
ORIENTATION AND PROCESSING OF AIRBORNE LASER SCANNING DATA (OPALS) -
CONCEPT AND FIRST RESULTS OF A COMPREHENSIVE ALS SOFTWARE

Gottfried Mandlburgera, Johannes Otepkaab, Wilfried Karelab, Wolfgang Wagnerab and Norbert Pfeifera

a Institute of Photogrammetry and Remote Sensing, Vienna University of Technology,
b Christian Doppler Laboratory “Spatial Data from Laser Scanning and Remote Sensing”

Gusshausstrasse 27-29/E122, 1040, Vienna, Austria,
gm{jo,wk,ww,np}@ipf.tuwien.ac.at

Commission III/2

KEY WORDS: LIDAR, ALS processing software, automatic workflow, data administration

ABSTRACT:

Since the mid-1990s, the Institute of Photogrammetry and Remote Sensing (I.P.F.) is engaged in Airborne Laser Scanning (ALS) in
research and development. Scientific contributions have been made in a wide field of related topics like full waveform signal analysis,
georeferencing and filtering of ALS point clouds, automatic breakline modelling, DTM generation, quality control, etc. Apart from
that, converting research ideas into software solutions is an enduring tradition at the I.P.F. for which the DTM program SCOP++ is an
example. Partial solutions of ALS-related issues have been implemented in SCOP++, but a complete processing chain is missing, as
the development cycles for this highly interactive program are long.
Thus, the objectives of the new OPALS program system are to provide a complete processing chain for large ALS projects and to
shorten development cycles significantly. OPALS is designed as a collection of small well-defined modules which can be accessed in
three different ways: (i) from DOS/Unix shells as executables, (ii) from Python shells as full-featured, platform-independent Python
modules or (iii) from custom C++ programs by dynamic linkage (DLL) for fastest module calls. Sophisticated custom processing chains
can be established by freely combining the OPALS modules using shell or Python scripts. To reduce development times, a lightweight
framework is introduced. It allows non-expert programmers to implement their own modules, concentrating on the implementation
of their latest research outcomes, whereas the framework deals with general issues like validation of user inputs, error handling,
logging, etc. In this way, new research outcomes get available more rapidly for the scientific community. OPALS does not only target
researchers, but also ALS service providers dealing with large ALS projects. Efficient data handling is a precondition for this purpose.
Thus, the OPALS data manager (ODM) is one of the core units, allowing administration of data volumes in the order of 109 points.
The ODM acts as spatial cache and provides high-performance spatial queries.
Currently, a quality control package (opalsQC) is in progress and first results (point density maps, strip difference maps, 3D-strip shifts)
are presented in the paper.

1 INTRODUCTION

Airborne laser scanning (ALS) has been a main research topic at
the Institute of Photogrammetry and Remote Sensing (I.P.F.) for
more than a decade. Scientific contributions have been made in
a wide field of ALS-related topics like filtering of point clouds
(Kraus and Pfeifer, 1998), derivation of digital terrain models
(Kraus and Pfeifer, 2001), (Pfeifer et al., 2001), georeferencing
of flight strips (Kager, 2004), quality control of ALS data (Ressl
et al., 2008), automatic modelling of breaklines (Briese, 2004),
and many fields of application like building modelling (Rotten-
steiner and Briese, 2002), (Dorninger and Pfeifer, 2008), hy-
draulic modelling (Mandlburger et al., 2008), forestry (Hollaus et
al., 2007) and geomorphology (Székely et al., 2008). Currently,
the research activities also focus on full waveform laser scanning
(Wagner et al., 2004) comprising the decomposition and calibra-
tion of the laser echoes (Wagner et al., 2006), as well as the im-
provement of digital terrain models (DTM) using additional full
waveform echo attributes (Doneus and Briese, 2006), (Mandl-
burger et al., 2007).

ALS is a highly automated data capturing technique. Today, the
sensor observations from global navigation satellite systems (GN-
SS), from inertial measurement units (IMU) and laser scanners
are processed online and are simultaneously stored on hard disc
arrays even during the flight mission. Thus, a first inspection of
the raw point cloud can be done while still airborne. However,

more sophisticated data processing is typically done in postpro-
cessing back in the office. The processing chain comprises anal-
ysis of the full waveform signal, direct georeferencing, strip-wise
checking of relative and absolute accuracy of the point cloud, im-
provement of the georeferencing if necessary, data organisation
and administration, and finally, filtering of the point cloud, and
derivation of digital terrain or other models. In this paper we
present a comprehensive framework for these steps. While rely-
ing on the algorithms for data processing mentioned above, espe-
cially data administration in suitable structures is a challenging
task. Another question is at which stages quality control shall be
incorporated into the process.

