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ABSTRACT

In our contribution, we improve image segmentation by integrating depth information from multi-view analysis. We
assume the object surface in each region can be represented by a low order polynomial, and estimate the best fitting pa-
rameters of a plane using those points of the point cloud, which are mapped to the specific region. We can merge adjacent
image regions, which cannot be distinguished geometrically. We demonstrate the approach for finding spatially planar
regions on aerial images. Furthermore, we discuss the possibilities of extending of our approach towards segmenting
terrestrial facade images.

1 INTRODUCTION

The interpretation of images showing building scenes is a
challenging task, due to the complexity of the scenes and
the great variety of building structures. As far as human
perception is understood today, humans can easily group
visible patterns and use their shape to recognize objects,
cf. (Hoffman and Richards, 1984) and (Treisman, 1986).
Segmentation, understood as image partitioning often is
the first step towards finding basic image patterns. Early
image segmentation techniques are discussed in (Pal and
Pal, 1993). Since then, many other algorithms have been
proposed within the image analysis community: The data-
driven approaches often define grouping criteria based on
the color contrast between the regions or on textural infor-
mation. Model-driven approaches often work well only on
simple scenes e. g. simple building structures with a flat
or gabled roof. However, they are limited when analyzing
more complex scenes.

Since we are interested in identifying entities of more than
two classes as e.g. buildings, roads and vegetation objects,
we cannot perform a image division into fore- and back-
ground as summarized in (Sahoo et al., 1988). Our seg-
mentation scheme partitions the image into several regions.

It is very difficult to divide an image into regions if some
regions are recognizable by a homogenous color, others
have a significant texture, and others are separable based
on the saturation or the intensity, e. g. (Fischer and Buh-
mann, 2003) and (Martin et al., 2004). However, often
such boundaries are not consistent with geometric bound-
aries. According to (Binford, 1981), there are seven classes
of boundaries depending on illumination, geometry and re-
flectivity. Therefore, geometric information should be in-
tegrated into the segmentation procedure.

Our approach is motivated by the interpretation of building
images, aerial and terrestrial, where many surface patches
can be represented by low order polynomials. We assume a
multi-view setup with one reference image and its intensity
based segmentation, which is then improved by exploiting
the 3D-information from the depth image derived from all
images. Using the determined orientation data, we are able
to map each 3D point to an unique region. Assuming, ob-
ject surfaces are planar in each region, we can estimate a

plane through the selected points. The adjacent regions are
merged together if they have similar planes. Finally, we
obtain an image partition with regions representing dom-
inant object surfaces as building parts or ground. We are
convinced that the derived regions are much better for an
object-based classification than the regions of the initial
segmentation, because many regions have simple, charac-
teristic shapes.

The paper is structured as followed. In sec. 2 we discuss
recent approaches of combining images and point cloud
information, mostly with the focus on building reconstruc-
tion. Then in sec. 3 we briefly sketch our approach for
deriving a dense point cloud from three images. So far, our
approach is semi-automatic due to the setting of the point
cloud’s scale, but we discuss the possibility of automatiza-
tion for all its steps. In sec. 4 we present how we estimate
the most dominant plane in the dense point cloud restricted
on those points, which are mapped to pixels of the same re-
gion. The merging strategy is presented in sec. 5. Here we
only study the segmentation of aerial imagery and present
our results in sec. 6. Adaptations for segmenting facade
images are discussed in each step separately. We summa-
rize our contribution in the final section.

