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ABSTRACT:

Different perception systems are available for the estomabf the pose (position and orientation) of moving objecEor space
applications, an active vision system such as Laser Cametar8 (LCS) developed by Neptec Design Group (Ottawa, Ganiad
preferable for its proven robustness in harsh lighting @@t of space. Based on LCS data, this paper presentésesimtegration
of a Kalman filter (KF) and an Iterative Closest Point (ICRyaalthm in a closed-loop configuration. The initial guesstfee ICP is

provided by state estimate propagation of the Kalman filéis Way, the pose estimation of moving objects becomes nmurerate

and reliable in case when LCS does not deliver reliable data humber of frames and the last known pose, used as an quitas

for the next one, is outside the ICP convergence range. $rcdse, the proposed algorithm automatically relies moté@dynamics
model to estimate the pose, and vice versa. The Kalman e, part of the integrated framework, is capable of not ostiynating

the target's states, but also its inertial parameters. Dmeargence properties of this framework are demonstrageekperimental
results from real-time scanning of a satellite model agdcto a manipulator arm, which is driven by a simulator accgydo orbital

and attitude dynamics. These results proved robust paserigpof the satellite only if the Kalman filter and ICP arelietclosed-loop
configuration.

1 INTRODUCTION and Parsa, 2009]. In some circumstances, e.g., when theeoe-ar

clusions, no observation data are available. Therefong-term

The paradigm of on-orbit, robotic servicing of strandedcgpa  Prediction of the motion of the object is needed for planrsogh

craft has attracted many researchers [Zimpfer and Speb@, 1 Operations as autonomous grasping of targets.

Yoshida, 20037]. To verify and to demonstrate the research re-

sults and the developments, several missions have alresaty b

performed and more will be in the future. An overview of the

past, current, and future missions is presented in [Rékleital.,

2007]. For the successful accomplishment of such a misiisn,  This work is focused on the integration of an Kalman filter and

essential for the servicer spacecraft to have an accueatetime ~ an ICP algorithm in a closed-loop configuration for accueate

estimate of the motion of thizee-fallingtarget spacecraft and to 'eliable pose estimation of a moving object. In the converati

be able to reliably predict the location of the target in rfeture. ~ POse estimation algorithm, the range data from the LCS along
with the surface model of the target satellite, or CAD-gatent

There are different vision systems capable of estimatiagtise  surface model, are used by the ICP algorithm to estimateathe t

(position and orientation) of moving objects. However, ago  get pose. The estimation can be made more robust by plagng th

them, an active vision system such as the Neptec Laser Camel@P and the KF estimator in a closed-loop configuration, wimer

System (LCS) is preferable because of its robustness indace the initial guess for the ICP is provided by the estimate joteah.

the harsh lighting conditions of space [Samson et al., 2084]  The KF estimator is designed so that it can estimate not tily t

verified during the STS-105 space mission, the 3D imaginig-tec target’s states, but also its dynamic parameters. Spdbjfitize

nology used in the LCS can indeed operate in space enviradnmerdynamics parameters are the ratios of the moments of ingfrtia

The use of laser range data has also been proposed for trenmotithe target, the location of its center of mass, and the aiiamt of

estimation ofiree-floatingspace objects [Lichter and Dubowsky, its principal axes. Not only does this allow long-term potidin

2004]. All vision systems, however, provide discrete anyio of the motion of the target, which is needed for motion plagni

pose data at relatively low rate, which is typically 1 Hz. but also it provides accurate pose feedback for the corysl s
tem when there are blackout, i.e., no observation data @i av

Taking advantage of the simple dynamics of a free-floating obable. We use the Euler-Hill equations [Kaplan, 1976] to\deri

ject, which is not acted upon by any external force or momenta discrete-time model that captures the evolution of thativel

researchers have employed different observers to traclpamd translational motion of a tumbling target satellite witlspect to

dict the motion of a target satellite [Masutani et al., 19%ghili a chaser satellite which is freely falling in a nearby orbit.
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2 THEICPALGORITHM chaser satellite

This section reviews the basic Iterative Closest Point )I&go- target satellite

rithm which is an iterative procedure minimizing a distamhee
tween points in one set and the closest points, respectinelye 2
other. Suppose that we are given with a set of 3-D points Bata QA{C}
that corresponds to a single shape representetddnel setM.