The article is structured as follows. Section 2 describes a best
practice workflow for processing ALS projects representing the
basis for our new OPALS software. In section 3, the general
concepts of OPALS are highlighted, and section 4 describes an
example module in more detail. The current status is presented in
section 5, and the article concludes with the major findings and
addresses future work in the final section 6.

2 ALS DATA PROCESSING

Fig. 1 shows the proposed processing chain based on full wave-
form ALS data. The first section deals with the derivation of the
3D point cloud starting with the raw observations. On the one
hand, the flight path is determined combining the observations of

In: Bretar F, Pierrot-Deseilligny M, Vosselman G (Eds) Laser scanning 2009, IAPRS, Vol. XXXVIII, Part 3/W8 – Paris, France, September 1-2, 2009
Contents Keyword index Author index

55

markus
Notiz
None festgelegt von markus

markus
Notiz
MigrationNone festgelegt von markus

markus
Notiz
Unmarked festgelegt von markus

markus
Notiz
None festgelegt von markus

markus
Notiz
MigrationNone festgelegt von markus

markus
Notiz
Unmarked festgelegt von markus

D
T

M
 C

o
m

p
u
ta

tio
n

n
o

n
o

n
o

y
e
s

y
e
s

y
e
s

S
trip

-W
is

e
 D

a
ta

 M
a
n
a
g
e
m

e
n
t

O
p
a
ls

 D
a
ta

 M
a
n
a
g
e
r | F

ile
-B

a
s
e
d

D
a
ta

 M
a
n
a
g
e
m

e
n
t

F
re

e
 o

f
T

ile
 B

o
u
n
d
a
rie

s
 / S

h
e
e
t L

in
e
s

T
o
p
D

M
 | O

p
a
ls

 D
a
ta

 M
a
n
a
g
e
r | F

ile
-B

a
s
e
d

S
to

p

S
tru

c
tu

re
 L

in
e
 D

e
te

c
tio

n
 a

n
d
 M

o
d
e
llin

g
F

u
rth

e
r
A

p
p
lic

a
tio

n
s

Quality Control / Documentation and Strip AdjustmentQuality Control / Documentation and Strip Adjustment

From Raw Data to Point CloudsApplications
P

ro
c
e
s
s
in

g
 o

f T
ra

je
c
to

ry
 D

a
ta

:
G

P
S

 a
n
d
 IM

U
 (

)
G

L
C

S

A
L
S

 D
a
ta

:
S

c
a
n
n
e
r C

a
lib

ra
tio

n
O

b
s
e
rv

a
tio

n
s
 (e

.g
. F

u
ll-W

a
v
e
fo

rm
)

T
ra

n
s
fo

rm
a
tio

n
 o

f
T

ra
je

c
to

rie
s

D
ire

c
t G

e
o
re

fe
re

n
c
in

g F
u
ll-W

a
v
e
fo

rm
 D

e
c
o
m

p
o
s
itio

n
(D

is
ta

n
c
e
,
A

m
p
litu

d
e
, E

c
h
o
 W

id
th

, ...)

T
ra

je
c
to

ry
 (

)
P

R
C

S

P
o
la

r C
o
o
rd

in
a
te

s
 (

)
E

c
h
o
 A

ttrib
u
te

s
 (E

c
h
o
 W

id
th

,
A

m
p
litu

d
e
, ...) S

O
C

S

S
O

C
S

C
o
m

p
u
ta

tio
n

3
D

 P
o
in

t S
e
q
u
e
n
c
e
 +

E
c
h
o
 A

ttrib
u
te

s
 (

)
P

R
C

S

C
h
e
c
k
 G

e
o
re

fe
re

n
c
in

g
 a

n
d
 D

a
tu

m

D
S

M
s
 (S

trip
-W

is
e
)

P
o
in

t D
e
n
s
ity

 M
a
p
s

R
e
la

tiv
e
 S

trip
 D

iffe
re

n
c
e
s

A
b
s
o
lu

te
 S

trip
 D

iffe
re

n
c
e
s

S
trip

 O
v
e
rla

p
s

3
D

 P
o
in

t C
lo

u
d
s
 (S

trip
-W

is
e
) +

T
ra

je
c
to

ry
 +

 S
c
a
n
n
e
r C

a
lib

ra
tio

n

Q
u
a
lity

 C
h
e
c
k
 a

n
d
/o

r
D

o
c
u
m

e
n
ta

tio
n
 R

e
q
u
ire

d
?

Q
u
a
lity

 C
h
e
c
k
 o

k
?

Im
p
ro

v
a
b
le

?

S
trip

A
d
ju

s
tm

e
n
t

A
d
ju

s
te

d
 3

D
 P

o
in

t C
lo

u
d
,
T

ra
je

c
to

ry
a
n
d
 C

a
lib

ra
tio

n
 +

 E
rro

r S
ta

tis
tic

s

C
o
n
tro

l
D

a
ta

C
la

s
s
ific

a
tio

n
 a

n
d
 F

ilte
rin

g
 (e

.g
.

