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ABSTRACT:

In the present study, the objective was to compare the accuracy of low-pulse airborne laser scanning (ALS), high-resolution
noninterferometric TerraSAR-X (TSX) radar data and their combined feature set in the estimation of forest variables at the plot
level. The variables studied included mean volume, basal area, mean height and mean diameter. Feature selection was based on a
genetic algorithm (GA). The nonparametric k-nearest neighbour (k-NN) algorithm was applied to derive the estimates. The
research material consisted of 125 tree level measured circular plots located in the vicinity of Espoo, Finland. The relative RM SEs
for ALS were 30.6%, 29.4%, 12.1% and 17.5% for mean volume, basal area, mean height and mean diameter, respectively. For
TSX these were 47.4%, 39.3%, 20.3% and 22.4%, and for the combined feature set 29.5%, 29.0%, 12.6% and 17.0%. The
accuracies of ALS-based estimations were higher in all forest variables. The best performing combined feature set obtained by GA
contained 15 features, 10 of them originating from the ALS data. The combined feature set outperformed the ALS feature set only
slightly. However, due to its favourable temporal resolution, satellite-borne radar imaging is a promising data source for updating
large-area forest inventories performed by low-pulse ALS inventory.

1. INTRODUCTION A major advantage of radar images, compared with optical

region satellite images, has been their ready availability

The biggest jump in forest inventory technology in recent years  (temporal resolution) under all imaging conditions. This makes
has been in applications based on helicopter- and airplane-  radar imaging, especially the synthetic aperture radar (SAR)
based laser scanners (ALS = airborne laser scanning) operating  carried by satellites, an intriguing option in developing

in the near-infrared (NIR) wavelength area. Research results  methods for operational inventory of forest resources.
have shown that ALS is as accurate as traditiona ocular field

measurements in estimating the stand mean volume (V) at plot ~ Most commonly, the amplitude information in SAR
level with area-based inventory methods (e.g. Naesset, 1997,  backscattering is exploited in the estimation of forest
2004a, 2004b; Holmgren, 2003) or via singletree  parameters. For example, Le Toan e al. (1992) used an
characteristics (e.g. Hyyppa & Inkinen 1999, Leckie e al.  airborne multifrequency SAR system for demonstrating the
2003, Popescu et al. 2003, Maltamo et al. 2004). capability of SAR images in forest biomass retrieval and
concluded that the cross-polarization channel of the long
Arearbased laser scanning is more cost-efficient, due to its  wavelengths (L and P bands) yielded the best sensitivities.
sparser pulse density. Furthermore, treelevel estimation is  Later, promising results (with presumably enhanced estimation
computationally heavier; thus in large-area inventories the plot- accuracies) were achieved, using SRTM (Shuttle Radar
level approach can, at least currently, be considered more  Topographic Mission) SAR interferometry (Kellndorfer et al.,
feasible. On the other hand, single-tree interpretation makes it 2004), interferometric coherence (Askne et al., 2003),
p ble to understand the ]OI nt distribution of diameter and p0|ar| metric SAR interferometry (Papathanass'ou & C|Oude,
height within the stand, which facilitates the simulation and 2001), and fusion of SAR with airborne laser scanning (ALS)
optimization needed in planning of forest operations. (Nelson et al., 2007). The range measurements of ALS provide
very accurate geometric information on forests (Hyyppa et al.,
ALS is carried out at relatively low altitudes, which  2008). The main advantage of SAR, especialy in the satellite-
consequently makes it relatively expensive per area unit. Other  porne system, is the very frequent imaging capability in
remotely sensed data will still be needed, especially when  comparison to optical satellite images, aerial imagery and ALS.
updated information is required e.g. several times per year. Of
special interest are inexpensive images with favourable  SAR measurements experienced a breakthrough similar to that
temporal resolution that can be utilized in multiphase sampling  jn the ALS method, when in the early 2000s satellite radar
and change detection in addition to the ALS measurements. imagery with spatia resolutions as high as 1-3 m (single-

polarization imaging) were developed. In addition to the
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improved spatia resolution, the central improvements in the
new SAR satellite images have been their ability to utilize
interferometry and polarimetry. In combining data from several
satellite types, information from different wavelength areas can
be obtained. These factors should improve the estimation
accuracies in forest applications, compared with previous
instrument generations.

