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ABSTRACT: 
 
LIDAR is a powerful remote sensing technology for acquisition of 3D information from terrain surface. Algorithms used for LIDAR 
data in urban area are used mostly to deal with the 3D points cloud and to identify objects, such as buildings, trees and roads. In 
contrast to the well studied problem of building and tree detection from LIDAR data, the detection of roads from LIDAR is in its 
formative years. Road detection from remotely sensed data is a difficult problem that requires more research due to the many 
unsolved questions related to scene interpretation. Existing road extraction techniques are characterised by poor detection rates and 
the need for existing data and / or user interaction. To improve the potential of road extraction process, other information in addition 
to the height of cloud points is required, such as laser intensity. However, few algorithms for classification using intensity data have 
been deeply investigated. The laser intensity differs from material to material. The intensity of reflection for most instances of the 
same material is similar; while pulse intensity from different materials differs. This article deals with using as much of the recorded 
laser information as possible thus both height and intensity are used. To extract roads from an LIDAR point cloud, a multiple 
classifier system is used to classify the LIDAR points into road and other non-road objects. We experiment classifier selection and 
combination in classification of LIDAR data over an urban area, wherein we aim to select an optimal or sub-optimal subset of 
classifiers from available combination candidates through an evolutionary strategy. The performance of the selected classifiers is 
measured by the combination accuracy using plurality of votes. The obtained results show that optimum subset classifier selection, 
improves the combination performance compared to the combination of all classifiers. 
 
 

1. INTRODUCTION 

Automatic extraction of roads in complex environments is one 
of the challenging issues in photogrammetry and computer 
vision, since many tasks related to automatic scene 
interpretation are involved (Hinz, 2004). Modelling of the roads 
required for a variety of tasks such as urban planning, network 
planning for mobile communication and tourism information 
systems.  

For a long time, the only data sources, used for road extraction, 
were aerial and satellite imagery. Approaches designed to 
process satellite or low-resolution aerial images generally 
describe roads as curvilinear structures (Wiedemann and Ebner, 
2000; Gecen and Sarp, 2008; Heipke, 2007), while those using 
large scale imagery (i.e., a ground resolution less than 1 m) 
model roads mostly as relatively homogeneous areas satisfying 
certain shape and size constraints (Baumgartner et al., 1999; 
Hinz, 2004). 

More recently, advancements in LIDAR enabled the acquisition 
of dense point clouds. Major benefits of this technique are its 
high level of automation during data capturing and its spatial 
resolution. With point densities of up to several points per 
square meter laser scanning data have become a valuable 
additional data source for the reconstruction of different urban 
objects such as building, tree and roads.  

There have been several attempts to extract roads from LIDAR 
data. Alharthy and Bethel used both the intensity and height 
information were used to filter the raw LIDAR data and remove 
“noise” that was unrelated to the road class (Alharthy, Bethel, 
2003). Clode Perform road classification in a manner similar to 
Alharthy and Bethel (Clode, 2004). In their work, the road 

extraction process will be split into two stages, classification 
and vectorisation. Classification is accomplished by applying a 
hierarchical method yielding a binary image of ground 
elements (hence called “pixels”) classified as belonging to a 
road. Vectorisation of roads is then performed by convolving 
this binary image with a Phase-Coded-Disk (PCD) in order to 
extract the road centerline and to determine the road width. 

Compared to the relatively high number of research groups 
focusing their work on road extraction from images, only a 
few groups work on the automatic extraction of roads in urban 
environments from LIDAR data. Usually, for automatic road 
recognition or reconstruction from LIDAR, we need to classify 
roads from LIDAR data to get the extraction results. In order 
to efficiency classify LIDAR data, other information, such as 
laser intensity, in addition to the height of cloud points is 
required. However, few algorithms for classification using 
intensity data have been deeply investigated (Mao, 2008). 

The ultimate goal of most traditional methods in road 
extraction is to achieve the best possible classification 
performance for recognition of different objects such as 
buildings, roads and trees. This objective traditionally led to 
the development of different classification schemes for the 
recognition problem to be solved. The results of an 
experimental assessment of the different designs would then be 
the basis for choosing one of the classifiers as a final solution 
to the problem. (Kuncheva, 2004; Biggio and Roli, 2008) 

It has been observed in recognition of roads from LIDAR data, 
that although one of the designs would yield the best 
performance, the sets of patterns misclassified by the different 
classifiers would not necessarily overlap. This suggested that 
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different classifier designs potentially offered complementary 
information about the roads which could be harnessed to 
improve the performance of the selected classifier. These 
observations motivated the relatively recent interest in 
combining classifiers.  