C
la

s
s
. B

a
s
e
d
 o

n
 F

u
ll-W

a
v
e
fo

rm
A

ttrib
u
te

s
, R

o
b
u
s
t In

te
rp

o
la

tio
n
, ..)

3
D

 P
o
in

t C
lo

u
d
s +

 E
ch

o
 A

ttrib
u
te

s +
B

u
ild

in
g
 O

u
tlin

e
s (o

p
tio

n
a
l) +

S
tru

ctu
re

 L
in

e
s (o

p
tio

n
a
l)

D
T

M
 In

te
rp

o
la

tio
n

D
e
te

c
tio

n
C

la
s
s
ifie

d
P

o
in

t C
lo

u
d

D
T

M

3
D

 P
o
in

t C
lo

u
d
 +

E
c
h
o
 A

ttrib
u
te

s
 (o

p
tio

n
a
l)

M
o
d
e
llin

g

P
o
s
t-P

ro
c
e
s
s
in

g

P
ro

c
e
s
s
e
d

S
tru

c
tu

re
 L

in
e
s
 +

E
rro

r S
ta

tis
tic

s

R
a
d
io

m
e
tric

 C
a
lib

ra
tio

n
B

u
ild

in
g
 M

o
d
e
llin

g
H

y
d
ro

lo
g
y
 a

n
d
 H

y
d
ra

u
lic

s
V

e
g
e
ta

tio
n
 M

a
p
p
in

g
F

o
re

s
try

V
is

u
a
liz

a
tio

n
s

...

O
P

A
L

S
O

rie
n
ta

tio
n
 a

n
d
 P

ro
c
e
s
s
in

g
 o

f
A

irb
o
rn

e
 L

a
s
e
rs

c
a
n
n
in

g
 D

a
ta

S
O

C
S

G
L
C

S

P
R

C
S

.
c
a
n
n
e
r

w
n

o
o
rd

in
a
te

y
s
te

m
.

o
b
a
l

o
o
rd

in
a
te

y
s
te

m
.

ro
je

c
t

o
o
rd

in
a
te

y
s
te

m

S
O

C
S

G
l

C
S

P
C

S

Figure 1: Proposed ALS flowchart representing the basis for the OPALS software

In: Bretar F, Pierrot-Deseilligny M, Vosselman G (Eds) Laser scanning 2009, IAPRS, Vol. XXXVIII, Part 3/W8 – Paris, France, September 1-2, 2009
Contents Keyword index Author index

56

markus
Notiz
None festgelegt von markus

markus
Notiz
MigrationNone festgelegt von markus

markus
Notiz
Unmarked festgelegt von markus

markus
Notiz
None festgelegt von markus

markus
Notiz
MigrationNone festgelegt von markus

markus
Notiz
Unmarked festgelegt von markus

GNSS and IMU, and on the other hand, analysis and radiometric
calibration of the echo waveform is performed, resulting in addi-
tional echo attributes like echo width, amplitude, and backscat-
ter cross-section. For each strip, a 3D point cloud is derived by
means of direct georeferencing. At this stage of the workflow,
high-level data adminstration becomes relevant the first time, as
subsequent quality control steps require efficient point data ac-
cess mainly on a per-strip basis. Quality checks include the veri-
fication of full data coverage and the compliance with minimum
point densities based on density maps as well as the examination
of the strip registration precision using e.g. colour coded strip
difference maps. For the latter, digital surface models (DSM) of
the ALS strips and the list of all overlapping strips are required,
again advocating for a strip-based data management as mentioned
above. For checking the absolute planar and vertical accuracy, ex-
ternal reference data is necessary. As a result of quality control,
calibration of the measurement system and/or strip adjustment
may become inevitable, resulting in new 3D point clouds. Based
on them, the quality control cycle is repeated until the desired
quality criterions are met.

Once the final 3D point cloud is processed, a tile based or seam-
less data management supersedes the strip-wise administration,
combining the point data (coordinates and echo attributes) of mul-
tiple ALS strips. The next major steps in the processing chain
are the classification of each echo of the point cloud into either
terrain or (different classes of) off-terrain points - often referred
to as filtering - and the delineation of natural and artificial lin-
eaments (breaklines and other structure lines). These processes
mainly rely on geometric criterions (point height distribution of
neighbouring points, angles between planar patches, etc.) but,
additionally, the echo attributes derived from the full waveform
backscatter signal help improving the precision and reliability of
the results. Thus, the data administration must provide both effi-
cient spatial access (nearest neighbour and range queries) as well
as flexible administration of arbitrary attributes. Finally, the DSM
and the DTM - both among the most important products of ALS
- are interpolated either as regular grids, hybrid grids considering
breaklines, or triangular irregular networks (TIN), serving as ba-
sis for many subsequent fields of application like building mod-
elling, vegetation mapping and other forestry applications, hy-
draulic modelling for simulation of flood boundaries, and many
more. A second quality control cycle (not shown in Fig. 1) for
model compliance marks the last step of an ALS project.

