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ABSTRACT:

Different perception systems are available for the estimation of the pose (position and orientation) of moving objects. For space
applications, an active vision system such as Laser Camera System (LCS) developed by Neptec Design Group (Ottawa, Canada) is
preferable for its proven robustness in harsh lighting conditions of space. Based on LCS data, this paper presents results of integration
of a Kalman filter (KF) and an Iterative Closest Point (ICP) algorithm in a closed-loop configuration. The initial guess for the ICP is
provided by state estimate propagation of the Kalman filer. This way, the pose estimation of moving objects becomes more accurate
and reliable in case when LCS does not deliver reliable data for a number of frames and the last known pose, used as an initial guess
for the next one, is outside the ICP convergence range. In this case, the proposed algorithm automatically relies more onthe dynamics
model to estimate the pose, and vice versa. The Kalman filter,as a part of the integrated framework, is capable of not only estimating
the target’s states, but also its inertial parameters. The convergence properties of this framework are demonstrated by experimental
results from real-time scanning of a satellite model attached to a manipulator arm, which is driven by a simulator according to orbital
and attitude dynamics. These results proved robust pose tracking of the satellite only if the Kalman filter and ICP are in the closed-loop
configuration.

1 INTRODUCTION

The paradigm of on-orbit, robotic servicing of stranded space-
craft has attracted many researchers [Zimpfer and Spehar, 1996,
Yoshida, 2003,?]. To verify and to demonstrate the research re-
sults and the developments, several missions have already been
performed and more will be in the future. An overview of the
past, current, and future missions is presented in [Rekleitis et al.,
2007]. For the successful accomplishment of such a mission,it is
essential for the servicer spacecraft to have an accurate, real-time
estimate of the motion of thefree-falling target spacecraft and to
be able to reliably predict the location of the target in nearfuture.

There are different vision systems capable of estimating the pose
(position and orientation) of moving objects. However, among
them, an active vision system such as the Neptec Laser Camera
System (LCS) is preferable because of its robustness in faceof
the harsh lighting conditions of space [Samson et al., 2004]. As
verified during the STS-105 space mission, the 3D imaging tech-
nology used in the LCS can indeed operate in space environment.
The use of laser range data has also been proposed for the motion
estimation offree-floatingspace objects [Lichter and Dubowsky,
2004]. All vision systems, however, provide discrete and noisy
pose data at relatively low rate, which is typically 1 Hz.

Taking advantage of the simple dynamics of a free-floating ob-
ject, which is not acted upon by any external force or moment,
researchers have employed different observers to track andpre-
dict the motion of a target satellite [Masutani et al., 1994,Aghili

and Parsa, 2009]. In some circumstances, e.g., when there are oc-
clusions, no observation data are available. Therefore, long-term
prediction of the motion of the object is needed for planningsuch
operations as autonomous grasping of targets.

This work is focused on the integration of an Kalman filter and
an ICP algorithm in a closed-loop configuration for accurateand
reliable pose estimation of a moving object. In the conventional
pose estimation algorithm, the range data from the LCS along
with the surface model of the target satellite, or CAD-generated
surface model, are used by the ICP algorithm to estimate the tar-
get pose. The estimation can be made more robust by placing the
ICP and the KF estimator in a closed-loop configuration, wherein
the initial guess for the ICP is provided by the estimate prediction.
The KF estimator is designed so that it can estimate not only the
target’s states, but also its dynamic parameters. Specifically, the
dynamics parameters are the ratios of the moments of inertiaof
the target, the location of its center of mass, and the orientation of
its principal axes. Not only does this allow long-term prediction
of the motion of the target, which is needed for motion planning,
but also it provides accurate pose feedback for the control sys-
tem when there are blackout, i.e., no observation data are avail-
able. We use the Euler-Hill equations [Kaplan, 1976] to derive
a discrete-time model that captures the evolution of the relative
translational motion of a tumbling target satellite with respect to
a chaser satellite which is freely falling in a nearby orbit.
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2 THE ICP ALGORITHM