Rauste et al. (2008) reported that the estimation of growing
stock volume is dlightly more accurate with the full-
polarimetric, high-resolution Advanced Land Observing
Satellite (ALOS) radar images than with the earlier Japanese
Earth Resources Satellite 1 (JERS-1), but the estimates still
saturate at 150 m¥ha. Results obtained with the RadarSat-2 or
the TerraSAR-X (TSX) have not yet been published. However,
in the TSX an arborne sensor, the Experimental Synthetic
Aperture Radar (E-SAR), owned by the German Aerospace
Centre (DLR), has been used to simulate the results obtainable
with the TSX. Holopainen et al. (2009) compared E-SAR,
Landsat Extended Thematic Mapper (ETM) and aeria
photographs in estimation of plot-level forest variables and
reported relative root-mean-squared-errors (RMSEs) for E-
SAR of 45%, 29%, 28% and 38% for Vol (m¥ha), mean
diameter (Dg; cm) , mean height (Hg; m) and basal area (BA;
m?ha), respectively. In combining E-SAR with aerial
photographs, the relative RMSEs for the same variables were
38%, 26%, 23% and 33%. Holopainen et al. (2009) concluded
that the potential for combination of high-resolution satellite
radar images and ALS data should be investigated.

The objective of the study was to compare the accuracy of
low-pulse ALS, high-resolution noninterferometric TSX radar
data and their combined feature set in the estimation of forest
variables at the plot level. One of the feature sets tested was
based on automatic selection with genetic algorithms (GAS),
others on expert knowledge. The estimation was carried out
with the nonparametric k-nearest neigbour (k-NN) algorithm
and we operated at the field plot level. The forest variables
estimated included the Vol, BA, Hy and Dg of the growing
stock.

2. METHODS
2.1 Study area and field data

The research material consisted of 125 tree level measured
circular plots located in the vicinity of Espoo, Finland. Field
measurement data from fixed-radius (7.98 m) field plots were
collected from the study area in 2007 and 2008. The plots were
located with ALS-based tree maps and the Global Pasitioning
System (GPS). The following variables were measured of trees
having a diameter-at-breast height (dbh) of over 5 cm: location,
tree species and dbh. Tree heights were measured from 46
plots and the height model was then formulated. The volumes
were calculated with standard Finnish models (Laasasenaho
1982). Plot-level data were obtained by summing the tree data.
Stand characteristics according to the field measurements are
presented in Table 1.

mean min max stdev
Vol 147.4 51.0 401.4 72.2
Ba 15.9 5.4 33.7 6.1
Hg 19.7 11.3 28.4 3.9
Dg 27.2 13.1 44.0 6.4

Table 1. Mean, range and standard deviation of the stand
characteristics (n = 125).

2.2 Acquisition and processing of AL Sdata

The ALS data were acquired on 14 May 2006 with the
Opetech3100 laser scanner. The flying altitude was 1000 m.
The density of the returned pulses within the field plots was
approximate 4 pointsm? The ALS data were first classified
into ground and nonground points. A digital terrain model
(DTM) was then developed, using classified ground points and
laser heights above ground (normalized height or canopy
height) were calculated by subtracting the ground elevation
from the laser measurements. Canopy heights close to zero
were considered as ground returns and those greater than 2 m
as vegetation returns. The data intermediate between them
were considered as returns from ground vegetation or bushes.
Only vegetation returns were used for ALS feature extraction.
Several features were extracted from vegetation returns for
sample plots. They included the maximum laser hit of the plot,
mean, standard deviation and coefficient of variation of the
canopy heights, penetration as vegetation returns versus total
returns, height percentiles of the distribution of canopy heights
from 10% to 100% with intervals of 10%, canopy cover
percentile as proportion of laser returns below a given
percentage (from 10% to 100% with 10% intervals) of total
height. The features were calculated from first and last returns

separately.
2.3 Acquisition and processing of TerraSAR-X images

The TSX is a German satellite equipped with a modern X band
(wavelength of 3.1 cm) SAR system. The satellite was
launched on 15 June 2007 and is capable of acquiring very-
high-resolution SAR images at a spatial resolution of about 1
m in the Spotlight imaging mode (Diring et al., 2008). In this
study, three TSX Stripmap images were used (see Table 2).
The image acquisition on 5 September 2008 was cancelled for
unknown reasons.