Modern ALS sensors provide high point densities in the range of
dozens of points per m2 and, hence, the ALS processing soft-
ware has to deal with billions of points even in a single ALS
project. An efficient data management is, therefore, a precon-
dition for successful project handling. File based data manage-
ment, even using standard binary file formats like LAS (ASPRS,
2009) or shapefile (ESRI, 1998), only partially allows adminis-
tration of additional attributes and doesn’t provide geometry in-
dices essential for fast spatial data access. On the other hand,
geo-relational database systems like PostgreSQL/PostGIS (Re-
fraction Research, 2009) or Oracle Spatial (Oracle, 2009) offer
full administration capabilities concerning both geometry and at-
tributes, but the strength of these systems is the long-term archiv-
ing and persistence aspect rather than near-realtime data access
as necessary for ALS projects.

3 SOFTWARE CONCEPT

The main objectives of the OPALS software can be formulated as
follows:

• complete processing chain from raw data to various prod-
ucts, e.g. DTM

• automatic work flow for huge data volumes

• rapid availability of recent research outcomes as software
modules

• platform for sustainable scientific development beyond the
duration of a PhD

To achieve these objectives, the basic concepts for the OPALS
software are:

• modular design based on small components

• accessibility of modules as command line executables, Python
modules, and via C++ API

• individual process control via scripts

• data administration based on the OPALS data manager

• interfaces for efficient data exchange with DTM, GIS and
visualisation software

• abdication of interactivity as far as possible

The OPALS program system is mainly designed for automatic
processing. Thus, a sophisticated graphical user interface and in-
teractive editing steps are omitted deliberately. This may seem
disadvantageous at first glance. However, OPALS is split into
small, well-defined modules that may be combined freely, re-
sulting in flexible, custom processing chains. For instance, the
derivation of a hypsometric map of a single ALS flight strip is
achieved using three different modules: import of strip point data,
DTM grid interpolation and derivation of the colour coded raster-
map, facilitating the re-usability of the respective components in
different application environments. To further ease this combina-
tion, OPALS modules can be accessed in three different ways: (i)
from command prompts / Unix or Linux shells as executables, (ii)
from Python shells using platform-independent Python code, and
(iii) from custom C++ programs by dynamic linkage (DLL). The
latter allows experienced users direct embedding of OPALS com-
ponents in their own C++ programming environment. By con-
trast, the former two options (stand-alone executable and Python
API) allow combining OPALS modules in either Unix/Batch or
Python scripts. Scripting is a powerful instrument, as it enables
the construction of complex, custom processing chains by freely
combining OPALS modules.

As pointed out before, efficient data management is regarded
to be of crucial importance. Thus, the OPALS Data Manager
(ODM) was developed, featuring high-performance spatial queries
of point and line data even for large project areas. The ODM
acts as a spatial cache combining the simplicity and efficiency
of file based processing and the flexibility and expandability of
database systems. An independent import module is provided to
read data in arbitrary data formats or even to extract data from
spatial databases, and to build up the ODM data structure. Sub-
sequent application modules take an ODM file as input and have
access to the coordinate and echo attribute information via an in-
ternal ODM library. Analogously, an export module is available
for converting data stored in the ODM back to a series of sup-
ported file formats and databases. Due to the omission of inter-
activity, high-performance interfaces to external program systems
like DTM, GIS, editing or visualisation programs are provided. In
this regard, OPALS makes intensive use of open source solutions
like the geodata abstraction library GDAL (GDAL, 2009) for ac-
cessing grid data and the OGR simple feature library (subset of

In: Bretar F, Pierrot-Deseilligny M, Vosselman G (Eds) Laser scanning 2009, IAPRS, Vol. XXXVIII, Part 3/W8 – Paris, France, September 1-2, 2009
Contents Keyword index Author index

57

markus
Notiz
None festgelegt von markus

markus
Notiz
MigrationNone festgelegt von markus

markus
Notiz
Unmarked festgelegt von markus

markus
Notiz
None festgelegt von markus

markus
Notiz
MigrationNone festgelegt von markus

markus
Notiz
Unmarked festgelegt von markus

GDAL) for interchange of point and line related data. This pro-
vides conformance of OPALS to the specifications of the Open
Geospatial Consortium (OGC, 2009) on the one hand and facili-
tates data exchange with software systems like GRASS (GRASS
GIS, 2009) on the other hand which use the same technology.

Apart form a complete processing chain and the ability to handle
huge data volumes, another main goal of OPALS is to shorten the
time span for transforming research results into software mod-
ules. This is mainly achieved by using a light-weight framework
allowing non expert programmers to concentrate on the actual
research problem whereas the framework deals with general pro-
gramming issues like validation of user inputs, error handling,
logging, etc.

