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ABSTRACT:

In the context of 3D reconstruction of wide urban areas, the use of building footprints has shown to be of great help to achieve both
robustness and precision. These footprints however often present inconsistencies with the data (more than one building in the footprint,
inner courts, superstructures...) This paper presents a fast and efficient algorithm to enhance the building footprint database in order to
make subsequent 3D reconstructions easier, more accurate and more robust. It is based on a segmentation energy that is minimized by
a split and merge approach. The algorithm is demonstrated on a wide urban area of one square kilometer.

(a) Orthophotography and footprint (b) Shaded DEM and vegetation
mask

(c) Horizontal gradient (d) Vertical gradient

Figure 1: Input to our algorithm

1 INTRODUCTION

The production of 3D models of urban areas has received a lot
of attention from the scientific community in the last decade be-
cause of the broad range of its applications and the increase in
both quality and quantity of data. In this setup, it becomes more
and more crucial to design flexible tools to help human operators
achieving efficient and accurate reconstruction of wide urban ar-
eas.

1.1 Problem statement

The problem of urban reconstruction consists in finding a 3D
model (in general a polygonal surface) that is as coherent as pos-
sible with the input data. In our case where the footprints of
the buildings are given, we can use the efficient and robust ap-
proach proposed in (Durupt and Taillandier, 2006). However,
this approach relies heavily on the quality of the building foot-
print database, and might fail if the building to be reconstructed

contains altimetric discontinuities that are not present in its foot-
print. This often happens in practice, and especially when:
• Two (or more) adjacent buildings with different roof heights

share the same footprint.

• The real footprint of a building is only a portion of the foot-
print in the database (gardens, inner courts,...)

• The building has some superstructures which sizes and heights
are not negligeable with respect to the expected precision of
the reconstruction. This problem becomes increasingly dif-
ficult as reconstructions gain in precision, and has already
been tackled in the context of photogrammetry (Bredif et
al., 2007) (Dornaika and Bredif, 2008).

More difficult cases are often a combination of the three cited
above, and require a manual intervention to enable a further re-
construction. In general, this intervention consists in subdividing
the footprint by cutting through all (or most of) the altimetric dis-
continuities. In a production framework, where large areas need
to be extensively reconstructed, it appears that this building foot-
print database enhancement step is one of the most time consum-
ing. Hence, the problem that we tackle in this paper is that of
automatizing this enhancement as a required preprocessing step
to 3D reconstruction. More precisely, our problem is to segment a
polygonal footprint into a set of non-overlapping polygonal sub-
footprints that cover it entirely, such that the interface between
the sub-footprints corresponds to altimetric discontinuities. This
is a problem of segmentation of vector data (building footprints
database) guided by raster data (photos, DEM,...)

1.2 Available data

The data available in our study mainly consisted of:
• A set of 10 centimeter resolution aerial images with a high

recovery ratio around 60% (intraband + interband) in order
to ensure that each ground point is seen in at least 4 images,
covering an area of one square kilometer. The images are in
RGBI (the infrared channel is used to obtain the vegetation
mask).

• A vectorized cadastral map giving building footprints for the
same area. It consists in a set of polygonal footprints given
by their ordered list of points in ground coordinates (Figure
1(a), green).

From this initial data, existing algorithms can be run to extract:
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• A Digital Elevation Model (DEM) over the whole area (Fig-
ure 1(b)). It was obtained by dense correlation following
(Roy and Cox, 1998) and the implementation described in
(Pierrot-Deseilligny and Paparoditis, 2006).

• The gradient of the DEM (Figures 1(c) and 1(d)) computed
using a standard Canny-Deriche filter (Deriche, 1987).

• An orthophotography of the area (Figure 1(a)).

• A vegetation mask (Figure 1(b), red) obtained by the method
exposed in (Iovan et al., 2007).

The initial data and extracted data form the input to our algorithm.

1.3 Previous works

The idea of using a 2D building footprint to enhance 3D building
reconstruction first appeared in (Pasko and Gruber, 1996), and
was developed in (Roux and Maitre, 1997), (Brenner, 2000) and
(Jibrini et al., 2000). This idea is also at the core of the recon-
struction method (Durupt and Taillandier, 2006) for which we
designed our building footprint enhancement algorithm, and to
the more general framework (Taillandier, 2005) from which it
derives. In the context of laser data, it is also central to the works
of Vosselman et. al. (Vosselman and Dijkman, 2001) (Vosselman
and Suveg, 2001) (Suveg and Vosselman, 2001).

To the best of our knowledge, segmentation of building footprints
has never been decoupled from the reconstruction itself as done
in this paper, but used to find directly planar regions.