It is known that for each poini; € R*® from the 3-D points data
setD, there exists at least on point on the surfacéofwhich is
closer tod; than other points ioM [Simon et al., 1994]. Assum-
ing that the rigid transformatiof?’, »’) is roughly known, where

r’ and R’ are the translation vector and rotation matrix, respec-
tively. Then, the problem of finding the correspondence betw

the two sets can be formally expressed by Figure 1: The body-diagram of chaser and target satelli@s m
¢; = arg meif\lA I(R'di + ') — e Vi=1,---,m, (1) ngin neighboring orbits
Ck
and then se€ = {c1---cm} is formed accordingly. Now, we 3 DYNAMICESTIMATOR
have two independent sets of 3-D poigtandD both of which
corresponds to a single shape. The problem is to find a fine-alig 31 M odelling
ment (R,t) which minimizes the distance between these tig se

of points [Besl and McKay, 1992]. This can be formally stagsd
Fig. 1 illustrates the chaser and the target satellitegasbbdies
1 & 9 moving in orbits nearby each other. Coordinate frafué$ and
= T%lz [Rd; + 7 —ci Ve eCdi €D (2) {B} are attached to the chaser and the target, respectively. The
=1 origin of { B} is located at the target centre of mass (CM) while

which has a closed-form solution [Faugeras and Herberg]198 that of{A} has an offsep. with respect to the CM of the chaser.

The ICP-based matching algorithm may proceed through fhe fo The axes of B} are oriented so as to be parallel to the principal
lowing steps: axes of the target satellite. Coordinate frafide} is fixed to the

target at its point of reference (POR) locate@afrom the origin

] ) ) ) ] of {B}; it is the pose of{C} which is measured by the laser
1. Given a coarse alignme(i’, ), find closest point pair§  camera. We further assume that the target satellite turmitas
from scan 3-D points s&b and model seM according o angular velocityw. Also, notice that coordinate franfed} is not

1). inertial; rather, it moves with the chaser satellite. Inftiiowing,
2. Calculate the fine alignment translatioR, r) minimizing ?nU?Zt;tIESpt andw are expressed i3}, while p. is expressed

the mean square error the distance between two dat®sets
andC according to (2)
The orientation of B} with respect to{ A} is represented by the

3. Apply the incremental transformation from step 2 to step 1 ynit quaterniory. Below, we review some basic definitions and
properties of quaternions used in the rest of the paper. i@ans
quaterniongi, g2, g3, and their corresponding rotation mat¥ix
R2, andRs. The operators and® are defined as
It has been shown that the above ICP algorithm is guaranteed t
converge to a local minimum [Besl and McKay, 1992]. However, Ha®] a {—[avx] jf— aols ay
a convergence to a global minimum depends on a good initia —ay Qo
alignment [Amor et al., 2006]. In pose estimation of movirg o )
jects, “good” initial poses should be provided at the beigigrof Whereqo anda, are thg scalar and vector parts.of quaternion
every ICP iteration. The initial guess for the pose can bertak €sPectively, anda, x] is the cross-product matrix af,. Then,
from the previous estimated pose obtained from the ICP [8ams 93 = 42 ® 41 = q1 © g2, corresponds to produdts = R R.
etal., 2004]. However, this can make the estimation proicags ~ COnsider a small quaternion perturbation
ile when dealing with relatively fast moving target. Thishis- §0=q®a 3)
cause, if the ICP does not converge for a particular posg,dig 1=aw4