This section reviews the basic Iterative Closest Point (ICP) algo-
rithm which is an iterative procedure minimizing a distancebe-
tween points in one set and the closest points, respectively, in the
other. Suppose that we are given with a set of 3-D points dataD
that corresponds to a single shape represented bymodel setM.
It is known that for each pointdi ∈ R3 from the 3-D points data
setD, there exists at least on point on the surface ofM which is
closer todi than other points inM [Simon et al., 1994]. Assum-
ing that the rigid transformation(R′, r′) is roughly known, where
r′ andR′ are the translation vector and rotation matrix, respec-
tively. Then, the problem of finding the correspondence between
the two sets can be formally expressed by

ci = arg min
ck∈M

‖(R′di + r′)− ck‖ ∀i = 1, · · · ,m, (1)

and then setC = {c1 · · · cm} is formed accordingly. Now, we
have two independent sets of 3-D pointsC andD both of which
corresponds to a single shape. The problem is to find a fine align-
ment (R,t) which minimizes the distance between these two sets
of points [Besl and McKay, 1992]. This can be formally statedas

ǫ =
1

m
min
r,R

m∑
i=1

‖Rdi + r − ci‖2 ∀ci ∈ C, di ∈ D. (2)

which has a closed-form solution [Faugeras and Herbert, 1986].
The ICP-based matching algorithm may proceed through the fol-
lowing steps:

1. Given a coarse alignment(R′, r′), find closest point pairsC
from scan 3-D points setD and model setM according to
(1).

2. Calculate the fine alignment translation(R, r) minimizing
the mean square error the distance between two data setsD
andC according to (2)

3. Apply the incremental transformation from step 2 to step 1.

4. Iterate until the error norm‖ǫ‖ is less than a threshold.

It has been shown that the above ICP algorithm is guaranteed to
converge to a local minimum [Besl and McKay, 1992]. However,
a convergence to a global minimum depends on a good initial
alignment [Amor et al., 2006]. In pose estimation of moving ob-
jects, “good” initial poses should be provided at the beginning of
every ICP iteration. The initial guess for the pose can be taken
from the previous estimated pose obtained from the ICP [Samson
et al., 2004]. However, this can make the estimation processfrag-
ile when dealing with relatively fast moving target. This isbe-
cause, if the ICP does not converge for a particular pose, e.g., due
to occlusion, in the next estimation step, the initial guessof the
pose may be too far form its actual value. If the initial pose hap-
pens to be outside the global convergence region of the ICP pro-
cess, from that point on, the pose tracking is most likely lost for
good. The estimation can be made more robust by placing the ICP
and a dynamic estimator in a closed-loop configuration, whereby
the initial guess for the ICP is provided by the estimate prediction
of the moving object. The following sections described design of
a Kalman filter which will be capable of not only estimating the
states but also and parameters of a free-floating object.
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Figure 1: The body-diagram of chaser and target satellites mov-
ing in neighboring orbits

3 DYNAMIC ESTIMATOR

3.1 Modelling

Fig. 1 illustrates the chaser and the target satellites as rigid bodies
moving in orbits nearby each other. Coordinate frames{A} and
{B} are attached to the chaser and the target, respectively. The
origin of {B} is located at the target centre of mass (CM) while
that of{A} has an offsetρc with respect to the CM of the chaser.
The axes of{B} are oriented so as to be parallel to the principal
axes of the target satellite. Coordinate frame{C} is fixed to the
target at its point of reference (POR) located atρt from the origin
of {B}; it is the pose of{C} which is measured by the laser
camera. We further assume that the target satellite tumbleswith
angular velocityω. Also, notice that coordinate frame{A} is not
inertial; rather, it moves with the chaser satellite. In thefollowing,
quantitiesρt andω are expressed in{B}, while ρc is expressed
in {A}.

The orientation of{B} with respect to{A} is represented by the
unit quaternionq. Below, we review some basic definitions and
properties of quaternions used in the rest of the paper. Consider
quaternionq1, q2, q3, and their corresponding rotation matrixR1,
R2, andR3. The operators⊗ and⊙ are defined as

[a⊗] ,
[−[av×] + aoI3 av

−aT
v ao

]
, [a⊙] ,

[
[av×] + aoI3 av

−aT
v ao

]
.

