( , ) ( , ) ( , )inc u z inc v z inc w z¬ ⊗ ⊗ ⎦⎤  
 
An interpretation of the fuzzy predicates p(.), l(.), inc(.,.), 
eq(.,.), and dp(.,.) is called a model of I1´-I4´, if each axiom 
evaluates with truth value 1,  independently of the substitution 
of specific Cartesian point sets for x,y,z,u,v,w. Furthermore, the 
equality predicate eq(.,.) should evaluate to truth value 1 for 
each of the fuzzified equality-axioms - reflexivity, symmetry 
and transitivity - of predicate logic. This is not the case: For 
example, eq(.,.) violates the transitivity condition. To see this, 
consider the Cartesian point sets A, B, C as sketched in figure 7. 
On the one hand eq(A,B)=eq(B,C)=0.75, and eq(A,C)=0 holds 
for A,B,C. On the other hand, the transitivity axiom for eq(.,.) 
demands that  
 
                       ( , ) ( , ) ( , )eq A B eq B C eq A C⊗ →                    (14) 



 

holds with truth value 1, i.e. that  
 
                     .              (15) ( , ) ( , ) ( , )  1eq A B eq B C eq A C⊗ → =
 
With (6), (15) is equivalent to  
 
                  .                   (16)  ( , ) ( , ) ( , )eq A B eq B C eq A C⊗ ≤
 
Yet, (4) yields , which contradicts (16). ( , ) ( , ) 0.5eq A B eq B C⊗ =

 
Figure 7. The squares A and C, together with the trapezoid B, 
refute the transitivity of the eq(.,.) predicate (11). 
 
In the next chapter, Rational Pavelka Logic (RPL) is discussed. 
RPL allows for deducing new formulas from I1´-I4´, even if the 
axioms do not evaluate to absolute truth for all possible inputs.  
 
3.4 Rational Pavelka Logic 

Rational Pavelka Logic (RPL) extends the language of infinite 
valued Łukasiewicz logic by adding to the truth constants 0 and 
1 all rational numbers r of the unit interval [0, 1]. A graded 
formula is a pair ( , )rϕ  consisting of a formula ϕ  of 
Łukasiewicz logic and a rational element , indicating 
that the truth value of

[0,1]r ∈
ϕ  is at least r, rϕ ≥ .  For example, (p(x), 

½) expresses the fact that the truth value of p(x), x Dom⊆ , is at 
least ½. In other words, x resembles a point at least with degree 
0.5.  
The inference rules of RPL are the generalization rule  
 

   
( )( )x

ϕ
ϕ∀

,    (17) 

   
and a modified version of the modus ponens rule, 
   

  ( , ), ( , )
( , )
r

r s
sϕ ϕ ψ

ψ
→
⊗

,    (18) 

 
where  denotes the Łukasiewicz t-norm. Rule (18) says that if 
formula 

⊗
ϕ  holds at least with truth value r, and the implication 

ϕ ψ→  holds at least with truth value s, then formula ψ  holds 
at least with truth value . The modified modus ponens rule 
(15) is derived from the so-called book-keeping axioms for the 
rational truth constants r. The book-keeping axioms add to the 
axioms of Łukasiewicz logic and provide rules for evaluating 
compound formulas involving rational truth constants (Hajek, 
1998).  

r s⊗

In RPL, we axiomatize a fuzzy version of incidence geometry 
as follows: 
 

I1´´   [ ]( )1( , ) sup ( ) ( , ) ( , ) ,   
z

dp x y l z inc x z inc y z r→ ⊗ ⊗

 

I2´´  [[[( ( , ) ( ) ( , ) ( , )dp x y l z inc x z inc y z→ → → →  

               [ ][ ] )2 ( ') ( , ') ( , ') ( , ') ,   l z inc x z inc y z eq z z r→ → → ⎤⎤⎦⎦  

I3´´ { }( )
,

3( ) sup ( ) ( ) ( , ) ( , ) ( , ) ,  
x y

l z p x p y eq x y inc x z inc y z r→ ⊗ ⊗¬ ⊗ ⊗  

I4´´    [
, , ,
sup ( ) ( ) ( ) ( )