to occlusion, in the next estimation step, the initial guethe  \yhereq represents the rotation of the target satellite with respec
pose may be too far form its actual value. If the initial poaeh g the chaser satellite. Then, adopting a linearizatiohrtiegie
pens to be outside the global convergence region of the IGP pr gimilar to [Lefferts et al., 1982], one can linearize the &ho

cess, from that point on, the pose tracking is most likely1os  oquation about the estimated stajemd® to obtain
good. The estimation can be made more robust by placing fRe IC

and a dynamic estimator in a closed-loop configuration, elner d
the initial guess for the ICP is provided by the estimate jotewh dt
of the moving object. The following sections described gesif

a Kalman filter which will be capable of not only estimating th

states but also and parameters of a free-floating object. Dynamics of the rotational motion of the target satellite te

4. lterate until the error norfie|| is less than a threshold.

a [lavX]+aolz ay
7[0‘@] - |: 7a17; Qo

0qy = — X 0y + %&u (4)
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expressed by Euler’s equation as

PaxWyWz

w=1Yw)+ Jer, where ¢Y(w)= |pywzw:|, (5)
DWWy

whereJ = diag(1, Ioa/Iyy, Ioa/I:2); po = (Iyy — I:2)/Iza,

Py = (Lzz — Luz)/Iyy, andp: = (loe — Lyy)/1L:2; Toe, Iyy, and
I, . are the principal moments of inertia of the target sateltite
is a torque disturbance for unitinertia, and = [p. py p-].

Linearizing (5) abouto,, andp yields

d
E&” = A(wk, p)ow + B(wr)op + Jer, (6)
0 PaWz,  PaWyy
19 k Yk
Aw) = 8_1/) = | PyWzy 0 PyWa,,
v bWy, PzWzy 0
(w) = g—;ﬁ = diag [wywz Wz wzwy} .

Let z = col(qv, w, p) describe the part of the system states

pertaining to the rotational motion. Then, from (4) and (8%
have

d —[@r x] 313 O3x3 O3x1
&5.73 = O3x3 A(J)k,ﬁk) B(u‘)k) ox+ | Jer | . (7)
O3x3 O3x3 O3x3 O3x1

In addition to the inertia of the target satellite, the lomatof its
CM and the orientation of the principal axes are uncertain.
Note that quaterniom represents the orientation of franf€'}
w.r.t. frame{B}. Now, let vecto® = col (p:,; 1) contains the
additional unknown parameters. Then

=0 (8)

The evolution of the relative distance of the two satellitas be

described byorbital mechanicsLet the chaser move on a circu-

lar orbit at an angular rate of defined a:” = [0 0 n.].

Further, assume that vectog denotes the distance between the

CMs of the two satellites expressed{r}, and thatv, = 7.

Then, if{ A} is orientated so that its-axis is radial and pointing
outward, and itg-axis lies on the orbital plane, the translational

3.2 Discrete Model

In order to take into account the composition rule of quatern
the states to be estimated by the Kalman filter have to be nedkfi
asxy = col (5qfk, Wk, pk), yr = col (7o, Vo, ), and oy
col (pt,, Onw, ), Where

dn=m" ®mn.

Assumingy £ col(z, y, #), one can combine the nonlinear
equations (5), (8) and (9) in the standard formxas= f(x,€),
wheree = col (¢,, €5). Moreover, setting the linearized systems
(7), (8) and (10) in the standard state-space fgrm Ax + Be,
the equivalent discrete-time system can be written as

Xk+1 = Prxr + €. (11)
Here the solution to the state transition matbix and discrete-
time process nois@; = Elexc; | can be obtained based on the
van Loan method a®;, = D1, andQ) = &, D;2, where

_|D1n Di2| _ -A Bx.BT
D_{O D22}_6Xp<[0 AT }T>

with 7' being the sampling time aritl. = Elec”] = diag(o} s, 07 13).
It should be noted that th& matrix depends on the inverse of the
inertia matrix.J, which can be generated from the estimated pa-
rameters by

T . 177 1 7z.
Ji = diag(1, -~ Py 1Py,

4 OBSERVATION
4.1 Sensitivity Matrix and Propagation of M easurement Noise

Let quaternionu represent the orientation of fram{g'} w.r.t.
frame{A}. Then, output of the vision system is

pose meas= Lﬂ , where p=n1n®gq.