Whereao andav are the scalar and vector parts of quaterniona,
respectively, and[av×] is the cross-product matrix ofav. Then,
q3 = q2 ⊗ q1 = q1 ⊙ q2, corresponds to productR3 = R1R2.
Consider a small quaternion perturbation

δq = q ⊗ q̄∗ (3)

whereq represents the rotation of the target satellite with respect
to the chaser satellite. Then, adopting a linearization technique
similar to [Lefferts et al., 1982], one can linearize the above
equation about the estimated statesq̄ andω̄ to obtain

d

dt
δqv ≈ −ω̄ × δqv +

1

2
δω (4)

Dynamics of the rotational motion of the target satellite can be
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expressed by Euler’s equation as

ω̇ = ψ(ω) + Jετ , where ψ(ω) =

pxωyωz

pyωxωz

pzωxωy

 , (5)

whereJ = diag
(
1, Ixx/Iyy, Ixx/Izz

)
; px = (Iyy − Izz)/Ixx,

py = (Izz− Ixx)/Iyy, andpz = (Ixx− Iyy)/Izz; Ixx, Iyy, and
Izz are the principal moments of inertia of the target satellite; ετ

is a torque disturbance for unit inertia, andpT =
[
px py pz

]
.

Linearizing (5) about̄ωk andp̄ yields

d

dt
δω = A(ω̄k, p̄)δω +B(ω̄k)δp+ Jετ , (6)

A(ω) =
∂ψ

∂ω
=

 0 pxωzk pxωyk

pyωzk 0 pyωxk

pzωyk pzωxk 0


B(ω) =

∂ψ

∂p
= diag

[
ωyωz ωxωz ωxωy

]
.

Let x = col (qv, ω, p) describe the part of the system states
pertaining to the rotational motion. Then, from (4) and (6),we
have

d
dt
δx =

−[ω̄k×] 1
2
I3 03×3

03×3 A(ω̄k, p̄k) B(ω̄k)
03×3 03×3 03×3

 δx+

03×1

Jǫτ
03×1

 . (7)

In addition to the inertia of the target satellite, the location of its
CM and the orientation of the principal axesηv are uncertain.
Note that quaternionη represents the orientation of frame{C}
w.r.t. frame{B}. Now, let vectorθ = col (ρt, ; ηv) contains the
additional unknown parameters. Then

θ̇ = 0 (8)

The evolution of the relative distance of the two satellitescan be
described byorbital mechanics. Let the chaser move on a circu-
lar orbit at an angular rate ofn defined asnT =

[
0 0 nz

]
.

Further, assume that vectorro denotes the distance between the
CMs of the two satellites expressed in{A}, and thatυo = ṙo.
Then, if{A} is orientated so that itsx-axis is radial and pointing
outward, and itsy-axis lies on the orbital plane, the translational
motion of the target can be expressed as [Breakwell and Rober-
son, 1970,Kaplan, 1976]

υ̇o = −2n× υo + φ(ro, n) + ǫf . (9)

Here,ǫf is the force disturbance for a unit mass, and accelera-
tion termφ is due to the effect of orbital mechanics and can be
linearized asφT (ro, n) ≈ [3n2

zrox 0 − n2
zroz ]. Denoting the

states of the translational motion withy = col (ro, υo), one can
derive the corresponding dynamics model as

d
dt
δy =

[
03×3 I3
N −2[n×]

]
δy +

[
03×1

ǫf

]
(10)

where

N , ∂φ

∂ro
=

3n2
z 0 0

0 0 0
0 0 −n2

z

 .

3.2 Discrete Model

In order to take into account the composition rule of quaternion,
the states to be estimated by the Kalman filter have to be redefined
asxk = col

(
δqT

vk
, ωk, pk

)
, yk = col (rok , vok ), andθk =

col (ρtk , δηvk ), where

δη=η̄
∗ ⊗ η.