Date Incidence Polarization Product Weather
angle (mid-
range)
4 Sep | 25.8° VH+VV Singlelook | +13 °C,
2008 complex no snow,
fair
5 Sep | - - Acquisition
2008 cancelled
3 Jan | 25.8° VH+VV Multilook -12 °C,
2009 Ground frost, fair
Range
8 Jan | 35.9° HH+HV Multilook -13 °C,
2009 Ground frost, fair
Range
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Processing of the TSX images was carried out at the Finnish
Geodetic Institute (FGI). First, all images were converted to
intensity images (squared amplitude), because in this study
only the amplitude information of the backscattering was used
(interferometric processing can be applied only to images with
same imaging geometries). In order to extract plot-level
specific forest information, the TSX images should be
accurately registered with each other and with existing
topographic maps. The side-looking imaging geometry of SAR
causes image distortions, which can be rectified using a Digital
Elevation Model (DEM) and a proper geocoding model. In this
study. the PCl Geomatica software (PCl Geomatics, Richmond
Hill, Ontario, Canada) and the digital elevation model (DEM)
of the National Land Survey of Finland with a ground sampling
distance of 25 m was used. The resulting RMS errors using 21
ground control points were 2.0 image pixels in the Easting
direction and 1.3 pixels in the Northing direction. Moreover,
the orthorectified images were visually compared to the digital
maps and a very good agreement was observed. Therefore, we
can safely assume that the geometric accuracy is good enough
to extract plot level information.

To collect SAR features, circles with radii of 20 m were
formed using the centre points of the field plots. The SAR
feature extraction unit was larger than the field plot (radius
7.98 m). However, the field plot stand characteristics were also
assumed to represent stand characteristics in the SAR feature
extraction unit. The use of the 20-m radii ensured that enough
TSX SAR pixels could be used to calculate the average
backscattering intensity for the test plots. After calculation of
the average intensity, the TSX SAR features were converted
back to the amplitude scale (square root of intensity).
Therefore, the used set consisted of 6 TSX features (3 images
with 2 polarization channels) for each plot. Additionally, the
average terrain slope and aspect values were calculated for the
test stands, using the DEM. Finally, the TSX SAR features of
the test plots were exported to feature selection and the plot-
level forest variable estimation.

2.4 Genetic algorithm and featur e selection

Generaly, adding more features in the estimation process
improves the output accuracy, but with increasing
dimensionality the distinctive capacity of the data may weaken,
with increasing noise. Therefore, the dimensionality of large
datasets must be reduced. The usefulness of any input variable
can be studied by measuring the correlation between the image
features and forest attributes. In cases of large feature sets, this
is extremely tedious. Furthermore, the image features are often
highly correlated, and adding additional variables that are
highly correlated with the other variables does not generaly
improve the estimation accuracy (although it is still possible).
Guyon & Elisseef (2003) showed that even a useless variable
may be useful when taken with others, and two useless
variables can be useful together. Thus, filters that rank features
based on correlation coefficients are not sufficient and subset
selection agorithms or feature transformation is needed.
Principal component analysis is one example of feature
transformation, while e.g., stepwise regression (backward or
forward selection) or GAs can be used to construct subsets of
features. GAs are search agorithms that mimic natura
selection and natural genetics (Goldberg 1989). Kudo &
Sklansky (2000) compared several feature selection algorithms
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and concluded that sequentia floating search methods worked
best for small- and medium-scale problems, whereas for
problems with a large number of dimensions (> 50), the GAs
worked best.

In model construction, it is important to base the feature
selection on the researcher's knowledge of the phenomenon and
the variables affecting it; thus the use of stepwise selection
methods is generally discouraged. However, there are
situations in which the superiority of variables A and B over C
and D is not clear. The relationships of recorded radiation or
returned laser pulses and forest variables are not too
straightforward (the exception being the canopy surface
generated from laser height readings) and there are numerous
potentially useful statistical/textural variables that can be
extracted from the data. Therefore, the use of automated
selection methods is justified to a certain extent.

The following feature sets were created:

A: TSX features + features derived from the
DEM

B: All laser features

A+B

A_GA: Features selected from set A using GA
B_GA: Features selected from set B using GA
A + B_GA : Features selected from set A+B
using GA

Feature sets A, B and A+B were used for benchmarking the
results obtained with feature selection by GA.