Therefore, the observation vector is defined as

z=h(z)+ [v], (12)

motion of the target can be expressed as [Breakwell and Rober

son, 1970, Kaplan, 1976]

Vo = =21 X Vo + ¢(ro,n) + €5. 9)

Here, ¢; is the force disturbance for a unit mass, and accelera-
tion term¢ is due to the effect of orbital mechanics and can be

linearized asp” (ro,n) ~ [3nir,, 0 — nZr,,]. Denoting the
states of the translational motion wigh= col (7., v,), one can
derive the corresponding dynamics model as

d.  [O3xs I3 03x1
an_ { N _2[nx]} oy + e } (10)
where )
3n; O 0
N £ §¢ =10 0 0
"o 0 0 -n

wherez = col(z1, 22), h = col (h1, h2), v = col (v1, v2),
andv; andv. are additive measurement noise processes, and

ha
ha

(13
(14)

r—17 =0ro+ R(q)pe — R(q)p:
(" @peq),=(n®dq), = (50 dm),.

The Extended Kalman filter (EKF) also requires the linedidra
of the above observation equations. The following partéaivé-
tives are obtained from (13) and (14)

[I>

ohy _ Oohv . _
o0 R(q)[pex], Bop R(q),
Oha _ s -1 T
B6g, = ~0mex] + dnols — dq, " dmudy,
Oha 1 T
00ny = [0gvx] + 8qoT3 — 0m5 ~3qun, -
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In view of the above partials and neglecting the small teiiras, point cloud
dnw,0ql ~ 0, we can write the expression of the sensitivity matrix pose
as > ICP -
—2R(q X 0 I 0 .
iy = - [(577«;;C >(<q])[+pt(§c7701 I3 e 03 312 e Vision sys. initial guess D
R((j) 03><3 .
03x3 [5(]vk ><] 4 5(1%]3 . unit delay

(a) ICP takes initial guess from the last pose estimate

Here we assume that, is sufficiently small so thain, can be
unequivocally obtained fromfin, = (1 — |67, [|?)'/2. D pose

Y

—> ICP EKF -

Moreover, as shown in [Aghili and Parsa, 2009], in the case o
isotropic orientation noise, i.e%,, = 030 I3, the equation of the
covariance is drastically reduced Bjvovs | = o, Is.

t initial guess

(b) ICP and EKF in closed-loop
4.2 Filter design
Figure 2: Different configurations for tracking a moving et

Recall thatdg, is a small deviation from the the nominal trajec-
tory g. Since the nominal angular velocity. is assumed constant
during each interval, the trajectory of the nominal quaterrcan
be obtained from

qt) = e TOBEG(1y) = g = er 1%y,
However, since; is a contact variable, we can sgy = 7jx_1.
The EKF-based observer for the associated noisy discrsteray
(11) is given in two steps:) estimate correction

Ki = Py HY (H Py HY + Si) (15a)
e =X + K (21 — h(X5)) (15b)
Py = (I — Ky Hy) P (15¢)

and (i) estimate propagation

te41
i =Rk + / FOx(t), 0) dt (16a)

Py = ®uPe®i + Qi (16b)

Figure 3: The experimental setup.

the previous one. That makes the estimation process fradile
and the quaternions are computed right after the innovatiep  is because if the ICP does not converge for a particular plose,
(15b) from in the next estimation step, the initial guess of the pose beay
far form the actual one. If the initial pose occurs to be algsi
the convergence region of the ICP process, from that poithen

6@1} . 1pra
7l :6A 0. = k 2T[£k71®]A — . .
k O © [( } we Bt pose tracking is lost for good.