Assumingχ , col (x, y, θ), one can combine the nonlinear
equations (5), (8) and (9) in the standard form asχ̇ = f(χ, ǫ),
whereǫ = col (ǫτ , ǫf ). Moreover, setting the linearized systems
(7), (8) and (10) in the standard state-space formχ̇ = Aχ + Bǫ,
the equivalent discrete-time system can be written as

χk+1 = Φkχk + ǫk. (11)

Here the solution to the state transition matrixΦk and discrete-
time process noiseQk = E[ǫkǫ

T
k ] can be obtained based on the

van Loan method asΦk = DT
22 andQk = ΦkD12, where

D =

[
D11 D12

0 D22

]
= exp

( [−A BΣǫBT

0 AT

]
T

)
with T being the sampling time andΣǫ = E[ǫǫT ] = diag(σ2

τI3, σ
2
fI3).

It should be noted that theB matrix depends on the inverse of the
inertia matrixJ , which can be generated from the estimated pa-
rameters by

Ĵk = diag
(
1,

1− p̄yk

1 + p̄xk

,
1 + p̄zk

1− p̄xk

)
.

4 OBSERVATION

4.1 Sensitivity Matrix and Propagation of Measurement Noise

Let quaternionµ represent the orientation of frame{C} w.r.t.
frame{A}. Then, output of the vision system is

pose meas.≡
[
r
µ

]
, where µ = η ⊗ q.

Therefore, the observation vector is defined as

z = h(x) +
[
v
]
, (12)

wherez = col (z1, z2), h = col (h1, h2), v = col (v1, v2),
andv1 andv2 are additive measurement noise processes, and

h1 , r − r̄ = δro +R(q)ρt −R(q̄)ρ̄t (13)

h2 ,
(
η̄∗ ⊗ µ⊗ q̄∗

)
v

=
(
δη ⊗ δq)

v
=

(
δq ⊙ δη

)
v
. (14)

The Extended Kalman filter (EKF) also requires the linearization
of the above observation equations. The following partial deriva-
tives are obtained from (13) and (14)

∂h1

∂δqv
= −R(q̄)[ρt×],

∂h1

∂δρt
= R(q̄),

∂h2

∂δqv
= −[δηv×] + δηoI3 − δq−1

o δηvδq
T
v ,

∂h2

∂δηv
= [δqv×] + δqoI3 − δη−1

o δqvδη
T
v .
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In view of the above partials and neglecting the small terms,i.e.,
δηvδq

T
v ≈ 0, we can write the expression of the sensitivity matrix

as

Hk =

[ −2R(q̄)[ρtk×] 03×6 I3 03×3

−[δηvk×] + δηokI3 03×12

R(q̄) 03×3

03×3 [δqvk×] + δqokI3

]
.

Here we assume thatδηv is sufficiently small so thatδηo can be
unequivocally obtained fromδηo = (1− ‖δηv‖2)1/2.

Moreover, as shown in [Aghili and Parsa, 2009], in the case of
isotropic orientation noise, i.e.,Σqv = σ2

qo
I3, the equation of the

covariance is drastically reduced toE[v2v
T
2 ] = σ2

qo
I3.

4.2 Filter design

Recall thatδqv is a small deviation from the the nominal trajec-
tory q̄. Since the nominal angular velocitȳωk is assumed constant
during each interval, the trajectory of the nominal quaternion can
be obtained from

q̄(t) = e
1
2 (t−t0)ω̄k⊗q̄(t0) =⇒ q̄k = e

1
2 Tω̂k−1⊗q̂k−1.

However, sinceη is a contact variable, we can sayη̄k = η̂k−1.
The EKF-based observer for the associated noisy discrete system
(11) is given in two steps: (i) estimate correction

Kk = P−k H
T
k

(
HkP

−
k H

T
k + Sk

)−1
(15a)

χ̂k = χ̂−k +K
(
zk − h(χ̂−k )

)
(15b)

Pk =
(
I −KkHk

)
P−k (15c)

and (ii) estimate propagation

χ̂−k+1 = χ̂k +

∫ tk+1

tk

f(χ(t), 0) dt (16a)

P−k+1 = ΦkPkΦT
k +Qk (16b)

and the quaternions are computed right after the innovationstep
(15b) from

q̂k = δq̂k ⊗ q̄k =

[
δq̂vk(

1− ‖δq̂vk‖2
)1/2

]
⊗ e

1
2 T [ω̂k−1⊗]q̂k−1,

whereωT = [ωT 0], and

η̂k = δη̂k ⊙ η̄k =

[
δηvk(

1− ‖ηvk‖2
)1/2

]
⊙ η̂k−1.