2 COMBINING POINT CLOUDS AND IMAGES

The fusion of imagery with LIDAR data has successfully
be done in the field of building reconstruction. In (Rotten-
steiner and Jansa, 2002) regions of interests for building
extraction are detected in the set of laser points, and pla-
nar surfaces are estimated in each region. Then the color
information of the aerial image is used to merge adjacent
coplanar point cloud parts. Contrarily, in (Khoshelham,
2005) regions are extracted from image data, and the spa-
tial arrangement of corresponding points of a LIDAR point
cloud is used as a property for merging adjacent regions.
In (Sohn, 2004) multispectral imagery is used to classify
vegetation in the LIDAR point cloud using a vegetation in-
dex. The advantage of using LIDAR data is to work with
high-precision positioned points and a very limited portion
of outliers. The disadvantage is its expensive acquisition,
especially for aerial scenes. Hence, we prefer to derive a
point cloud from multiple image views of an object.
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Within the last years, the matching of multiple views of
an object enabled the reconstruction of 3D object points
with high accuracy and high density. Previous approaches
as (Kanade and Okutomi, 1994) are based on a low-level
preprocessing of the image to extract points of interest.
Then, the correspondences of such points are used to es-
timate the 3D position of the object points. In many ap-
plications, Förstner-features (Förstner and Gülch, 1987)
or SIFT-features (Lowe, 2004) are used, but the derived
point clouds are either sparse or have been extracted from
many images or video, e. g. (Mayer and Reznik, 2005) and
(Gallup et al., 2007). In (Tuytelaars and Van Gool, 2000),
the correspondences are determined over local affinely in-
variant regions, which were extracted from local extrema
in intensity images. This procedure is liable to make match-
ing mistakes if the image noise is relatively high.

Dense point clouds from only a few images are obtained
by adjusting the correspondence between pixels by correla-
tion based on (semi-) global methods, e. g. (Hirschmüller,
2005). Assuming the observed objects have a smooth sur-
face, the accuracy of the obtained point clouds gets in-
creased by including information on the relations between
the pixels by a Markov random field, e. g. (Yang et al.,
2009), or from image segmentation, e. g. (Tao and Sawh-
ney, 2000).

In our approach, we take up the idea of (Khoshelham, 2005)
to improve an initial image segmentation using additional
3D information. From multi-view analysis, we derive a
point cloud, which is used for deriving additional features
for the segmented image regions. We focus on building
scenes, whose objects mostly consist of planar surfaces.
So, it is reasonable to look for dominant planes in the point
cloud, where the search is guided by the image segmenta-
tion.

For us, it is important to realize an approach, which has
the potential to get automatized since there are many ap-
plications with thousands of images. There is a need for a
completely automatic procedure if additional features are
derived from a reconstructed point cloud to improve the
segmentation or interpretation of the images. Our input are
only two or more images from the object, which were taken
by a calibrated camera. An example is shown in fig. 1.

3 RECONSTRUCTION OF THE 3D SCENE

In this section, we describe the generation of the point
cloud C from the given images. For this generation, there
are two conditions, which should be fulfilled: (a) the ob-
served objects should be textured sufficiently and (b) the
views must overlap, otherwise we have problems to deter-
mine the relative orientation between the images. So far,
the implemented algorithms need some human interaction
for setting the point cloud scale and the disparity range pa-
rameters, but under certain conditions, the whole approach
could get designed to perform completely automatically.

We describe the procedure with two or three given images
I1, I2 and I3. Two views are necessary to reconstruct the

Figure 1: Three aerial views of a building scene consisting
of a flat roofed part and a gable roofed part. The initial
segmentation of the upper view is shown on its right side.
The ground consists of several weirdly shaped regions, and
the flat roof is also not well segmented.

Figure 2: Reconstructed 3D-points are projected back into
2D-image (white). Left: all pairs of matches are shown.
The point cloud is very dense with approximately 75% of
pixels having a 3D point, but these points are very impre-
cise. Right: only matches in all three images are shown.
The point cloud is still dense with approximately 30% of
pixels having a 3D point with higher precision.

observed 3D data, but if the matching is performed over
three images, the point cloud is still dense, see fig. 2, and it
contains more reliable points, thus less outliers. The recon-
struction process can get improved if even more images are
considered. If all used images were taken by a calibrated
camera, we are able to reconstruct the 3D scene by per-
forming the following steps.