1.4 Proposed approach

In this paper we call P the polygonal footprint to segment, Pi

the polygonal sub-footprint resulting from the segmentation and
Ij

i = Pi ∩ Pj the interface between two sub-footprints (it is an
edge or set of edges in some cases). The result of our algorithm is
a segmentation of P that is given indifferently by the set of sub-
footprints Pi or by the interface I = ∪i<jI

j
i between the Pi (it

is a set of edges).

The approach that we propose consists in defining an energy that
is negative (resp. positive) on edges that are likely (resp. unlikely)
to be altimetric discontinuities, and to find the segmentation that
minimizes the sum of this energy over the edges of I. We start
by choosing a gradient threshold T∇ such that we consider that a
point where the gradient value is above (resp. below) T∇ is likely
(resp. unlikely) to be on an altimetric discontinuity. The energy
on an edge e can then be defined as:

E(e) =

∫
P∈e

T∇ − |∇z(P ).−→n (e)|dP (1)

where z is the height at point P given by the DEM and −→n (e) is
a unit vector normal to e. As required, E(e) is negative when the
mean absolute gradient across e is greater than T∇.

To simplify this problem, and gain in robustness and quality, we
will restrict the directions of the interface edges to follow direc-
tions present in the original footprint, which is not a strong condi-
tional assumption. This proved to be true on most examples that
we have tested. In order to solve this problem, we propose a split
and merge approach based on principal directions detected on the
initial footprint P:

1. Cluster the directions of the footprint’s edges in a direction
space taking their lengths into account.

2. Recursively split the footprint along lines of minimal energy.

(a) Two hypotheses for a
snapped cut

(b) Two hypotheses for a dou-
ble cut

Figure 2: Cutting hypotheses. The eroded footprint is darkened.

3. Merge the resulting sub-footprints in order to minimizeE(I).

The first step is a simple clustering in the space of line angles
(modulus π), and does not require special care. Simply notice
that we should keep the number of direction clusters as small as
possible, for instance by eliminating the clusters which edges’
length sum is smaller than a given threshold, or a ratio of the
“largest” cluster.

In our algorithm, we will often need to compute energies of the
form given by (1) thus to access the gradient across edges that
can only be in a limited number of directions. Thus for efficiency
reasons, we will precompute the gradient for each direction on a
grid aligned with the direction and with the same resolution than
the DEM. These grids will serve a double purpose as they will
also be used to discretize our cutting lines.

2 RECURSIVE SPLIT

2.1 Cutting hypotheses

For each direction, we will discretize the set of possible cut lines
Ci as the lines passing through the (center of) rows of pixels in
our grids for each direction. This way the integral of the gradient
over an edge in this line’s direction will simply be computed as a
sum over pixels of the same row in the grid.

As our input footprint might not be convex, a cut might generate
more than 2 sub-footprints. In this case, the same cut line Ci

generates several cutting hypotheses, one for each edge of P ∩Ci

(see Figure 2(b)). Similarly, we snap our cuts by prolongating the
initial footprint’s edges, and generating a new cut hypothesis for
each part of the cut (see Figure 2(a)). This way, each cutting
hypothesis consists of the two footprints generated by the split,
and their interface I which is a single edge.

This process however can introduce extremely poorly shaped foot-
prints and small footprints that are not desired in the final solu-
tion. To prevent the occurrence of such bad geometries, we build
an erosion Pe of the footprint P by a centered segment of length
d orthogonal to the current direction (see Figure 3). This erosion
is then used to discard the cutting hypotheses for which:

|I ∩ Pe| < |I|/2 (2)
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Figure 3: Erosion of the input footprint (green) by a flat rhombus
(blue) of height d orthogonal to a main direction (red).

which means that the splitted footprints have a width of at least d
on at least half of their length. Hence, the parameter d is used to
indicate minimum expected size of a footprint. For instance the
hypothesis in Figure 2(b) (top) is discarded because the top right
triangle satisfies this criterion (it has |I ∩Pe| = 0). This geomet-
ric criterion proved to be the most robust in our experiments, and
it was implemented using the CGAL Minkowsky sums. Note that
we replaced the segment by a flat rhombus to avoid degeneracies.

2.2 Cut score

For each cut hypostesis, we can compute a cutting score as the
energy E(I) restricted to the cut. To enhance this estimation we
take into account the following facts:
• An existing edge corresponds to an altimetric discontinuity.

Hence the gradient in its vicinity should not be taken into
account for the score of a new cut. Thus the meaningful
zone is defined by the erosion of the footprint by a centered
segment. Ideally, the length of this segment should equal the
size of the kernel used to compute the gradient. In practice,
it should be even greater as the edges of the footprint are not
exactly located on discontinuities. We chose the same length
d as before, such that we only need to compute one erosion
per footprint and per direction. We chose to compute the
erosion with CGAL’s exact arithmetics as we encountered
failure cases using inexact computations. This is quite time
consuming, such that the choice of taking the same parame-
ter is really saving us time.