~ 1/2
L= 116G., %)

wherew” = [w” 0], and Fig. 2 illustrates the ICP and the adaptive predictor in setb

o loop configuration, where the initial guess for the ICP isjuted

. . i 0Ny, R by the predictor. The advantage of this configuration is olbf
Mk = 0Nk © M = (17 In H2)1/2 O Nk—1-
Uk
1. The convergence rate of the ICP is improved as the predicto

. provides a more accurate pose compared to just taking the
4.3 ICPInitial Guess previous pose estimate.

Having obtained the estimate of the full states and parasate 2. The pose tracking process becomes inherently robust, be-
a given point in time, one can integrate the dynamics model to  cause if the ICP does not converge the predictor can still
predict the ensuing motion of the target satellite from fhzint provide a good initial guess for the forthcoming ICP steps.
on. The point-cloud data produced by the LCS is processed by

an Iterative Closet PoinfICP) algorithm to estimate the pose of

the target. The ICP basically is a search algorithm whi@stto 5 EXPERIMENT

find the best possible match between the 3-D data of the LCS and

a model within the neighborhood of the previous pose. Inrotheln this section, experimental results are presented thoat sbhm-
words, the LCS sequentially estimates the current posellmase paratively the performance of the pose estimation with aitid-w
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Figure 4: Matching points from the CAD model and the scannecg -go} i
data to estimate the satellite pose. 3 _gok i
: 100 20 20 60 80 100 120
out KF in the loop. Time (s)
Fig. 3 illustrates the experimental setup where a satetiiiekup (b) Euler angles

is attached to a manipulator arm, which is driven by a simula- =
tor according to orbital dynamics. The Neptec’s Laser Cam-5 0.2 - 1

era System (LCS) [Samson et al., 2004], is used to obtain th s 01l o - ]
pose measurements at a rate of 2 Hz. For the spacecraft sim - - - = R T ‘

lator that drives the manipulator, parameters are seledéd= % 20 40 60 80 100 120
diag[4 8 5] kgm*andp =[-0.15 0 0] m. The solid Time (s)

model of the satellite mockup, Fig. 4(a), and the point-dldata, (c) Normalized ICP fit metric

generated by the laser camera system, Fig. 4(b), are usdeby t
ICP algorithm to estimate the satellite pose according ¢awo
schemes for providing the initial guess as shown in Fig. 2.

Figure 5: Pose estimation without incorporating EKF

6 CONCLUSION

The robustness of the pose estimation of the moving satelith

and without incorporating the KF are illustrated in Figs Si& A method for pose estimation of free-floating space objegts b
respectively. Itis evident from Figs. 5(a) and 5(b) that kGe- incorporating a dynamic estimator in the ICP algorithm hesrb
based pose estimation is fragile if the initial guess is riafikem presented. An adaptive extended Kalman filter was used for es
the last estimated pose. This will cause growing ICP fit roetri timating the relative pose of two free-falling satellitbat move
over time, as shown in Fig. 5(c), that eventually lead to altot in close orbits near each other using position and orientatata
failure at¢ = 90 sec. On the other hand, the pose estimationprovided by a laser vision system. Not only does the filter est
with ICP and the KF in the closed loop configuration exhibits mate the system states, but also all the dynamics paranudters
robustness as shown in Figs. 6(a) and 6(b). Trajectorideafs-  the target. Experimental results obtained from scanninga m
timated angular velocities obtained from the KF versus thead  ing satellite mockup demonstrated that the pose trackisgdan

trajectories calculated by using the manipulator kinecsadre il-  ICP alone was fragile and did not converge. On the other hand,
lustrated in Fig. 7. The plot shows that the estimator cageeat  the integration scheme of the KF and ICP yielded a robust pose
aroundt = 15 sec. tracking.
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Figure 6: Pose estimation with the closed loop ICP-EKF
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