Automatic feature selection was carried out, using a simple GA
presented by Goldberg (1989), implemented in the GAlib C++
library (Wall 1996). It performed well in early feature selection
studies by Haapanen & Tuominen (2008) and Holopainen et al.
(2008). The GA process starts by generating an initia
population of strings (chromosomes or genomes) that consist of
separate features (genes). The strings evolve during a user-
defined number of iterations (generations). The evolution
includes the following operations: selecting strings for mating,
using a user-defined objective criterion, letting the strings in
the mating pool swap parts (crossing over), causing random
noise (mutations) in the offspring (children) and passing the
resulting strings into the next generation.

In the present study, the starting population consisted of 300-
500 random feature combinations (genomes). The length of the
genomes corresponded to the total number of features in each
step, and the genomes contained a0 or 1 at position i, denoting
the absence or presence of image feature i. The number of
generations was 30. The objective variable was a weighted
combination of relative RMSEs of Vol, Dg and Hg, with total
volume having a weight of 50% and Dg and Hg 25% each.
Genomes that were selected for mating swapped parts with
each other with a probability of 60-80%, producing children.
Occasional mutations (flipping 0 to 1 or vice versa) were added
to the children (probability 0.1-1%). The strings were then
passed to the next generation. The overall best genome of the
current iteration was always passed to the next generation, as
well.

Two successive steps were taken to reduce the number of
features to a reasonable minimum. Since the algorithm starts
from a random pool of genomes, the process was repeated
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several times at each step. Only features belonging to the best
genome of the three repetitions in each step were included in
the next step.

2.5 Estimation of plot-level forest variables

The k-NN method was used in the forest variable estimation
(e.g. Kilkki & Péivinen, 1987; Tokola et al., 1996; Franco-
Lopez et al., 2001 (Eq. 1)). A central assumption is that field
plots (or stands) that are similar in reality will be similar in the
space defined by remotely sensed data features, as well. The
forest variables of any image pixel can then be estimated with
the help of reference field plots measured in the field by
calculating the averages of the nearest neighbours. In the
present study, similarity was determined by the Eucidean
distances in the image feature space. The nearest neighbours
were weighted with inverse distances (Eq. 2).

k
y=(@awy)/k

@
i=1
where
¥ = estimated value for variable y
yi = measured value for variable y at the i:th
nearest field plot
w = weight of field plot i in the estimation
1 o, 1
W = —2/ a— 2
di di
where

di = euclidean distance to the i:th nearest field
plot (measured in the feature space)

k number of neighbours used in the
estimation

An essential parameter affecting the results obtained with the
k-NN method is the number of neighbours, k, for which avalue
of 5 was set in this study. Selecting the value for k is always a
compromise: a small k increases the random error of the
estimates, while a large k results in averaged estimates and
reduces the variation available in the origina dataset.

2.6 Evalution of estimation accuracy

Evaluation of the estimation accuracy was carried out using
cross-validation. In the process, each field plot at atime isleft
out of the reference dataset and the forest variable estimates
are calculated using the remaining field plots. The estimates
are then compared with the values observed in the field. The
RMSE (Eg. 3), BIAS (Eg. 5), relative RMSE (Eq. 4) and
relative BIAS (Eq. 6) were derived from the comparisons.

é (9| - yi)2
RMSE =12 , 3)
n
RMSE%ZlOO*% : 4

y
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3 .
_a (yi - yi)
BIAS= 2% | (5)
n
BIASY% = 100* % , ©)
y
where n = number of plots

yi = observed value for plot i
Vi = predicted value for plot i

Yj= observed mean of the variable in
question.

3. RESULTS

The absolute and relative RMSEs and BIASes obtained, using
the datasets studied, are presented in Table 3. The results show
that the ALS-based features performed far better than the TSX
-based features. The combined feature set improved results
dlightly. For example, the RMSE of Vol decreased from 30.6%
to 29.5% when the ALS feature set was compared with the
combined feature set. Hg and Dy can be estimated more
accurately with all feature sets than Vol and BA. Both remote-
sensing materials resulted in somewhat biased results (under
estimations).