The idea is not to rely on a single decision making scheme. 
Instead, all the designs, or their subset, are used for decision 
making by combining their individual opinions to derive a 
consensus decision. Various classifier combination schemes 
have been devised and it has been experimentally demonstrated 
that some of them consistently outperform a single best 
classifier. However, there is presently inadequate understanding 
why some combination schemes are better than others and in 
what circumstances. In this paper, we present a road extraction 
method from both intensity and height information from 
LIDAR data, based on optimum classifier selection and fusion 
of them.  
 
 

2. MULTIPLE CLASSIFIER SYSTEMS (MCS) 

Combining classifiers is an established research area shared 
between statistical pattern recognition and machine learning. It 
is variously known as committees of learners, mixtures of 
experts, classifier ensembles, multiple classifier systems, 
consensus theory, etc. In such systems the optimal set of 
classifiers is first selected and then combined by a specific 
fusion method. If we have many different classifiers, it is 
sensible to consider using them in a combination in the hope of 
increasing the overall accuracy.  

Methods that used for combination of classifiers depending on 
output type of single classifier. Hard classifier is a classifier 
only outputs a unique class, and soft classifier is a classifier that 
associates for each class a confidence measurement and at the 
end produced a vector for every classifier and a matrix for 
ensemble of classifier. Hard fusion methods are methods only 
use hard classifiers and soft fusion methods use soft classifiers. 

Majority Voting (MV), Naïve Bays (NB) are two popular hard 
methods that fused hard classifiers.  

One of the simplest combiners operating on binary classification 
outputs (correct/incorrect) is the majority voting (MV). Due to 
its simplicity, MV can be applied to classifiers producing 
different types of outputs as they all can be converted to the 
uniform binary outputs: 1/0 (correct/incorrect). Applications of 
MV for pattern recognition have already been studied in detail 
in (Lam, Suen, 1997). Lam and Suen studied MV performance 
for both odd and even number of independent classifiers 
supported by conditions of beneficial addition of one and two 
classifiers to the MCS. 

MV considers only the most likely class provided by each 
classifier and chooses the most frequent class label among this 
crisp output set. In order to alleviate the problem of ties, the 
number of classifiers used for voting is usually odd (Kuncheva, 
2004). A trainable variant of majority voting is weighted 
majority voting, which multiplies each vote by a weight before 
the actual voting. The weight for each classifier can be 
obtained; e.g., by estimating the classifiers’ accuracies on a 
validation set. Assume that the label outputs of the L classifiers 
are given as c-dimensional binary vectors 
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Where, iD is ith classifier and jw is jth class.       

If the classifiers in the ensemble are not of identical accuracy, 
then it is reasonable to attempt to give the more importance to 
better classifiers in making the final decision. The label 
outputs can be represented as degrees of support for the classes 
in the following way: 
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The discriminant function for class jw obtained through 

weighted voting is: 

                         
                            (3)  

 

Where, ib is the Weight of iD classifier. 

2.1  Optimum Classifier Selection (OCS) 

The performance of MCS essentially depends on the 
complementarity (diversity) of constituent classifiers (Ship and 
Kuncheva, 2002). The complementarity can be obtained by 
diversifying the feature representation, classifier structure, and 
the training data of constituent classifiers. A strategy is to 
overly generate a large ensemble of candidate classifiers and 
then select a subset for good complementarity (Giacinto and 
Roli, 2001). 

Optimum classifiers selection (OCS) from large ensemble is 
significant in two respects. First, the limited computing source 
of MCS demands that a small number of classifiers are to be 
combined. Second, in many cases, the combination of a subset 
of classifiers may give higher accuracy than combining all the 
classifiers at hand. In pattern recognition applications, we can 
easily generate a large number of classifiers by varying pre-
processing, feature extraction, learning or classification 
algorithms, and training data. Running and combining all these 
classifiers is obviously not a good choice, and the selection of 
a subset should give better performance-to-cost ratio (Sharkey, 
2000). 

Given a set of candidate classifiers, a validation dataset and an 
appropriate selection criterion, the task of OCS is reduced to 
searching the space of classifier subsets to find a subset that 
give optimal criterion on the validation dataset. The validation 
data, the selection criterion, and the search algorithm are all 
influential to the combination performance of MCS. For 
selection from large ensemble, efficient search algorithms are 
needed to overcome the combinatorial explosion of search 
space. Recently, a few works have contributed to MCS design 
using classifier selection. (Giacinto, Roli, 2001) clustered the 
candidate classifiers according to interdependency and selected 
one classifier from each cluster. Roli, et al., also used heuristic 
search for classifier selection (Hao and Liu, 2003). In regard of 
the selection criterion, a number of classifier diversity 
measures have been studied (Ship, Kuncheva, 2002). 
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3. PROPOSED METHOD FOR DETERMINATION OF 
OPTIMUM CLASSIFIERS SELECTION 

The goal of proposed classifier selection strategy is to select a 
subset of k classifiers from a given set of K (K>k) candidates, to 
achieve the best combination performance for classification of 
LIDAR data in complex urban area for extraction of road 
objects. Given a selection criterion (herein the classification 
accuracy of combination on validation data), classifier selection 
is reduced to a combinatorial search problem. Figure 1., shows 
the general structure of proposed methodology for optimum 
subset selection of classifiers for constructing a multiple 
classifier system. 