• Vegetation hides the geometry of the building so the DEM
will be considered not pertinent within the vegetation mask.

• The DEM is more inaccurate in shadowed areas.
These three facts are integrated in the computation of E(I) by
weighting the gradients by a confidence term that is 0 outside the
eroded footprint and in vegetation areas, and elsewhere propor-
tional to luminosity.

2.3 Recursion

For the input footprint P , we can build the cutting hypotheses
(Section 2.1) and their scores (Section 2.2). We select the cutting
hypothesis with the lowest score and apply it to the footprint P ,
which splits it into two sub-footprints P1 and P2. We apply this
process again to P1 and P2, and so on recursively.

To ensure that our cuts minimize E, we stop the recursion when
the lowest score becomes positive. In that case the footprint is
final and will not be splitted. Our shape criterion (2), guarantees
that the width of the resulting sub-footprints is greater than d in
each direction.

2.4 Results

As figure 4 shows, the segmentation resulting from the recursive
split runs through most of the altimetric discontinuities. How-
ever, the segmentation presents many undesired cuts as our cuts
are straight so they run through the whole footprint when they
may correspond to much more local altimetric discontinuities.
To achieve a better segmentation, and further minimize our en-
ergy, we need to remove these superfluous cuts by merging sub-
footprints whenever this improves the energy E(B).

3 MERGE

3.1 Geometric polygon merging

Merging the sub-footprints resulting from the splitting process
can be tricky as numerical precision forces us to use thresholds
to determine whether two edges from different polygons touch
or not. To make the merge process independent from numerical
precision and thresholds, we label all edges produced during the
splitting process by (a pointer to) the cut line that produced it.
This way, the merging algorithm is both robust and simple:

1. For each pair of edges ei
k ∈ Pi and ej

l ∈ Pj belonging to
the same cut line:

• Compute the intersection edge ek,l = ei
k ∩ e

j
l

• If ek,l 6= ∅, add ek,l to Ii,j .

2. Build the connected components of Ii,j . If there are more
than one, this means that the merged footprint has holes. We
need to prevent these holes to appear as they are harder to
handle in the reconstruction process. To do so, we keep only
one connected component in Ii,j (the longest or the one with
lowest score).

3. Build the merged footprint Pi,j :

• For each interface edge ek,l ∈ Ii,j tag ei
k and ej

l as
interface edges.

• Build the connected components Ci and Cj of edges
of Pi and Pj not tagged as interface.

• Connect the endpoints of Ci and Cj (this is unam-
biguous if Pi and Pj where properly oriented).

3.2 Merging algorithm

The merging process goes as follows:

1. Compute all possible merges, their interfaces Ii,j and scores
Si,j = E(Ii,j).

2. Build a priority queue of all merges, where the priority is
the score Si,j . Remember that a high score means it is
likely that the interface is not an altimetric discontinuity so
it should be removed from the final cut.

3. While the merge with highest priority is positive:

• Apply the merge with highest priority Si,j between
footprints Pi and Pj by replacing Pi and Pj by their
union Pi,j = Pi ∪ Pj .

• Remove all merges involving Pi and Pj from the pri-
ority queue.

• Compute all possible merges involving Pi,j , their in-
terfaces, their scores, and add them in the priority
queue.

141

    In: Stilla U, Rottensteiner F, Paparoditis N (Eds) CMRT09. IAPRS, Vol. XXXVIII, Part 3/W4  ---  Paris, France, 3-4 September, 2009 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯



(a)

(b)

(c)

Figure 4: Results of the splitting process

(a)

(b)

(c)

Figure 5: Results of the merging process
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3.3 Results

The merging process ensures that the result is a valid segmenta-
tion of the input footprint into a set of sub-footprints. As seen
in Figure 5, the algorithm is general enough to allow for a broad
range of possible sub-footprints, while being constrained enough
(in particular by the allowed directions and minimum size d) to
avoid overly complex shapes. The advantage is that such simple
shapes are proper for reconstruction. The inconvenient is that if
discontinuities do not follow the detected directions, they will not
be detected and lead to inconsistencies. Finally, note that as we
prevent holes from appearing, inner courts stay connected to the
outer boundary (there are two examples of that behavior in Figure
5(c))

4 DISCUSSION

Our method allows for a much more accurate 3D reconstruction
on footprints with inner altimetric discontinuities as shown in
Figures 6 and 7. However, it sometimes misses some global cuts
that are obvious to the eye but do not correspond to altimetric dis-
continuities. For instance Figure 6 show that a single (and small)
handmade cut relying more on a global perception of the foot-
print shape than on an altimetric discontinuity allows for a great
improvement of the result.

