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ABSTRACT: 

 

In some applications, long range operations Terrestrial Laser Scanners (TLS) achieve insufficient precision: for instance, a decorated 

façade will not be modeled correctly with the point cloud obtained by TLS. It may be necessary, in such cases, to combine different 

acquisition techniques to deal with the large size of the object to model and its fine details. Hence, data denoising in the context of 

TLS point clouds remains an issue: if one is capable of increasing the precision of the point cloud, it makes the instrument suitable 

for applications it has not been designed for. The work described in this paper deals with TLS data denoising in the context of small 

details like in close range applications. Compared to other denoising methods described in the literature, the herein described method 

puts the problem back to the 2D world. Indeed, the natural product of any TLS is a Range Image, the range being a function of two 

angles, vertical and horizontal. In the proposed method, each acquired station is processed by denoising this 2D function. Then, after 

denoising, the registration process is applied to obtain the final 3D point cloud. Two well-known image denoising methods are tested: 

wavelet analysis and NL-means algorithm. The presented results show that the latter method achieves good results: the standard 

deviation is divided by two without any increase of the noise on particular points. The method which modifies slightly the standard 

processing chain and which inherits the algorithm complexity of the classical 2D image processing schemes allows to extend the 

range of applications of TLS to smaller and fine detailed objects. 

 

 

1. INTRODUCTION 

TLS are generally used to survey buildings or large scale 

objects. If one considers a façade of a building, some details are 

too small to be properly documented with TLS. This study aims 

to extend the precision of such a device.  Indeed, the noise on 

distance measurement is typically on the order of size of several 

millimeters. The issue of this study is to reduce the standard 

deviation of the error: Rmes=Rtrue+ , where Rmes represents 

the measured distance and Rtrue represents its actual value. In 

addition, data are distances so one has to ensure that denoising 

does not increase the error, even for a small number of points. 

The paper is organized as follows: first the general principles of 

a point cloud processing chain are recalled. Then, the state of 

the art of point cloud or mesh denoising is briefly presented. It 

will then be proposed an original method of denoising based on 

Range Image processing bringing the problem back to a 

conventional 2D image denoising. Among the many existing 

methods, the results obtained with the NLmeans algorithm will 

be presented compared to the wavelet denoising method. After a 

brief presentation of the experimental dataset, the quantitative 

and qualitative obtained results will be discussed. 

 

2. THE STANDARD CHAIN: FROM ACQUISITION TO 

THE 3D MODEL 

The standard chain from data acquisition to the final 3D model 

consists of different steps with many variants. Besides, each 

step may be realized by a wide variety of algorithms more or 

less automatically and is in itself a subject of research. The 

scope of this paragraph is to recall briefly the general idea of the 

standard chain which has been implemented in commercial 

software. 

The output data of most TLS is a raw point cloud, i.e. a set of 

points given by at least their X, Y, Z coordinates and usually the 

reflected intensity of the laser pulse or sometimes more 

information like for instance RGB from an integrated camera. 

Each point cloud corresponds to one position of the laser 

scanner, called a station, several stations being necessary to 

obtain a satisfactory description of the object with a maximum 

amount of information. 

Then, the different point clouds are registered to result in a 

unique point cloud for the whole object.  

The next step consists in isolating the object of interest in the 

segmentation step. 

Lastly, modeling or surface triangulation can be applied to 

obtain the geometrical model of the object. Further processing 

like texture mapping can still be applied depending on the final 

result one wants to obtain. Figure 1 illustrates a very basic 

minimum chain from data acquisition to a final model. In this 

model, a denoising step has been introduced in order to increase 

the accuracy of the point cloud. 

 

 

Figure 1: The standard chain from the individual point clouds to 

the final model. 
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So far, the problem of denoising has been addressed mainly 

through the processing of the 3D cloud or directly on the mesh. 

By doing so, the denoising scheme becomes independent from 

the acquisition step. Historically, the classical Laplacian 

smoothing scheme has been developed (Gross, 2000; Ohtake, 

2000). To overcome the oversmoothing problem due to lowpass 

filtering, Wiener filtering has also been adapted successfully to 

3D meshes (Peng, 2001). A second group of methods, inspired 

by anisotropic diffusion has also been developed (Taubin, 1995; 

Hildebrandt, 2004). Recently, Bilateral filtering has been 

introduced in the question of mesh denoising (Fleishman, 

2003). Many variants and enhancements of these basic methods 

have been introduced, including combinations of them. 