In the first step we determine the relative orientations be-
tween the given images. Of course, it can be skipped if the
projection matrices have been estimated during image ac-
quisition. Otherwise, due to the calibration of the camera
we eliminate automatically the non-linear distortions using
the approach of (Abraham and Hau, 1997). The matching
of extracted key-points using the approach of (Lowe, 2004)
leads to the determination of the relative orientations of all
images, i. e. their projection matrices P n, cf. (Läbe and
Förstner, 2006). The success of the relative orientation can
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be evaluated according to the statistics of the performed
bundle adjustment. This step is usually robust enough for
typical building scenes, because the facades are often suf-
ficiently textured, and we do not have to deal with total oc-
clusions. Otherwise, problems may occur due to too large
mirroring facade parts.

The images are oriented relatively, not absolutely, i. e. the
position of the projection centers are not correctly scaled
yet. Since we cannot invert a transformation from 3D to
2D, a reasonable assumption about the scale always has to
be inserted additionally. The easiest way to set the scale
parameter is to measure GPS positions during the image
acquisitions. Another strategy would be to measure one or
more distances on the object and to identify corresponding
points in the images or in the extracted point cloud later.
While the first way can easily get automatized, the second
one has to be done by human interaction.

From the second step on, we only use three images for a
dense trinocular matching and only accept those 3D points,
which were matched in all three images. Thus, we re-
duce many matching errors close to the image borders and
avoid points corresponding to occluded surfaces. We use
the semi-global matching by (Hirschmüller, 2005) in a re-
alization by (Heinrichs et al., 2007). It is efficient, does
not produce too many outliers, and returns a dense point
cloud with sufficiently precise points. This approach de-
mands that the images are arranged in a L-shaped config-
uration with a base image, a further one shifted approxi-
mately only horizontally and a third shifted approximately
only vertically. Due to the special relation between the
three given images, the search space of the matching and
3D estimation of a point is reduced to a horizontal or ver-
tical line, respectively. So far, the two parameters of the
one-dimensional search space for the depth have to be set
manually before the program is started. Usually, this range
lies in a small bound assuming that the flying height or the
distance of a facade to the camera are restricted and do not
vary much.

The semi-global matching returns a disparity map, which
is used to estimate the 3D point cloud by forward intersec-
tion. There are a couple of hundred or a thousand gross er-
rors in the determined point cloud, which can be removed
under the assumption that all points lie in a certain bound-
ing box. Besides of the remaining outliers the most ex-
tracted 3D points form spatial clusters with clearly visible
ground and roof planes, cf. fig. 3. Compared with other de-
rived point clouds from stereo aerial imagery, e. g. Match-
T1, the precision of our reconstructed points is significantly
lower, but we compensate it by the higher denseness.

4 REGION-WISE PLANE ESTIMATION

In this section, we describe the estimation of the most dom-
inant plane for each detected image region of minimum
size. Thereby, any arbitrary image partitioning algorithm

1Automated DTM Generation Environment by inpho, cf.
www.inpho.de

Figure 3: Side- and frontview on a point cloud, derived
from scene extracts of the three aerial images from fig. 1.
Besides the widely spread points on vegetation objects and
some outliers, one can clearly recognize up to four major
clusters showing the ground, a flat roof and a gabled roof.

can be chosen. In an earlier experiment, we made good ex-
periences with segmenting aerial images using the water-
shed algorithm based on the color gradient, cf. (Drauschke
et al., 2006). This segmentation approach is also applica-
ble to facade images, cf. (Drauschke, 2009). To overcome
oversegmentation at nearly all image parts, we smooth the
image with a Gaussian filter with σ = 2 before determin-
ing the watershed regions. Then, oversegmented image
parts are highly correlated with vegetation objects, which
are not in our focus yet. Such an initial segmentation is
shown in fig. 1. For further calculations, we only consider
those regions Rk, which have a minimum size of 250 pix-
els. This parameter should depend on the image size. We
have chosen a relatively high value for efficiency reasons.