In the following subsections the OPALS framework and the basic
concepts of the OPALS data manager are explained in more de-
tail. Alternative software concepts for processing ALS data are
e.g. described in (David et al., 2008).

3.1 OPALS framework

Every OPALS module is thought to take some input data, apply
a set of algorithms considering certain parameters, and finally
produce some output. This involves numerous recurring, com-
mon tasks like interface definition, user input validation, error
handling, logging, progress control, licensing, and the like. Us-
ing a machine-oriented programming language like C++, these
parts become voluminous, while the actual algorithm to be im-
plemented may represent only a small fraction of the entire code.
To disburden module programmers from all these matters, the
light-weight OPALS software framework was set up.

The implementation of research outcomes by the different re-
searchers themselves facilitates rapid public applicability on the
one hand. On the other hand, these compact implementations are
prone to reflect peculiar programming styles concerning naming
conventions, log file layout, etc. in their interface. However, a
uniform behaviour and look-and-feel of the individual modules
is essential in order to ensure module interoperability and short
training periods on behalf of users, which is therefore encouraged
by the framework.

As mentioned above, the definition of interfaces and the valida-
tion of user inputs are core features of the OPALS framework.
For each option, module programmers only need to specify an
option descriptor, the respective value type, the optionality, and
a help text. Options belong to one of four classes of optional-
ity: (i) mandatory, (ii) estimable, (iii) ignorable, and (iv) aborting
(e.g. ‘help’). An option for a general input file may serve as a
representative example:

(inputfile, std::string, 0, "input file name")

This option is specified by an intuitive name (inputfile), it accepts
string-type values (C++ standard template library string std::string),
it is mandatory, as indicated by the optionality value 0, and its
meaning is further explained by a help text. Based on this generic
option description, the framework performs a series of uniform
tasks. First, separate get-, set-, and isSet- functions are created for
each option, considering its name and data type. This is achieved
using preprocessor macros, which result in the following, auto-
matically generated code:

std::string get_inputfile() const;
void set_inputfile (const std::string &infile);
bool isSet_inputfile() const;

Furthermore, the implementations as executable, Python module
and shared library with C++ API are defined by the framework,
again based on macros. Finally, the framework provides uniform
functions for writing log files in a clear XML structure and an
error handling system based on exceptions. An example module
is described in more detail in section 4.

3.2 OPALS data manager

Compared to the flexibility and the generality of spatial databases,
applications covered by OPALS require only a limited set of spa-
tial operations onto the original data. For example, window and
nearest neighbour queries are key operations for DTM interpo-
lation, normal estimation, segmentation and similar tasks. Con-
sidering the properties of the source data and queries which have
to be supported, the OPALS data manager (ODM) was designed
and implemented to achieve maximum performance. The ODM
operates as a spatial cache on top of either a low-level file based
data administration or a spatial geodatabase running in the back-
ground.

The ODM stores point data in a K-d tree, a generalisation of a
binary search tree (Bentley, 1975), and more complex geometries
in an R*-tree (Beckmann et al., 1990). The K-d tree is an ex-
tremely fast spatial indexing method. This static indexing struc-
ture only supports point data, but its speed is outstanding which
is why the disadvantage of two separated spatial indices and the
limited support for insertion/ deletion was accepted. Both indices
are wrapped in the ODM, such as if all geometry data were man-
aged in a single spatial index structure. Both indexing methods
have to be thread safe as multiple processing threads may access
and modify the data manager simultaneously. Huge ALS projects
can easily exceed the memory of todays computers. Hence, it was
necessary to develop an extended K-d tree which swaps unneeded
data to disk in an efficient manner. Therefore, the overall data
area is spilt into tiles. The point data of each tile are then indexed
by one K-d tree. An intelligent stacking system guarantees a low
degree of data swapping which is crucial for the overall system
performance. More details about point data administration using
multiple K-d trees can be found in (Otepka et al., 2006).

Apart from fast spatial queries, the ODM also provides an ad-
ministration scheme for storing attributes of arbitrary number and
data type on a per-point basis. The additional point attributes may
either stem from the initial analysis of the full waveform signal
(e.g. echo width, amplitude, etc.) but may also be calculated
by one of the OPALS modules. The three components (nx, ny,
nz) of the surface normal vector, for instance, may be calculated
for each ALS point in a separate module, stored as additional
information to be used by a different module dealing with seg-
mentation of surface elements. Thus, the additional information
system is highly dynamic and can, therefore, be used to commu-
nicate information between different modules without the need
for external storage of attributes.

4 MODULE EXAMPLE

In this section, the concrete module opalsGrid is explained in
more detail. The scope of opalsGrid is to derive a regular grid
in GDAL-supported format, based on an ODM file. Simple inter-
polation techniques like moving-planes are applied on the basis
of n nearest neighbours. For the sake of clarity, only the five
most important options are shown in this example, whereas the
real opalsGrid module features some more.