 

Figure 1. Flowchart of proposed method 
 

In our proposed GA based optimization method, a selected 
subset of classifiers is represented by a binary string called a 
chromosome, with a 1/0 at position i denoting the 
presence/absence of classifier i. A number of chromosomes, 
called a population, evolve from generation to generation by 
selection, crossover, and mutation, with hope that the criterion 
measures (called fitness functions) of the chromosomes 
improve. The selection of chromosomes to survive to the next 
generation is based on the fitness functions such that the 
chromosomes with higher fitness have more chance to survive. 
The crossover and mutation operations enlarge the variation of 
population so as to increase the chance of escaping from local 
optima. After a number of generations, the chromosome of 
highest fitness in the population gives the solution of classifier 
selection (Hao, Liuo, 2003).  

The use of genetic algorithms for MCS optimization requires 
the determination of five fundamental issues, namely: 1- 
Chromosome Representation, 2- Objective function, 3- Natural 
selection, 4- recombination and, 5- Termination criteria.       

 Chromosome Representation: Using a bit string 
encoding scheme for chromosome string, the validity of 
MCS is encoded as shown in Figure 2. The aim of coding 
is to create a representation of existence (value 1) or 
extinction (value 0) of each one of MCS’s classifiers.  

 

 

 

 

 

Figure 2. Chromosome in proposed GA based   method for 
determination of optimum classifiers 

 Objective Function: The accuracy of fusion of any 
combinations of classifiers can be summarized by 
contemplating the correctness of the detected object as 
defined in (Heipke, 1997). 

  

(4)   

Where TP denotes the number of true positives, which is 
the number of pixels found in both the reference and 
detected data sets. FP is the number of false positives, 
which is the number of pixels that were detected but did 
not exist in the reference data set. Correctness is the ratio 
of the number of relevant pixels extracted to the total 
number of relevant pixels and detected irrelevant pixels 
retrieved. 

 Natural Selection: In our approach, we used the roulette 
wheel selection method which has been developed by 
Holland, This is done by assigning each string a wedge on 
a roulette wheel whose size is proportional to the string's 
fitness. In this way a 'fit' string is more likely to be chosen 
than an 'unfit' string. 

 Recombination: Genetic operators in recombination are 
two basic types of operators: crossover and mutation. 
Crossover: Depending on a predefined probability value 
(Prc; 0 ≤ Prc ≤ 1.0), the MCS parameter values of the 
parental individuals will be combined through a uniform 
crossover algorithm. Mutation: In our method, a one-
point mutation algorithm is implemented. The mutation 
will be carried out depending on the mutation probability 
(Prm; 0 ≤ Prm ≤ 1.0). To mutate the value of a MCS 
parameter, the value of a randomly chosen position of the 
binary-coded MCS parameter is changed. This means that 
if the value at this position is 0 (i.e. lack of the term), it 
will be changed into 1 (signifying the presence of the 
term) and vice versa.  

 Termination Criteria: In our method, if the mean or 
standard deviation of the population’s cost (RMSE) 
reaches a certain level, the optimization process is 
terminated.  

 

4. EXPERIMENT AND REULTS 

To assess the capabilities of the 
proposed MCS method a sample 
LIDAR data of an urban area of city 
of Castrop-Rauxel which is located in 
the west of Germany, was selected 
(Figure 3). The selected area was 
suitable for the evaluation of the 
proposed classification strategy 
because the required complexities 
(e.g. proximities of different objects: 
building, tree and road) were  
available in the image. The pixel size 
of the range images is one meter per 
pixel. 
 
This reflects the average density of the irregularly recorded 3D 

points which is fairly close to one per 2m . Intensity images for 
the first and last pulse data have been also recorded and the 
intention was to use them too in the experimental 
investigations. Figure 4 shows first- and last- pulse range and 
intensity images from the Ickern area.  