This method is proposed as a tool to support the reconstruction of
wide urban areas. The splitting and merging results shown here
are all obtained based on the same parameters. The tuning param-
eters are mainly the erosion width d that controls the minimum
footprint size and gradient threshold T∇ that serves to specify the
limit between what is a discontinuity and what is not. They are
intuitive and simple to tune. In practice, we used the same stan-
dard parameters (d = 1.5m, T∇ = 3.5) to process an entire 1km
by 1km working area.

Step (a) (b) (c)
Load inputs 0.27 0.4 0.27
Precompute 0.24 0.44 0.12

Erosions 0.2 0.19 0.36
Scores 0.15 0.2 0.1
Splits 0.23 0.17 0.15
Merge 0.01 0.01 0.04
Total 1.1 1.41 1.04

Table 1: Timings (in seconds on a 2.8GHz Pentium 4 processor)
of the different steps of the algorithm. The three columns corre-
spond to the examples shown on figures 4 and 5.

In terms of computation time, the algorithm is extremely fast (see
table 1). This makes it possible to process very wide working
zones rapidly, or to tune the parameters interactively.

The algorithm is heavily dependant on the quality of the input
DEM, and only very weakly on the orthophotography and veg-
etation mask (the latter only serves when the footprint contains
vegetation that has an important impact on the DEM, which is
quite rare). The most important problems that we encountered
are:

• The DEM has a poor quality on shadows as it requires a
good contrast. As roughly half of the altimetric discontinu-
ities generate a shadow at their bottom, half of the altimetric
discontinuities are not accurately represented in the DEM.
We simply added a confidence parameter to handle this is-
sue, but we believe some more adequate solutions can be
found.

• If the footprint contains an important altimetric discontinu-
ity that is not aligned with one of the clustered direction,
it will perturb the splitting as it will add an important fac-
tor to the energy of all cuts not exactly orthogonal to it. To
limit this effect we penalized wrong gradient directions by
weighting the gradient by a factor max

(
0, cos(2(~n, ~∇z))

)
that smoothly decreases from 1 (perfect direction) to 0 for
angles greater that π/4.

• Superstructures cause altimetric discontinuities that are of-
ten close to or higher than discontinuities between different
buildings. Thus they may generate cuts even with a fine
tuning of T∇. A possible remedy would be to implement a
superstructure detection such as (Bredif et al., 2007) prior to
cutting.

The energy that we use matches closely the Mumford and Shah
segmentation formulation (Mumford and Shah, 1989) except that
it has no data attachment term. This drawback is inherent to the
problem that we pose, and its consequence will be that we lack
of a global quality measure. This will sometimes lead to a lack of
global coherence, such as missing a small cut that would enhance
greatly the reconstruction (see Figure 6). A workaround would
be to interact with the reconstruction method, and for instance
only split footprints on which the reconstruction is bad (far from
the DEM). As this estimation needs to be done many times, this
would require the reconstruction to be very fast, which is not the
case for the one that we were working with (at least for complex
footprints).

The fact that this energy is not necessarily positive makes it im-
possible to minimize with graph cuts based segmentation where
the non-negativity of weights is a fundamental requirement (Kol-
mogorov and Zabih, 2004). However, this energy is very natural
for segmenting with an unknown a priori number of regions, as
minimizing this energy will naturally lead to an optimal number
of region, without the need to specify a source/sink pair. For in-
stance, not cutting is a solution like any other, and it has its own
energy that can be optimal in the case that no segmentation is
required (which is the case on many footprints that are adequate
for reconstruction without enhancement). In contrast, graph cut
energy is always lower for not cutting than for cutting, and the re-
sult is in fact the optimum over bipartition. The drawback is that
we cannot use the very efficient graph cut algorithm and need a
heuristic approach with no guarantee on optimality.

5 CONCLUSIONS AND FUTURE WORK

We have presented an algorithm to split cadastral maps into smaller
regions proper for subsequent 3D reconstruction. The algorithm
has only be tested for one reconstruction method but the authors
believe it might be a useful preprocessing step to any 3D recon-
struction method based on the cadastral map or any other vec-
torial footprint of the building to reconstruct. The algorithm is
simple and fast, as it has been designed with the purpose of help-
ing reconstruction of large urban areas.

In the future, we plan on running this algorithm in a production
framework to have a better feedback on its large scale usability.
We will also look into correcting the DEM in shadowed area, or
maybe detection of altimetric discontinuities directly based on
correlation in the aerial images. Finally, we will look into less
heuristic means of minimizing our energy, especially in the merg-
ing phase.
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Figure 6: Reconstruction results on the example of Figures 4(b)
and 5(b). From top to bottom: reconstruction without enhance-
ment, with enhancement, with enhancement and a single manual
cut. This manual cut improves greatly the result but cannot be
detected based on our method as the altimetric discontinuity is
too low.
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Figure 7: Untextured and textured 3D reconstruction results on
the example of Figures 4(c) and 5(c). Top: reconstruction without
enhancement, Bottom: with enhancement
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