Theoretical works have shown some equivalence between these 

methods (Barash, 2002). To conclude with this very short 

presentation of mesh or point cloud denoising, let us also 

mention recent methods based on Non Local means (Wang, 

2008; Schall, 2007). 

Though the care for acquisition independent methods is 

comprehensive, on the other hand, denoising as close as 

possible to the acquisition stage makes sense too for one can 

expect the noise to be more difficult to attenuate once 

cumulated in a complete 3D cloud obtained by merging of 

individual stations. Besides, adapting methods in the 3D case 

results in increased complexity, computation time and hardware 

resources. 

 

The method herein proposed consists in putting back the 

problem into image denoising. Denoising is done within the 

Range Image produced by the TLS. 

 

 
Figure 2: the proposed chain; denoising is applied before 

registration on the range image. 

 

 

 

3. RANGE IMAGE DENOISING. 

3.1 The image approach 

In the state-of-the-art methods briefly described above, the 

input data is either a global point cloud or a surface mesh. The 

methods developed, though successful, are not standardized yet, 

not easy to implement and result generally speaking in great 

algorithm complexity. The approach that has been developed 

for this paper which is based on a previous work (smigiel, 

2007) consists in coming back to the standard chain at the point 

where one does not have to deal with 3D data, i.e. on the very 

basic principle of laser scanning. The natural product of a TLS 

is the so-called Range Image ,R . If the scanning is 

rectangular, then this 2D function is nothing else but an image 

in the very classical sense with the exception that the usual 

intensity information (being function of two space variables) is 

replaced by range. Thus, spatial filtering of the point cloud may 

be processed as a mere image filtering with all the methods that 

have been developed within the image processing community. 

The denoising step of standard chain exposed in figure 2 is then 

as shown on figure 3.  

 

 
Figure 3: The denoising step included in the proposed chain of 

figure 2. This step is applied for each station before registration. 

 

The raw point cloud from one station given by the (X,Y,Z) 

coordinates is first transformed into the (R, , ) triplet (the 

laser scanner measures directly these values but transforms 

them into their X,Y,Z equivalent and outputs them in the output 

file). Then the (R, , ) set is transformed into an image with a 

rectangular grid by exploiting the  and  information of the 

scan. Denoising is processed and back transformations are 

applied to return to a modified (X,Y,Z) description of the points 

set. Then, these modified (X,Y,Z) clouds may enter the standard 

chain described on figure 2. Hence, denoising the point cloud 

becomes merely a question of image denoising. 

 

3.2 Denoising by Non local means algorithm (NL-means) 

In (Smigiel et al. 2008), it has been shown that Range Image 

denoising by wavelets leads to interesting results but suffers 

from “edge effect”. The overall standard deviation is reduced 

and the surface model looks quite denoised. However, for a 

small amount of points mainly distributed close to the edges of 

the object, noise is not well reduced if not increased. The need 

for a better denoising scheme exists. The NL-means algorithm 

has been introduced by A. Buades, B. Coll and J.M. Morel 

(Buades et al, 2005). It takes advantage of redundancy of 

natural images. In this paper, the principle of the method will be 

described without any mathematical proof. The reader willing 

to turn his attention toward the theoretical aspects may find a 

complete description, experimental results, discussion and a 

complete comparison with other classical denoising methods in 

(Buades et al, 2005). The herein description is directly taken 

from these references. 

Given a discrete noisy image, , the denoised 

value of pixel  is computed as a weighted average of 

theoretically all pixels in the image, 

 

Where the weights  depend on the similarity between 

the pixels  and  with the usual conditions  and 

. 

The similarity between pixels  and  takes into account square 

neighborhood of fixed size centered around the two former 

pixels, namely  and , and is a decreasing function of the 
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Gaussian weighted Euclidean distance  

where  is the standard deviation of the Gaussian kernel.  

Generally speaking, the weighted Euclidean distance is simply 

defined by 

 

 

where  is the fixed size of neighborhoods  and , i. e. the 

number of components of each “vectorized pixel”   and 

. 

In the case of the Gaussian weighted Euclidean distance, the 

weights  are a decreasing Gaussian function of the Euclidean 

distance from the central pixel to the surrounding one with 

again, the normalizing condition, . 