In the further process, we want to estimate low order poly-
nomial through the 3D points of each region, i. e. its most
dominant plane. Therefore, we determine for each region
the set of points {Xj} from the point cloud, which are
projected into the region:

Xj 7→ Rk ⇔ xj = P nXj and xj ∈ Rk. (1)

We assume that most dominant building surfaces and the
ground are planar. Hence, we estimate the best fitting plane
through the 3D points of a region. A similar procedure can
be found in (Tao and Sawhney, 2000). For efficiency rea-
son, we choose a RANSAC-based approach for our plane
search, cf. (Fischler and Bolles, 1981). Therefore, we de-
termine the parameters of the plane’s normal form from
three randomly chosen points Xj1 , Xj2 and Xj3 :

n = (Xj2 −Xj1)× (Xj3 −Xj1) (2)

d =
〈

n

||n||
,Xj1

〉
(3)
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and check, how many object points support the determined
plane i. e. how many points are near the plane. This de-
pends on the choice of a threshold. Considering aerial
images we allowed a maximal distance of 20 cm to the
plane. If we want to guarantee with a minimum proba-
bility pmin = 0.999 finding a plane, which is constructed
by 3 points and supported by at least half of the points
(ε = 0.5), we have to perform m = 52 trials, because

m =
log (1− pmin)

log (1− (1− ε)3)
=

log 0.001
log 0.875

≈ 51.7. (4)

If no sufficiently high number of supporting points can be
found within m trials, the region will no longer be ana-
lyzed. In our empirical investigation, segmented regions
representing roof parts have always a most dominant plane.
Such plane could not get found if e. g. the ground is not
planar but forms a small hill or valley, e. g. at and around
trees and shrubs. Furthermore, we accepted only those 3D
points, which are visible in all three images. Therefore,
occluded building parts are also not in further process.

We estimate the best fitting plane using a least-squares ad-
justment on those points, which support the best proposed
plane during the iterations of RANSAC. The statistical rea-
soning2 is taken from (Heuel, 2004), p. 145.

5 MERGING OF IMAGE REGIONS

So far, our approach can only handle with merging of re-
gions. If the image is undersegmented in some image parts,
i. e. the region covers two or more objects, a splitting crite-
rion must be defined to separate this region parts again. We
suggest to search for several dominant planes and to split
the regions according to the intersections of these planes.
We did not realize the splitting yet, so we only propose our
merging strategy.

We determine a region adjacency graph and check for each
adjacent pair of regions R1 and R2 if a merging of the re-
gions can get accepted. The first test is on equality of the
two corresponding estimated planes. We realized that our
derived point cloud is too noisy for such statistical reason-
ing. Therefore, we consider a second test, where we de-
termine the best fitting plane through the set of 3D points
from both regions and then we check, if the new plane has
a normal vector n12 which is similar to the normal vectors
n1 and n2 of the two previous planes:

6 (n12,n1) < θ ∧ 6 (n12,n2) < θ. (5)

In our experiments, we used θ = 30o, which leads to rea-
sonable results with respect to buildings. If one is inter-
ested in each individual roof plane, θ should not be more
than 10o. If other applications cannot depend on such a
heuristically chosen parameter, we suggest to adapt this
condition by a MDL-based approach, cf. (Rissanen, 1989).
Then, two regions should be merged, if the encoding of
data would decrease when merging.

2SUGR: Statistically Uncertain Geometric Reasoning, www.ipb.uni-
bonn.de/projects/SUGR

Figure 4: Steps of improving image segmentation. In the
upper row, we show the reference image and its initial seg-
mentation. In the bottom row, we show at the left all big
regions from the initial partition (in white) and the final
segmentation including the MDL-based and the geometry-
based grouping of regions. There, the gray-shadowed re-
gions have been merged on the basis on geometric proper-
ties.

Until this point, we did not consider small regions whose
dominant planes cannot be estimated reliably. Now, we
also merge them, too. Small holes can easily merge with
their surrounding region, but all others may be merged ac-
cording to an intensity-based criterion. We implemented a
MDL-based strategy according to (Pan, 1994), where we
additionally stop the merging as soon as the minimum size
of a region has been reached. As alternatives, we could
also use strategies for irregular pyramid structures, e. g.
(Guigues et al., 2003), which is based on similarity of color
intensities or (Drauschke, 2009) which is based on scale-
space analysis. Resulting image segmentation is shown in
fig. 4.