As pointed out in section 3.1, the module programmer basically
has to provide the generic option description and the implemen-
tation of the runModule() function. The following option list is
used:

((infile, Path, 0, "input ODM file name")) \
((outfile,vector<Path>, 1, "output gridfile name")) \
((gridsize, float, 2, "model grid width")) \
((interpolation, IplMethod, 2, "interpolation method")) \
((neighbours, int, 2, "nr of nearest neighbours")) \

In: Bretar F, Pierrot-Deseilligny M, Vosselman G (Eds) Laser scanning 2009, IAPRS, Vol. XXXVIII, Part 3/W8 – Paris, France, September 1-2, 2009
Contents Keyword index Author index

58

markus
Notiz
None festgelegt von markus

markus
Notiz
MigrationNone festgelegt von markus

markus
Notiz
Unmarked festgelegt von markus

markus
Notiz
None festgelegt von markus

markus
Notiz
MigrationNone festgelegt von markus

markus
Notiz
Unmarked festgelegt von markus

The OPALS framework automatically creates the C++ code for
the command line executable as well as the C++/Python API for
module opalsGrid. The following usage screen appears when en-
tering opalsGrid within the command prompt without any fur-
ther options:

Usage opalsGrid:
--infile arg input ODM file name
--outfile arg (=estim) output gridfile name
--gridsize arg (=1) model grid width
--interpolation arg (=p) interpolation method
--neighbours arg (=8) nr of nearest neighbours

Below the header, one line is printed for each option. Each line
starts with the option descriptor, followed by the keyword ’arg’,
if a value may be assigned. Estimable option values are indi-
cated by a following ’(=estim)’, while constant default values are
shown in round brackets. Mandatory options lack these indica-
tions. At the end of each option-line, an explanatory text is out-
put. OPALS makes extensive use of the open source boost C++ li-
braries (Boost, 2009). For the executables, boost::program options
is applied to parse and store the command line options. In the
following code snippet, showing the C++ class declaration of
class ModuleGrid, boost::filesystem is deployed providing the
data type for input and output file paths (already used in the
generic options description above).

class ModuleGrid : virtual public ModuleBase
{

typedef boost::filesystem:path Path;
typedef opals::GridInterpolationMethod IplMethod;

public:
// Constructors and Destructor
ModuleGrid();
ModuleGrid(const ModuleGrid &ref);
virtual ~ModuleGrid() {};
// set parameters
void set_infile (const Path &infile);
void set_outfile (const std::vector<Path> &outfile);
void set_gridsize (const float &gridsize);
void set_interpolation (const IplMethod &interpol);
void set_neighbours (const int &neighbours);
// query if parameters are set
bool isSet_infile() const;
bool isSet_outfile() const;
...
// get parameter value functions
Path get_infile() const;
...
int get_neighbours() const;

protected:
virtual void checkModuleParameters();
virtual void runModule();
void estimate_outfile();

};

This class declaration is also the basis for the C++ API DLL and
Python interfaces, where the latter is exported using boost::python.
Please note, that the declaration and the definition (not shown
here) of all access and query functions (set option, get option)
were created automatically by the OPALS framework. The mod-
ule programmer is only responsible for implementing the check-
ModuleParameters() function to verify the integrity of the param-
eter settings (cross dependencies of options) and the actual run-
Module() function. An estimate outfile() function also appears
in the declaration due to the optionality value 1 of option out-
file, which indicates an option whose value may be estimated (in
this case based on the input file name). For all remaining options
with optionality value 2, an appropriate, constant default value
exists (c.f. usage screen). The following snippets demonstrate
how OPALS modules can be applied in scripts, beginning with a
simple Batch-file:

@echo off
rem +++ Simple opalsGrid Batch Example
echo Running opalsGrid...
call opalsGrid -inf=strip1.odm -out=strip1-dtm.tif -grid=0.5
echo Done!

In this example, a regular 0.5m grid is derived, and stored in Geo-
Tiff file format (due to the output file extension .tif). The exam-
ple shows that command line options can be abbreviated (e.g.
grid=0.5), and options may be omitted if appropriate default val-
ues are available as for options interpolation (default: moving
planes) and neighbours (default: 8). The final code snippet shows
the same example embedded in a Python script:

#Simple opalsGrid Python Example
#+++++++++++++++++++++++++++++++
from opalsGrid import *
mygrid = Grid()
print "Running opalsGrid..."
mygrid.set_infile(’strip1.odm’)
mygrid.set_outfile(’strip1-dtm.tif’)
mygrid.set_gridsize(5.0)
mygrid.run()
print "Done!"
#+++++++++++++++++++++++++++++++