Figure 3. Digital image  
area

FPTP
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4.1 Results of single classifiers 

The classification process initiated with feature extraction 
operation.Twelve features have proved to be suitable to 
distinguish the main object classes buildings, vegetation (trees, 
bushes etc.), roads and terrain objects. Table 1 shows these 
features. Here N is the number of grey levels and P is the 
normalized symmetric co-occurrence matrix of dimension N x 
N. V is the normalized grey level difference vector of dimension 
N. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By generation feature space for each data layer of LIDAR data, 
the classification of these information computed based on two 
methods of Maximum Likelihood and Minimum Distance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Maximum likelihood classification assumes that the statistics 
for each class in each band are normally distributed and    
calculates the probability that a given pixel belongs to a 
specific class. Unless a probability threshold is selected, all 
pixels are classified. Each pixel is assigned to the class that has 
the highest probability (i.e., the "maximum likelihood"). The 
Minimum Distance classification uses the mean vectors of 
each ROI and calculates the Euclidean distance from each 
unknown pixel to the mean vector for each class. All pixels are 
classified to the closest ROI class unless the user specifies 
standard deviation or distance thresholds, in which case some 
pixels may be unclassified if they do not meet the selected 
criteria. 

Figure 5 shows the outputs of single classifiers. In this figure, 
“max” and “min” denote Maximum Likelihood and Minimum 
Distance classifiers. In this figure “F”, “L”, “I” and “R” 
denotes respectively First Pulse, Last Pulse, Intensity and 
Range. For each classifier that has been shown in this figure, 
correctness measures have been computed and these results 
have been shown for asphalt road class in Table 2. 

Results of single classifiers show that Minimum Distance on 
the first pulse intensity has best correctness measure with 
79.67 and Maximum Likelihood on the first range produce 
worse result. Two classification methods produce weak result 
on the range of LIDAR data than intensity like 5.83 for range 
and 51.22 for intensity. 

 
4.2 Results of classifier fusion and selection 

In this step, best combinations of 2, 3, 4, 5, 6 and 7 classifiers 
are selected and fused by Majority Voting (MV). In the end of 
this experiment, best combination of classifiers has selected by 
Genetic Algorithm. Figure 6(h) shows result of fusion without 
selection (by all of 8 classifiers) and figure 6(g) shows result 
of fusion of selected classifiers by GA. Comparison between 
result of table 2, 3 shows that multiple classifier system 
improved correctness measures for road class rather than 
single classifiers. Best result for correctness produced by 
fusion of classifiers that selected by GA. 87.37 is the best 
measure which produced by fusion and selection and improved 
best result of single classifiers to 8%. 
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Table1: Different features that used for classification of ALS data set.
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Figure 4.  Data set, a) first pulse intensity, b) first pulse 
range, c) last pulse intensity, d) last pulse range 
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Figure 6. Result of fusion with N  best combination of  classifiers, a) 2 classifiers, b) 3 classifiers ,c) 4 
classifiers  ,d) 5 classifiers  ,e) 6classifiers ,  f) 7classifiers , g) Best result from GA for Asphalt road 

class, h) result of fusion without selection and by all 8 classifiers 

classifiers 1FIc  1FRc  1LIc  1LRc  2FIc  2FRc  2LIc  2LRc  

Asphalt road 34.96 5.83 51.22 8.13 79.67 61.79 78.86 58.54 

Table 2. correctness measures for single classifiers 
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f he 

c

g

Figure 5. Result of classification, a) FImax , b) FRmax, c) LImax, d) LRmax, e) FImin,  f) FRmin, 
g) LImin, h) LRmin 
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5. CONCLUSION 

In this paper an optimum multiple classifier system presentd for 
classification and extraction of road objects by involving both 
height and intensity information of LIDAR data. Optimum 
subset of classifiers determined through an evolutionary 
strategy. The obtained results showed that there is not any 
guaranty to improving the accuracy of classification by any 
combination of classifiers in a multiple classifier system. 
Although we got promising results from proposed optimum 
classifier fusion method for classification of objects and 
extraction of roads in different urban areas, but there are still 
available open questions in this research work. These questions 
are around the optimum determination of features, type of 
classification techniques and the potential of other 
methodologies in classifier fusion. 
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Combinations Optimum Subset of Classifiers Correctness 

Combination of 2 of n 2,2 FRcFIc  87.37 

Combination of 3 of n 2,2,2 LIcFRcFIc  80.15 

Combination of 4 of n 
2221 ,,, FRcLIcFIcLIc  79.80 

Combination of 5 of n 
22221 ,,,, LRcLIcFRcFIcLRc  69.11 

Combination of 6 of n 
222121 ,,,,, LIcFIcLRcLRcFRcFRc  55.28 

Combination of 7 of n 
2222111 ,,,,,, LRcFRcLIcFIcLRcLIcFRc  52.84 

Combination of 8 classifier 
without selection 

22221111 ,,,,,,, LRcFRcLIcFIcLRcLIcFRcFIc  50.404 

Best combination by GA 2,2 FRcFIc 87.37 

Table3 .Result of combination with different best selected classifiers 
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