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ABSTRACT:  
 
In this paper we present a new efficient edge detection algorithm for the extraction of linear features in range image data. In the 
proposed algorithm the distinguished points, which will comprise the edges, depend on the spatial analysis of the numerical 
description of the mean curvature values. The work was motivated by the fact that the optimality of edge detectors for range images 
has not been considered in the literature, some algorithms are limited to synthetic range images and will totally fail in the presence of 
noise, others which have been tested in real range images are complicated with large numbers of parameters. As it will be 
demonstrated, the algorithm features computational efficiency, high accuracy in the localization of the edge points, easy 
implementation, and robustness against noise. The generality and robustness of the algorithm is illustrated on complex scene images 
with different range sensors. 
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1. INTRODUCTION 

Range images provide the fundamental contribution toward the 
goal of understanding 3-D shape, which is required for general-
purpose object recognition and image understanding [Gächter et 
al, 2006]. For such 2.5D raster grids neighborhood relations are 
available implicitly and tools from image processing can be 
adopted easier than using unordered 3D point clouds [Chen & 
Stamos, 2007; Yu & Ferencz, 2001]. The most significant 
problem in the early stages of image analysis is image 
segmentation, a process of partitioning of pixels in the image 
into meaningful parts in order to extracting important image 
features. Algorithms developed for the segmentation of intensity 
image have been discussed extensively in the literature. Well-
known examples for the real time segmentation of intensity 
images are [Palmer et al, 1996; Canny, 1986]. In the other hand, 
ready-made solutions for range image segmentation are not 
available to a comparable extend [Gächter, 2005]. 

Similar to image processing, existing approaches can be 
categorized in region-based and edge based techniques. Region 
based approaches group range pixels into connected regions 
using some homogeneity measure. For each region, an 
approximating surface model is computed. Different range 
image segmentation algorithms based on region growing were 
analyzed systematically in [Hoover et al, 1996]. There the 
authors also conclude that range image segmentation is still not 
really a solved problem even for simple industrial scenes 
containing polyhedral objects. More recent publications are e.g. 
given in [Marchall et al, 2001; Melkemi & Sapidis, 2002]. 
Range data is usually well suited for the extraction of smooth or 
planar surface patches, while the accuracy of directly extracted 
edges is limited. This results from the fact that range 
measurement is usually noisy at such discontinuities mainly due 
to multipath effects. For this reason only a few segmentation 
algorithms use edge based techniques [Sze et al, 1998; Vitulano 
& Maniscalco, 2004; Katsoulas & Werber, 2004]. Most of these 
approaches are again focused on simple polyhedral objects and 
are limited to the detection of specific structures such as straight 
lines or circles. 

 

Typically, the researchers classify the edges in 3D image in two 
main categories; step (jump) edges: represents discontinuities 
on the surface. Crease (fold) edges: correspond to the 
discontinuities of the surface normals. Some researchers 
consider another type of edges called ridgelines edges, example 
of this type are the edges a long the extrema of the major axis of 
the cross section of an elliptical cylinder. For the intensity 
image, the devised segmentation algorithms usually aim to 
detect step edges. This is due to the natural limitation of this of 
this type of images as can be detected in the figure 1. Canny 
operator cannot detect the crease edges for the block range 
image obtained from Ohio State University (OSU) range image 
collection. 

 

 

 

 

 

 

Figure 1. Curve block range image (OSU database). The second 
image shows segmentation result using canny operator. 
 

While in the past range data collection was mainly applied for 
industrial scenes captured at close distances, nowadays long-
range laser scanners either terrestrial or airborne are available 
for many users. By these means detailed data sets of complex 
outdoor scenes are collected, which pose much more serious 
challenges for range image analysis than the traditional 
polyhedral world. The difficulties result from the fact that range 
data of natural scenes are relatively noisy. These measurement 
errors affect the approximation of the surfaces during 
segmentation. In addition, the natural scenes are complex since 
lots of individual objects or irregular surfaces occur. For 
segmentation of this type of data [Sappa et al, 2001] propose a 



 

 

 

two-step approach. The first step generates a binary edge map 
based on a scan line approximation technique as e.g. proposed 
by [Jiang & Bunke, 1999]. The second step aims on contour 
extraction by a weighted graph. A minimum spanning tree 
(MST) is computed to obtain the shortest path, which links all 
the edge points. One of the main drawbacks of this algorithm is 
the fact that during the MST filtering many edges are 
eliminated. Recently [Han et al, 2004] presented a stochastic 
jump-diffusion algorithm for the segmentation of range images 
in a Bayesian framework. The algorithm can be used for 
processing of complex real-world scenes. Although it is 
considered as the most advanced algorithm for complex scene 
segmentation, some drawbacks such as computational 
complexity and the large number of required parameters are still 
mentioned. In addition, suitable a priori assumptions are 
required.  