4.3 ICP Initial Guess

Having obtained the estimate of the full states and parameters at
a given point in time, one can integrate the dynamics model to
predict the ensuing motion of the target satellite from thatpoint
on. The point-cloud data produced by the LCS is processed by
an Iterative Closet Point(ICP) algorithm to estimate the pose of
the target. The ICP basically is a search algorithm which tries to
find the best possible match between the 3-D data of the LCS and
a model within the neighborhood of the previous pose. In other
words, the LCS sequentially estimates the current pose based on

unit delay

ICP

point cloud

Vision sys.

pose

initial guess

(a) ICP takes initial guess from the last pose estimate

EKFICP

pose

initial guess

(b) ICP and EKF in closed-loop

Figure 2: Different configurations for tracking a moving object.

?

Laser camera sys.

6
Satellite mockup

Figure 3: The experimental setup.

the previous one. That makes the estimation process fragile. This
is because if the ICP does not converge for a particular pose,then,
in the next estimation step, the initial guess of the pose maybe
far form the actual one. If the initial pose occurs to be outside
the convergence region of the ICP process, from that point onthe
pose tracking is lost for good.

Fig. 2 illustrates the ICP and the adaptive predictor in a closed-
loop configuration, where the initial guess for the ICP is provided
by the predictor. The advantage of this configuration is twofold:

1. The convergence rate of the ICP is improved as the predictor
provides a more accurate pose compared to just taking the
previous pose estimate.

2. The pose tracking process becomes inherently robust, be-
cause if the ICP does not converge the predictor can still
provide a good initial guess for the forthcoming ICP steps.

5 EXPERIMENT

In this section, experimental results are presented that show com-
paratively the performance of the pose estimation with and with-
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(a) The satellite CAD model.
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(b) The point-cloud data from scanning of the satellite.

Figure 4: Matching points from the CAD model and the scanned
data to estimate the satellite pose.

out KF in the loop.

Fig. 3 illustrates the experimental setup where a satellitemockup
is attached to a manipulator arm, which is driven by a simula-
tor according to orbital dynamics. The Neptec’s Laser Cam-
era System (LCS) [Samson et al., 2004], is used to obtain the
pose measurements at a rate of 2 Hz. For the spacecraft simu-
lator that drives the manipulator, parameters are selectedasI =
diag

[
4 8 5

]
kgm2 andρT

t =
[−0.15 0 0

]
m. The solid

model of the satellite mockup, Fig. 4(a), and the point-cloud data,
generated by the laser camera system, Fig. 4(b), are used by the
ICP algorithm to estimate the satellite pose according to the two
schemes for providing the initial guess as shown in Fig. 2.

The robustness of the pose estimation of the moving satellite with
and without incorporating the KF are illustrated in Figs 5 and 6,
respectively. It is evident from Figs. 5(a) and 5(b) that theICP-
based pose estimation is fragile if the initial guess is taken from
the last estimated pose. This will cause growing ICP fit metric
over time, as shown in Fig. 5(c), that eventually lead to a total
failure at t = 90 sec. On the other hand, the pose estimation
with ICP and the KF in the closed loop configuration exhibits
robustness as shown in Figs. 6(a) and 6(b). Trajectories of the es-
timated angular velocities obtained from the KF versus the actual
trajectories calculated by using the manipulator kinematics are il-
lustrated in Fig. 7. The plot shows that the estimator converges at
aroundt = 15 sec.
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Figure 5: Pose estimation without incorporating EKF

6 CONCLUSION

A method for pose estimation of free-floating space objects by
incorporating a dynamic estimator in the ICP algorithm has been
presented. An adaptive extended Kalman filter was used for es-
timating the relative pose of two free-falling satellites that move
in close orbits near each other using position and orientation data
provided by a laser vision system. Not only does the filter esti-
mate the system states, but also all the dynamics parametersof
the target. Experimental results obtained from scanning a mov-
ing satellite mockup demonstrated that the pose tracking based on
ICP alone was fragile and did not converge. On the other hand,
the integration scheme of the KF and ICP yielded a robust pose
tracking.
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Figure 6: Pose estimation with the closed loop ICP-EKF
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