u v w z
p u p v p w l z⊗ ⊗ ⊗

⎛
⎜⎜
⎝

→  

                     ( ) )4( , ) ( , ) ( , ) ,inc u z inc v z inc w z r¬ ⊗ ⊗ ⎤⎦ , 

where  are rational truth constants. 1 2 3 4, , ,r r r r
An interpretation of the predicates p(.), l(.), inc(.,.), eq(.,.), and 
dp(.,.) is a model of I1´´-I4´´, if, for each of the graded axioms 
( , )rαα , rαα ≥  holds independently of the substitution of 
specific Cartesian point sets for x,y,z,u,v,w. 
A syntactically derived formula is a graded formula, that has 
been derived from the axioms of RPL and the axiom set I1´-I4´ 
by use of the inference rules (17) and (18). Yet, using this 
deduction apparatus, the same formula may be derived in 
different ways and with different truth values attached. For this 
reason a provability degree for formulas is defined: The 
provability degree of a formula ϕ  is the highest truth value that 
can be syntactically derived forϕ . In contrast to that, the truth 
degree of ϕ  is the lowest truth value that is semantically 
implied by the axioms. It is the semantic equivalent to the 
provability degree. The truth degree of a formula can be seen as 
the “real” truth value of the formula.  
The provability degree of a formula is always less or equal than 
its truth degree. Consequently, for every formula that is 
syntactically derived by the RPL deduction system, the “real” 
truth value is greater or equal than the derived truth value. The 
derived truth value hence provides a lower bound for the truth 
of the formula. 
If it can be shown that each of the incidence axioms I1´´-I4´´, 
together with the interpretation of fuzzy predicates defined in 
subchapter 2.3, holds for some minimal truth degree of , 
…, , respectively, then I1´´-I4´´ is a fuzzy set of axioms 
for incidence geometry of extended objects. The inference rules 
(17) and (18) of RPL can be used to derive partially true 
theorems from partially true conclusions. Since a derived truth 
value always is a lower bound for the truth of the derived 
formula, the derived truth value can be seen as bound for the 
worst case. 

1 0r >
4 0r >

As shown in chapter 3.3, the connection of two extended 
objects is not necessarily unique for the fuzzy interpretations 
introduced in chapter 3.2. Depending on the context of the a 
specific GIS project, it may be useful to select one of these 
interpretations, e.g. the convex hull, as a fixed, but suboptimal 
connection operator. Using axiom I2´´, RPL can be used for test 
runs to find out “how well” the chosen operator performs in 
comparison with the best possible operator. 

 
4. CONCLUSIONS 

4.1 Conclusions 

We have shown that straight forward interpretations of the 
connection of extended points do not satisfy the incidence 
axioms of Euclidean geometry in a strict sense. Yet, the 
approximate geometric behaviour of extended objects can be 
described by fuzzy predicates. Based on these predicates, the 
axiom system of Boolean Euclidean geometry can be fuzzified 
and formalized in the language of Lukasiewicz fuzzy logic.  
As an approximate deduction system, Rational Pavelka Logic is 
proposed. Rational Pavelka Logic derives partially true 



 

conclusions from partially true premises and thereby provides 
lower bounds for the truth values of geometric formulas. This 
allows for tolerance in the truth value of geometric formulas w. 
r. to the extended objects that serve as input to the formla in 
question. As a consequence, the derived truth values allow for 
the possibility to warn users, in case a geometric constellation 
of extended objects is not sufficiently well-posed for a specific 
operation.  
The use of fuzzy reasoning trades accuracy against speed, 
simplicity and interpretability for lay users. In the context of 
ubiquitous computing, these characteristics are clearly 
advantageous. 
 
4.2 Discussion and further work 

The axiom set I1´-I4´ is an ad-hoc fuzzification of the axioms of 
incidence I1-I4. The predicates p(.), l(.), inc(.,.), eq(.,.) and 
dp(.,.) do not satisfy the fuzzified incidence axioms I1´-I4´ to  
degree 1. A detailed analysis of the interaction between the 
interpretation of the predicates and the axiomatization is 
necessary.  
The axiom system I1´´-I4´´, together with the fuzzy primitives 
RPL-fuzzification of incidence axioms p(.), l(.), inc(.,.), eq(.,.) 
and dp(.,.) is a reasonable suggestion for an approximate 
geometric calculus of extended primitives. The proof of 
existence of positive constants , …,  is obligatory 
for an implementation of the proposed framework and is left for 
future work.   

1 0r > 4 0r >

The set of incidence axioms discussed in the present article is 
only one out of five axiom groups of Hilbert’s axiomatic system 
of Euclidean geometry. In further work, we will extend the set 
of fuzzy predicates to betweenness and congruence and the 
according axiom groups will be fuzzified. Due to the 
boundedness of the domain Dom, the axiom group dealing with 
continuity will be omitted. 
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