Thus, some existing algorithms are limited to high quality range 
images and will fail in the presence of noise. Others are 
complicated and have a large numbers of parameters while 
generic and efficient edge detectors for range images are still 
missing. This was our motivation for the development of an 
edge detection algorithm for range images. Detailed 
presentation of the segmentation algorithm is discussed in 
section 2. Section 3 discuses the characteristics and the 
performance of the algorithm.  

 

2. ALGORITHM DESCRIPTION 

2.1  Methodology  

The approach is based on the analysis of classical differential 
geometry of 3D surfaces. In our algorithm, the distinguished 
points, which will comprise the edges within the range image, 
are extracted by the spatial analysis of the numerical description 
of the mean curvature values. For this purpose, the surface is 
locally approximated by an analytic representation. The 
different properties of the patch at the respective points of 
interest are then calculated analytically. In order to benefit from 
the behaviour of the mean curvature at edges, the algorithm 
detects local maxima or zero crossings in the range image. 
Further processing steps like a multi-scale edge detection and a 
subsequent skeletonization are used to increase the reliability 
and accuracy during the edge detection and localization. 

2.2 Mathematical Properties of Mean Curvature Values 

In general, successful segmentation requires an appropriate 
surface description. This description should be rich, so that 
matches of similar elements can be detected, stable so that local 
changes do not radically alter the descriptions, and it should 
have a local support so that the visible objects can be easily 
identified. These characteristics are provided by the 
mathematical properties of the mean curvature, which is closely 
related to the first variation of a surface area. Unlike the 
Gaussian curvature, the mean curvature depends on the 
embedding, for instance, a cylinder and a plane are locally 
isometric but the mean curvature of a plane is zero while that 
for a cylinder is non-zero. Mean curvature is invariant to 
arbitrary rotations and translation of surface, which is important 
for surface shape characterization. Since mean curvature is the 
average of the principal curvatures, it is slightly less sensitive to 

noise during numerical computations. Due to these 
characteristics, mean curvature values can provide stable and 
useful measures for detecting surface features in range and 
intensity images. 

Several techniques are known for the efficient estimation of the 
mean curvature. The frequently applied analytical methods fit a 
surface in a local neighbourhood of the point of interest.This 
surface approximation is then used to compute the partial 
derivatives needed to calculate the curvature values. As an 
example [Besl & Jain, 1988] proposed an analytical technique 
for estimating the mean and Gaussian curvature. The advantage 
of this approach is its flexibility to estimate the curvature values 
at multiple scales, and the efficient computation of the values by 
optimized convolution operations. For these reasons, the 
estimation of the mean curvature values in our algorithm is also 
based on a modification of this approach. It can be summarized 
as follows: For a given odd N N×  window, each data point is 
associated with a position (u, v) from the set U U×  where 

 ( ) ( ){ }- -1 2,...,-1,0,1,..., -1 2U N N=  

The local biquadratic surface fitting capability is provided using 
the following discrete orthogonal polynomials: 

 Ø0 (u)=1, Ø1 (u)=u , Ø2 (u)= (u2 – M(M+1)/3); M= (N-1)/2 

To estimate the first and second partial derivatives, an 
orthogonal set of di(u) functions using the normalized versions 
of the orthogonal polynomials Øi (u) is used:  
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Since the discrete orthogonal quadratic polynomials over the 
2D window are separable in u and v, partial derivative estimates 
can be computed using separable convolution operators. These 
derivatives estimates can then be plugged into the equation for 
mean curvature. The equally weighted least squares derivative 
estimation window operators are then given 
by:

0 1 1 0 0 2 0 12 1[ ]  , [ ]  ,[ ]  , [ ]  , [ ]  T T T T TD d d D d d D d d D d d D d du v uu vv uv= = = = =
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�  ( , )g i j represents the noisy, quantized discretely sampled 
version of a piecewise-smooth graph surface. Then the partial 
derivative estimate images are computed via appropriate 2D 
image convolutions. 
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The mean curvature is then computed using the partial 
derivatives estimates as the following: 
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2.3 Mean Curvature Spatial Analysis 