In the calculation of equation 1, the weights  are then 

defined as: 

 

where the normalizing factor is defined as 

 and the filtering parameter  controls 

the decay of the exponential function and therefore the decay of 

the weights as a function of the similarity between pixels  and 

. 

 

 
Figure 4:  principle of pixels similarity in the NLmeans 

denoising method. 

 

Figure 4 shows the principle of the method of the NLmeans 

algorithm. When calculating the value of pixel  as the 

weighted mean of all pixels in the image according to equation 

1, pixels  and  are going to be associated with weights 

quite high as one understands intuitively that these pixels are 

quite similar to pixel . On the contrary, pixel  is going to 

weigh much less for the similarity with pixel  is quite low. 

Practically, the calculation of equation 1 for all pixels in the 

image would lead to a huge computation time. Hence, the 

calculation is restricted to a finite search window around the 

current pixel, for instance a square  x  pixels window. If the 

similarity window is a  x  pixels square window and if there 

is a total amount of  pixels in the image, the complexity of the 

algorithm will be . According to the inventors, a 

similarity window of size 7 x 7 is large enough to be robust to 

noise and small enough to take care for details and fine 

structure. The size of the search window is imposed mainly by 

the computation time and a 21 x 21 seems to give satisfactory 

results. Finally, the  parameter should be close to  where  

represents the standard deviation of the noise. 

 

4. Results 

 

4.1 Experiments presentation 

In order to test TLS data denoising (from a Trimble GX 

scanner), two experiments have been carried out and are 

presented. The NLmeans algorithm is compared to wavelet 

denoising on the first experiment.  

 

The first experimental set (figure 5) consists of two Corinthian 

capitals of the Gallo Roman site on the modern city of 

Mandeure, France (2-3rd Century). Both are unfinished, which 

explains their morphology. Their volume is about one third of 

one cubic meter. 

The acquisition parameters are as follows: the average distance 

of acquisition is between 5 and 10 m and the spatial resolution 

on the object is between 2 and 4 mm. Each point is measured by 

averaging 4 laser shots. Three stations have been completed. 

The total amount of points in the registrated point clouds is 

around 350000 per capital. 

 

   

 
Figure 5: overview of the two capitals and the four spheres. 

 

The second experiment is about a fragment of a Corinthian 

capital (figure 6) corresponding to an element of decoration. Its 

volume is about 4 cubic decimeters. The acquisition parameters 

for this fragment are as follows: the average distance of 

acquisition is between 8 and 9 m and the spatial resolution on 

the object is between 1 and 2 mm. Each point is measured by 

averaging 4 laser shots. Only one station has been completed. 

The amount of points for the fragment is around 30000. 

 

Because of their sizes, these objects are outside the range of 

dimensions recommended by the TLS manufacturer, 

particularly for the fragment. This latter has also been acquired 

with a scanning arm with an accuracy of one tenth of a 

millimeter. It will be considered as a reference cloud. It may 

therefore be possible to make a full quantitative control over an 

object of arbitrary geometry. The comparison has been made 

with a point cloud from a single station. 
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Figure 6: overview of the fragment of capital and the four 

spheres. 

 

Registration calibrated spheres were regularly distributed in the 

environment of the object in both cases. They may be subject to 

a quantitative control which consists of modeling a 

mathematical sphere on the corresponding part of the point 

cloud then determining the standard deviation of the cloud from 

the spherical geometry. 

 

The process applied to the point cloud ends with a mesh. The 

resulting mesh makes possible the visual comparison with the 

real object. Noise is apparent by the abrupt changes of 

orientation of facets particularly on smooth surfaces. It is 

relevant that the mesh after denoising is not smoothed at sharp 

edges. 

 

 

Table 1: Standard deviation on registration spheres for Capitals. 

 

Table 1 shows the standard deviation of the points around the 

mathematical spheres for the two capitals of the first 

experiment. The average standard deviations obtained after 

wavelet denoising cannot emphasize a clear trend. Indeed, the 

standard deviations on spheres C12 and C13 are slightly 

improved while C23 remains almost unchanged and C22 

becomes even worse. However, the average standard deviations 

obtained after NLmeans denoising are relatively homogeneous 

and lead to an average improvement by a factor of two, on the 

average of the four spheres. Concerning the data of the 

fragment, only two types are compared here, raw data and 

NLmeans denoised data. The results shown in table 2 confirm 

the previous trend: relatively homogeneous reduction of the 

standard deviation of a factor two on average. 