6 EXPERIMENTS

We have tested our segmentation scheme on 28 extracts of
aerial images with known projection matrices showing ur-
ban scenes in Germany and Japan. The images from Ger-
many were taken in early spring when many trees are in
blossom, but are not covered by leaves yet. The 3D points
matched at such vegetation objects are widely spread, cf.
fig. 3. In most cases, the corresponding image parts are
oversegmented, so that no dominant planes have to get es-
timated. There is almost no vegetation in the Japanese
images, but the ground is often dark from shadows. As
mentioned earlier, we have problems with finding precise
3D points in lawn and shadow regions, but with respect to
building extraction (i. e. segmenting the major roof parts),
our approach achieves satisfying results cf. fig. 5. We are
convinced to get better results for matching in dark image
parts, if a local enhancement is used to brighten these parts
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RGB aerial image extracts

Initial watershed segmentations

Improved watershed segmentations

Figure 5: Results of simple building scenes. Again, the
gray-shadowed regions have been merged on the basis on
geometric properties.

in a preprocessing step, e. g. (Zhao and Lei, 2006). A fur-
ther improvement should be acchieved, if the whole proce-
dure is repeated, because the MDL-based merged regions
are now big enough for determination of their geometric
properties.

The noise of the point cloud, which we derive from the
semiglobal matching does not disturb the merging of im-
age regions. Considering aerial images, we are faced with
large and often planar objects. There, our plane estimation
is good enough, because we do not have to many outliers.
Otherwise, the plane estimation should be done by a robust
estimator. If different object parts have been segmented
as one region, then the most dominant plane of the com-
bined region often does not represent one of these object
parts. This shows us, that we need to focus in the future
on an algorithm for detecting multiple planes (e. g. analy-
sis of the best five planes from RANSAC) and a splitting
routine. Furthermore, there are objects as trees or dorm-
ers which violate our assumption of having one planar sur-
face. Therefore, we consider to adapt our plane estimation
towards extracting general geometric primitives as planes,
cylinders, cones and spheres, cf. (Schnabel et al., 2007).

With respect to facade images, we have big trouble with
our plane estimation. We ascribe this fact to two major
reasons. First, the reconstruction part is challenged by ho-
mogenous facades and mirroring or light transmitting win-

Figure 6: Facade image and different views on fitted planes
for hand-labeled object parts. Wall components are drawn
in yellow, windows in blue and (if opened) in green, bal-
cony parts in magenta. The planes of overhanging build-
ing parts are well distinguishable, but the window planes
(if not opened) are very close to its surrounding wall parts.
The mirroring and light transmission effects in the window
sections lead to geometrically instable plane estimations.

dows. Both cases lead to too many outliers. And secondly,
the noise of the complete point cloud is too high to differ
between planes in the object space, which are parallel, but
only a view centimeters apart. Fig. 6 shows a facade image
and three views on the dominant planes of given annotated
objects. In this case, the supporting points may have a dis-
tance of 4 cm to the fitting plane. Dominant planes with
distances of more than half of a meter are clearly separable
from each other.

7 CONCLUSION AND OUTLOOK

We presented a novel approach for improving image seg-
mentations for aerial imagery by combining the initial wa-
tershed segmentation with information from a 3D point
cloud derived from two or three views. For each region,
we estimate the most dominant plane, and only the plane
parameters are used to trigger the merging process of the
regions. With respect to building extraction, our algorithm
achieves satisfying results, because the ground and major
building structures are better segmented.

In the next steps, we want to search for multiple planes for
each region, and we want to implement a splitting routine,
so that regions can either get merged or split. If we have
such a reliable function, we would start the region merging
using the MDL criterion based on the image intensities.
So, we can search for geometric descriptions in all, and not
only in the big image regions. Furthermore, our approach
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can get improved, if we estimate more general geometric
primitives for representing the object’s surfaces.
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