The behaviour of the mean curvature for specific object 
properties can be demonstrated well by the filter results for 
synthetic range images. Thus the mean curvature was computed 
for range images of a block and a wye, which are depicted in 
Figure 1. The curvature values were then extracted at the 
horizontal profile represented by the line overlaid to the 
respective range image. From the analysis of these curvature 
values as they are depicted in the bottom of Figure 1 one can 
conclude the following: 

a) For jump edge boundaries (J) where surface depths 
are discontinuous, the mean curvature exhibits a zero 
crossing. Two distinct peaks of opposite algebraic 
sign are clearly visible in the profile of computed 
curvature values. 

b) For crease edges (C) at discontinuities in the surface 
normal direction, the curvature response is a smooth 
peak. Concave (Cv) and convex (Cx) edges can be 
discriminated by the different algebraic sign of the 
curvature values. The exact position of a convex 
crease edge is defined by the maximum curvature 
value, while the concave crease edge is given at a 
minimum. 

c) At ridges (R) the mean curvature also indicates a 
change in the orientation of the surface normal, 
however, the response is smaller compared to crease 
edges. 

d) Compared to crease edges, the values of the mean 
curvature are larger at jump edges. Their value mainly 
depends on the magnitude of the depth discontinuity. 

e) Compared to crease edges, the values of the mean 
curvature are larger at jump edges. Their value mainly 
depends on the magnitude of the depth discontinuity. 

 

f) For jump edges, the exact position is defined at a zero 
crossing between two peaks of the mean curvatures, 
whereas for both crease and ridge edges the true edge 
is given by the maximum and minimum peak values. 

After computation of the mean curvature values ( ),H x y a pixel 

represents an edge location { }( , ) : ( , ) 1x y E x y = if the value of 
the gradient exceeds some threshold. Thus:  
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In order to locate the position of crease, ridge and step edges, 
zero crossings as well as smooth peak values are searched 
within the computed mean curvature values during the edge 
detection process. 

2.4 Multi-Mask Approach 

Of course the effectiveness of edge detection is related to the 
signal-noise ratio of the data. Small-mask operators can detect 
fine details within range images but are sensitive against noise. 
In contrast, the mean curvature can be estimated more reliable 
using larger mask sizes of the filter operator. However, in this 
configuration a number of edges cannot be detected. This is 
especially a problem for closely neighboured edges e.g. at 
intersections. This is clearly visible in Figure 3a, where the red 
arrows mark missing edge pixels. 

Since no single edge operator performs optimal for all scales, a 
compromise between edge localization and noise sensitivity is 
aspired by a multi-mask approach. By these means the missing 
edges are recovered correctly, as it is visible in Figure 3b. Such 
multi-scale approaches apply different sizes of edge operators 
on an image, thus different descriptions are generated where 
new extreme points may appear. Since the width of an edge will 
expand as the scale increases, a thinning process is performed to 
yield one-pixel wide edges. The result of this skeletonization is 
depicted in figure 3c. 

 
Figure 2. Spatial distribution of the mean curvature values for block and wye range image (OSU database).   
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3. ALGORITHM CHARACTERISTICS 

Good edge detection requires an operator, which is designed to 
fit the nature of a specific image. Additionally, some other 
characteristics of the proposed edge detector related to the 
nature and properties of the mean curvature will be discussed in 
the following. 

3.1 Crease-step edge Classification 

As it was already discussed in section 3, the value of the mean 
curvature is smaller for crease edges than for jump edges. Based 
on this definition, the edge types of an object can be classified 
easily by applying different threshold values. Low threshold 
values are used to detect the small peaks of crease edges while 
larger values can be used for step edge detection. The example 
of a curve block in Figure 4 demonstrates this ability of our 
algorithm to reliably characterize these edge types. 

 

 

Figure 4. Curve block segmentation using different thresholds 
to detect step edges (red) and crease edges (blue). 

 

3.2 Pose Independent 

Range image object recognition usually decomposes into 
surface recognition problem, which is in turn relies on surface 
characterization. Segmentation process depends mainly on those 
characteristics. Viewpoint invariance is a desirable property for 
any surface characteristics derived from discrete image data. A 
quantity is invariant with respect to a group of transformations 
if those transformations do not change its value. Mean curvature 
value is invariant to arbitrary rotations and translations of the 
surface. Thus, we can expect that the algorithm can reliably 
detect the edges independent of the pose of the object. The 
performance of our technique for curvature estimation and edge 
detection is tested using range images with different poses. It 
was found that the algorithm could find the edges in all object 
directions using the same threshold value. The result does not 
affected by the arbitrary direction and rotation of the surfaces. 
Examples are shown in figure 5 for the block range images. 