5 FIRST RESULTS

As a fist package, oaplsQC (quality control) is currently work in
progress. opalsQC is a collection of modules for checking the
quality of ALS point clouds. The aim of this package is to get
a simple and fast overview about the captured terrain data and
their quality. Among the features of interest are: DSMs, point
density maps, point distance maps, 3D-strip difference measures,
and the like. The final goal is to provide a professional basis of
decision-making whether or not further pre-processing steps like
strip adjustment are required. Table 1 shows a list of all mod-
ules designed for opalsQC along with a short description for each
module.

module description
opalsImport importing point cloud data into ODM
opalsExport exporting point could data from ODM
opalsGrid simple and fast grid interpolation based

on point cloud data
opalsCell derivation of raster models via aggregation

of point data information
opalsBounds derivation of ODM outlines
opalsOverlap derivation of a list of overlapping strip pairs
opalsMask computation of grid masks
opalsDiff calculation of difference grid models
opalsShade derivation of shaded relief raster maps
opalsZColour derivation of colour coded raster maps
opalsStitch mosaicing of multiple grids/raster images
opalsLSM derivation of 3D-shifts of overlapping

strips via least squares matching (LSM)

Table 1: List of modules designed for opalsQC

Apart from the listed modules, opalsQC will also contain a set of
standard scripts e.g. for automatically deriving colour coded strip
difference maps or point density maps for a set of ALS strips.
Fig. 2 shows an example of an image mosaic containing colour
coded relative height differences of nine overlapping ALS strips.
For the derivation of the illustrated map, the following OPALS
modules were involved: opalsImport to import the point cloud
data into separate ODM files, opalsGrid to calculate last-echo
DSMs, opalsBounds to derive the strip outlines, opalsOverlap to
determine overlapping ALS strips, opalsDiff to calculate the dif-
ference models, opalsZColour to derive the distinct colour coded
raster maps and, finally, opalsStich to create the image mosaic.

6 CONCLUSIONS AND FUTURE WORK

In this article we presented the concept and first results of the
new comprehensive ALS software OPALS. OPALS mainly fo-

In: Bretar F, Pierrot-Deseilligny M, Vosselman G (Eds) Laser scanning 2009, IAPRS, Vol. XXXVIII, Part 3/W8 – Paris, France, September 1-2, 2009
Contents Keyword index Author index

59

markus
Notiz
None festgelegt von markus

markus
Notiz
MigrationNone festgelegt von markus

markus
Notiz
Unmarked festgelegt von markus

markus
Notiz
None festgelegt von markus

markus
Notiz
MigrationNone festgelegt von markus

markus
Notiz
Unmarked festgelegt von markus

Figure 2: Raster image mosaic containing colour coded relative
height differences of nine ALS flight strips (12...20) constituting
8 overlapping strip pairs (12/13...19/20), strip overlap: approx.
50%, flight direction: east-west, white areas: data voids due to
water bodies or single strip coverage

cusses on automatic project workflows and processing of huge
ALS projects, for which an efficient data administration is of
crucial importance. The OPALS data manager was introduced,
allowing fast spatial data access even for billions of points, and
furthermore featuring a flexible administration of additional point
attributes. In addition, OPALS provides a light-weight software
framework covering general software development issues and,
thus, supporting programmers to concentrate on their actual re-
search problems. The entire scientific community benefits, since
researchers can adopt new algorithms in their own research work
more rapidly. Licensing issues are not covered in this paper, but
the aim is to apply a moderate pricing policy. In this sense,
OPALS is an initiative to advance the scientific progress in the
field of laser scanning.

First experiences concerning a package dealing with quality con-
trol of ALS point data were gathered, and first results were pre-
sented. To achieve a complete processing chain from the raw
ALS point cloud to a precise and reliable DTM, many steps are
ahead, which we are willing to take since the first experiences
with the OPALS system give cause for optimism.

REFERENCES

ASPRS, 2009. www.lasformat.org. Homepage of ASPRS LAS
file format.

Beckmann, N., Kriegel, H.-P., Schneider, R. and Seeger, B.,
1990. The r*-tree: An efficient and robust access method for
points and rectangles. In: H. Garcia-Molina and H. V. Jagadish
(eds), Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data, Atlantic City, NJ, May 23-
25, 1990, ACM Press, pp. 322–331.

Bentley, J. L., 1975. Multidimensional binary search trees used
for associative searching. Communications of the ACM 18(9),
pp. 509–517.

Boost, 2009. www.boost.org. Homepage of boost C++ libraries.

Briese, C., 2004. Three-dimensional modelling of breaklines
from airborne laser scanner data. In: IAPRS, Vol.XXXV, B3,
Istanbul, Turky.

David, N., Mallet, C. and Bretar, F., 2008. Library concept and
design for lidar data processing. In: GEOgraphic Object Based
Image Analysis (GEOBIA) Conference, Calgary, Canada.