 

 
Table 2: Standard deviation on registration spheres for the 

fragment. 

 

 
Table 3: position of the sphere in raw data and denoised data 

 

The verification on the position of the spheres after denoising 

was carried out. Table 3 shows that they have not moved 

between the raw data and denoised ones nor for wavelet 

denoising neither for NLmeans algorithm.  It is indeed 

important in the context of registration that spheres remain as 

rigorously as possible in their original position.  

 

To compare several point clouds obtained in different 

conditions, the reference cloud has been downsampled to reach 

a density five times greater than for the GX data. Moreover, this 

cloud has been meshed to calculate the distance of each point to 

the reference. The error distributions of clouds (respectively the 

raw cloud and the denoised one) compared to the reference 

surface are shown on figure 7. It can be seen that the 

distribution is almost Gaussian (with a slight asymmetry 

though) and that the standard deviation of error values of the 

denoised cloud is twice smaller than for raw data. 

 

 

 

 
Figure 7: error distribution of points compared to the reference 

surface for a) raw data and b) denoised data by NLmeans. 

 

The analysis of denoised data ends with a qualitative 

comparison in both experiments. Figure 8 shows the results for 

the first experiment and figure 9, the results for the second 

experiment. Concerning figure 8 and compared to the mesh 
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obtained from raw data, mesh calculated on denoised clouds 

both with wavelet and NLmeans show an improvement of the 

shape: the smooth surfaces of the real object do not exhibit 

sudden changes of the orientations of their facets no more. The 

edges are well preserved especially for the hole close to the 

bottom of the capital. However there is a difference between the 

two meshes: the one resulting from wavelet denoising shows an 

edge effect, in the sense that the edges of the processed area are 

badly denoised even degraded compared to the raw cloud. 

Although it represents only a minority of points in the cloud 

affecting the standard deviation not too much, the metric point 

of view of this study makes wavelet denoising practically 

useless. This weakness is not noticeable on the denoised cloud 

by NLmeans, which seems therefore to be a suitable method. 

 

 

 
 

Figure 8: a) picture of one of the two Corinthian capitals, 

meshes obtained on b) raw data, c) wavelet denoised data and d) 

NLmeans denoised data. 

 

Concerning the fragment, the mesh has been obtained from one 

unique station which implies a lack of data on the edges of the 

object. Hence, the quality of the mesh is poor on the edges not 

because of the denoising scheme but because of this lack of 

data. Though some fine details appearing on the reference have 

disappeared on the mesh obtained from the denoised cloud, the 

comparison between the raw data and the denoised data shows a 

clear improvement. Anyhow, the size of this object which can 

be considered as clearly outside the range of theTLS, makes it 

an extreme situation 

 

 

 
Figure 9: a) picture of the capital fragment,  meshes obtained on 

b) the reference cloud  , c) raw data and d) Nlmeans denoised 

data. 

 

 

5. Conclusion 

 

In this study, an original method for TLS data denoising has 

been proposed. It fits into the standard chain of TLS data 

processing, and changes it slightly. It brings the problem back 

to a classical 2D image processing task, which reduces the 

complexity of the implemented algorithms. The processed 

image is a range image, which implies a greater requirement on 

the statistics of the denoised data. One has to make sure that the 

error is not only improved as regard to its standard deviation but 

also on each individual point contrary to a classic intensity 

image. Hence, the mere control of the signal to noise ratio is not 

sufficient. Two methods of image denoising have been tested. 

The first one uses wavelet analysis. It improves the standard 

deviation in some zones and leads to a mesh of better quality 

than the raw data. Nevertheless, the troubles of edge effects are 

prohibitive for our specific application. Furthermore the 

management of the many parameters associated with its 

principle leads to heavy manipulation. The second method 

replaces the latter and appears in both points of view more 

effective. Indeed, based on NLmeans, it allows a decrease of the 

standard deviations of a factor of two without local 

deterioration (edge effects). Furthermore, the implementation of 

the algorithm requires only the setting of three parameters. The 

method enables to extend the range of application of TLS to 

small dimensions objects.   
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