 

3.3 Free Form Objects 

A free form surface has a well-defined surface normal that is 
continues almost everywhere except at the edges and cusps. 
Discontinuities in surface normal may be presented any where 
on the free form surface. Similarly, discontinuities in the surface 
depth may be present any where in a projection of the object. 
The curves that connect these points of discontinuities may 
meet or diverge smoothly [Dorai, 1997].  Human faces and 
sculptures are typical examples of free form objects. It is widely 
accepted in the researches that the reliable segmentation and 
recognition of arbitrary viewed complex curved objects is still a 
challenging task [Campbell, 2001]. This is because free form 
objects are not entirely smooth but piecewise smooth. The 
proposed edge detection technique has been tested when free 
form objects considered. Figure 6 gives examples using 
sculptured objects obtained from OSU database. The obtained 
results prove that the presented technique also can deal with this 
kind of objects. 

                   

 

 

 

 

 

 

Figure 6. Segmentation results of free form objects, angle status 
and frog range images collected using Minolta scanner. 

 

(a) (b)  (c)  

Figure 3. a) Depth and discontinuites detection using mask size 5, the red arrows show the missing parts in the junction and the 
corners of the object. b) Handling the junction problems using different scale threshold parameters. c) Segmentation result after 
thinning process to yield one pixel wide edge. 

 

 

 

 

 

 

 

 

Figure 5. Block collection segmentation with different poses  



 

 

 

3.4 Real Scene Segmentation  

The main challenge for most of segmentation algorithms is the 
robustness against noise. Thus, a number of edge detection 
techniques apply a smoothing process before the extraction of 
range changes. However, this smoothing limits the accuracy of 
the edge localization. In general, mean curvature is slightly less 
sensitive to noise in numerical computation since it is the 
average of the principal curvatures. In order to examine the 
robustness of our approach against noise, and to demonstrate its 
ability to deal with a variety of object surfaces, The proposed 
algorithm has been tested on a large number of real range 
images acquired by different range sensors; terrestrial and 
airborne laser scanners. 

3.4.1 Terrestrial Laser Scanner 
 

Figure 7 displays a range image for the 3D model of Al-
Khasneh monument in ancient Petra city of Jordan. The data 
was collected by a Mensi GS100 laser scanner.  Since such data 
is usually contaminated by noise, a large mask size of 11 pixels 
was used to allow for reliable edge detection. Figure 7b shows 
the binary edge map generated using the proposed segmentation 
algorithm. It can be noticed that the edges are thick since we 
have used mask size 11, which is necessary for robust 
estimation of the mean curvature values in such high noise 
images. As it is visible, most of the main features are detected. 
Since a large mask size was used, the edges are rather blurred. 
For this reason, the edges are then sketolonized by the thinning 
process. Figure 7c depicts the results of this process overlaid to 
the corresponding range image. 

3.4.2 Airborne Laser Scanner 
 

Figure 8a shows range image acquired by toposys laser scanner 
system for some parts of Stuttgart city, Schloss Platz area. The 
system provide terrain points measured at approximately one 
point each 1x1 m2 with an accuracy of 0.3 m in planimetry, and 
0.1 m in height. The measurements are provided along strips, 
which are usually processed and resampled to obtain a regular 
raster. The produced edge map is shown in figure 8b. Figure 8c 
depicts the binary edge map projected on the range image after 
skeletonized process. 

3.5 Conclusion 

The paper presents an efficient edge detection algorithm that 
can detect linear features in range images. The distinguished 
points, which will comprise the edges, depend on the spatial 
analysis of the numerical description of the mean curvature 
values. Although the central task of edge detection is to reliable 
detect and locate edge points, a rich description of edge points 
give the ability to reliably detecting and characterizing the edge 
types as a crease and step edges, and then go further to classify 
the crease edges as concave or convex types. The generality and 
robustness of the algorithm is illustrated on free form objects 
and sculptures in addition to real scene images collected with 
different available range sensors. Compared to known methods 
in literature, the algorithm exhibits the following features: 
computational efficiency, high accuracy in the localization of 
the edge points, easy to implement, and Image noise does not 
degenerate its performance. 

 

 

 

 

 

 

 

 

 

 

Figure 7. a) Range image collected from Petra treasury (Al-Khasneh). b) Segmentation results using mask size 11.  c) Edge map 
projected in the range image after skeletonized. 

 

 

 

 

 

 

 

 

 

Figure 8. a) Range image for Schloss Platz area, Stuttgart city. b) Segmentation results using mask size 11. c) Edge map 
projected in the range image after skeletonized.  
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