Doneus, M. and Briese, C., 2006. Digital terrain modelling
for archaeological interpretation within forested areas using full-
waveform laserscanning. In: The 7th International Symposium
on Virtual Reality, Archaeology and Cultural Heritage VAST,
Cyprus.

Dorninger, P. and Pfeifer, N., 2008. A comprehensive automated
3d approach for building extraction, reconstruction, and regular-
ization from airborne laser scanning point clouds. Sensors 8(11),
pp. 7323–7343.

ESRI, 1998. www.esri.com/library/whitepapers/pdfs/shapefile.pdf.
ESRI Shapefile Technical Description.

GDAL, 2009. www.gdal.org. Homepage of Geospatial Data Ab-
straction Library.

GRASS GIS, 2009. grass.osgeo.org. Homepage of Grass GIS.

Hollaus, M., Wagner, W., Maier, B. and Schadauer, K., 2007.
Airborne laser scanning of forest stem volume in a mountainous
environment. Sensors 7(8), pp. 1559–1577.

Kager, H., 2004. Discrepancies between overlapping laser scan-
ning strips - simultaneous fitting of aerial laser scanner strips. In:
IAPRS, XXXV, B/1, Istanbul, Turkey, pp. 555–560.

Kraus, K. and Pfeifer, N., 1998. Determination of terrain models
in wooded areas with airborne laser scanner data. ISPRS Journal
of Photogrammetry and Remote Sensing 53, pp. 193–203.

Kraus, K. and Pfeifer, N., 2001. Advanced DTM generation from
LIDAR data. In: IAPRS, XXXIV, 3/W4, Annapolis, MD, USA,
pp. 23–30.

Mandlburger, G., Briese, C. and Pfeifer, N., 2007. Progress in
LiDAR sensor technology - chance and challenge for DTM gen-
eration and data administration. In: Proceedings of the 51th Pho-
togrammetric Week, D. Fritsch (ed.), Herbert Wichmann Verlag,
Heidelberg, Germany, pp. 159–169.

Mandlburger, G., Hauer, C., Höfle, B., Habersack, H. and Pfeifer,
N., 2008. Optimisation of lidar derived terrain models for river
flow modelling. Hydrology and Earth System Sciences Discus-
sions 5(6), pp. 3605–3638.

OGC, 2009. www.opengeospatial.org. Homepage of Open
Geospatial Consortium.

Oracle, 2009. www.oracle.com/technology/products/spatial. Or-
acle Spatial Homepage.

Otepka, J., Briese, C. and Nothegger, C., 2006. First steps to a
topographic information system of the next generation. In: Sym-
posium of ISPRS Commission IV - Geo Spatial Databases for
Sustainable Development, Goa, India.

Pfeifer, N., Stadler, P. and Briese, C., 2001. Derivation of digital
terrain models in the SCOP++ environment. In: Proceedings of
OEEPE Workshop on Airborne Laserscanning and Interferomet-
ric SAR for Detailed Digital Terrain Models, Stockholm, Swe-
den.

Refraction Research, 2009. postgis.refractions.net. PostGIS
Homepage.

Ressl, C., Kager, H. and Mandlburger, G., 2008. Quality check-
ing of als projects using statistics of strip differences. In: IAPRS,
XXXVII, pp. 253 – 260.

Rottensteiner, F. and Briese, C., 2002. A new method for building
extraction in urban areas from high-resolution LIDAR data. In:
IAPRS, XXXIV, 3A, Graz, Austria, pp. 295 – 301.

Székely, B., Hollaus, M., Zámolyi, A., Draganits, E., Roncat, A.
and Pfeifer, N., 2008. Some geoscientific applications of airborne
laser scanning dtms in austria. Journal of Alpine Geology 49,
pp. 109–110.

Wagner, W., Ullrich, A., Ducic, V., Melzer, T. and Studnicka, N.,
2006. Gaussian decomposition and calibration of a novel small-
footprint full-waveform digitising airborne laser scanner. ISPRS
Journal of Photogrammetry and Remote Sensing 60(2), pp. 100–
112.

Wagner, W., Ullrich, A., Melzer, T., Briese, C. and Kraus, K.,
2004. From single-pulse to full-waveform airborne laser scan-
ners: potential and practical challenges. In: IAPRS, XXXV, Is-
tanbul, Turkey.

In: Bretar F, Pierrot-Deseilligny M, Vosselman G (Eds) Laser scanning 2009, IAPRS, Vol. XXXVIII, Part 3/W8 – Paris, France, September 1-2, 2009
Contents Keyword index Author index

60

markus
Notiz
None festgelegt von markus

markus
Notiz
MigrationNone festgelegt von markus

markus
Notiz
Unmarked festgelegt von markus

markus
Notiz
None festgelegt von markus

markus
Notiz
MigrationNone festgelegt von markus

markus
Notiz
Unmarked festgelegt von markus