VOL BA _ Hg  Dg
ALS RMSE 451 47 24 48
ALS RMSE-% 30.6 29.4 121 175
ALS BIAS 61 -07 -02 -03
ALS BIAS-%  -41 -44 -10 -1.0
SAR RMSE 69.8 62 40 6.2
SAR RMSE-% 47.4 393 203 224
SAR BIAS 67 -07 -03 -06
SAR BIAS-%  -45 -47 -13 -21
ALS+TSX RMSE 435 46 25 4.6
ALS+TSX RMSE-% 295 29.0 12.6 17.0
ALS+TSX BIAS 31 04 -01 -02
ALS+TSX BIAS-% -21 -28 -0.6 -0.9

Table 3. Accuracy of the estimated stand characteristics.

Reduced feature sets outperformed the original sets (A, B,
A+B): the Vol RMSE percentages decreased by 6-7 percentage
points during the GA selection process. The number of features
selected by GA for the fina sets were 13, 12 and 15 for the
TSX (+DEM), ALS and combined set, respectively. When both
the ALS- and TSX (+DEM) -based features were available,
both types were included in the fina set. However, the
majority of the features selected were based on ALS data (10
over 15). Of the ALS-based features, the maximum heights of
both first and last pulses were included, as well as percentiles
of canopy height distribution (first pulse 70%, last pulse 40%,
50% and 70%), proportions of first returns below a given
percentage of total height (CCP%, first pulse 10% and 40%
and last pulse 10%) and penetration of the last pul se.

Plot-by-plot comparison of Vol estimation errors by means of
TSX features and ALS-based features is shown in Figures 1
and 2. It can be seen that TSX systematically overestimates the
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smallest volumes and underestimates the largest volumes.
Laser-based features performed better at the upper end of the
volume range.
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Figure 1. Volume estimation errors (Voles-V0lops) with best
performing TSX data set.
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Figure 2. Volume estimation errors (Voles-V0lops) with best
performing ALS data set.

4. CONCLUSIONS

In the present study, we tested the estimation of some
important forest attributes in forest management planning with
a combination of low-pulse ALS and TSX data, using GA
feature selection and the nonparametric k-NN al gorithm. Based
on our results, the lowest RM SEs were obtained with relatively
small subsets of the original features.

Our find RMSE for Vol was 29.5% of the mean. TSX
features, when used separately from ALS features, gave
significantly lower accuracies, i.e. the ALS data were superior
to the TSX data. However, some TSX features were selected
for the best-performing combined feature set. ALS and TSX
RMSEs tended to be lower than with Landsat-type satellite
images, which usually result in field plot-level RM SEs of 60%
or greater (Tokola et al. 2007, Haapanen & Tuominen 2008,
Holopainen et al. 2009).
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The ALS accuracies were in line with other Finnish studies
operating with low-pulse density data (e.g. Maltamo et al.
2006; Holopainen et al. 2008), but with slightly poorer results.
This was probably resulted from the small number of study
plots in k-NN estimation and smaller Vol of the stands
compared with earlier studies.

In comparing our TSX accuracy to the E-SAR accuracies
achieved by Holopainen et al. (2009), plot-level volume and
BA estimations were poorer with TSX. However, the Hq and
Dy estimations were slightly better.

The mean errors of traditiona ocular forest inventory used in
operational forest management planning vary from 16% to 38%
in Finland (Poso, 1983; Haara & Korhonen, 2004; Saari &
Kangas, 2005). This means that the approx. 30% error level
reached with the combined dataset at the field plot level
closely resembles that of ocular field inventory (the ALS and
TSX RMSEs are probably somewhat lower at the stand level).

A central task for future forest resource inventories will be
detection of changes, i.e. updating the forest inventory data. In
addition to the traditional forest variables, more interest will
be placed on changes in biomass, bioenergy and carbon
balance. Climate change will probably increase forest damage,
creating a demand for monitoring methods as well.

Our results suggest that SAR images cannot compete with ALS
in large-scale precision forestry. The combined feature set only
slightly outperformed ALS feature set. Thisis similar result to
the results achieved by Nelson et al. (2007), who concluded
that ALS is a better choice over SAR in forest biomass
estimation and SAR only sdlightly increased the overal
accuracy when ALS and SAR were used jointly in the
estimation.

The exploitation of SAR images is still chalenging at the
moment due to the high costs, somewhat troublesome
processing and tricky imaging geometries. However, we
believe that high-resolution satellite SAR images may play a
significant future role in nationwide forest-mapping
applications, due to its higher temporal repeatability in
comparison to ALS data acquisition. One promising alternative
may be the use of SAR images for updating forest inventories
performed by low-pulse ALS inventory.
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